Capability.c 26.5 KB
Newer Older
sof's avatar
sof committed
1
/* ---------------------------------------------------------------------------
2
 *
3
 * (c) The GHC Team, 2003-2006
sof's avatar
sof committed
4
5
6
 *
 * Capabilities
 *
sof's avatar
sof committed
7
8
 * A Capability represent the token required to execute STG code,
 * and all the state an OS thread/task needs to run Haskell code:
sof's avatar
sof committed
9
 * its STG registers, a pointer to its TSO, a nursery etc. During
sof's avatar
sof committed
10
 * STG execution, a pointer to the capabilitity is kept in a
11
 * register (BaseReg; actually it is a pointer to cap->r).
sof's avatar
sof committed
12
 *
13
14
15
 * Only in an THREADED_RTS build will there be multiple capabilities,
 * for non-threaded builds there is only one global capability, namely
 * MainCapability.
16
 *
sof's avatar
sof committed
17
 * --------------------------------------------------------------------------*/
18

sof's avatar
sof committed
19
20
21
#include "PosixSource.h"
#include "Rts.h"
#include "RtsUtils.h"
22
#include "RtsFlags.h"
23
#include "STM.h"
sof's avatar
sof committed
24
#include "OSThreads.h"
sof's avatar
sof committed
25
#include "Capability.h"
26
#include "Schedule.h"
27
#include "Sparks.h"
Simon Marlow's avatar
Simon Marlow committed
28
#include "Trace.h"
29
#include "GC.h"
sof's avatar
sof committed
30

31
32
33
// one global capability, this is the Capability for non-threaded
// builds, and for +RTS -N1
Capability MainCapability;
sof's avatar
sof committed
34

35
nat n_capabilities;
36
Capability *capabilities = NULL;
sof's avatar
sof committed
37

38
39
40
41
42
// Holds the Capability which last became free.  This is used so that
// an in-call has a chance of quickly finding a free Capability.
// Maintaining a global free list of Capabilities would require global
// locking, so we don't do that.
Capability *last_free_capability;
43

44
45
46
/* GC indicator, in scope for the scheduler, init'ed to false */
volatile StgWord waiting_for_gc = 0;

47
#if defined(THREADED_RTS)
48
49
50
STATIC_INLINE rtsBool
globalWorkToDo (void)
{
51
    return blackholes_need_checking
52
	|| sched_state >= SCHED_INTERRUPTING
53
54
	;
}
55
#endif
56

57
#if defined(THREADED_RTS)
58
StgClosure *
59
findSpark (Capability *cap)
60
{
61
62
  Capability *robbed;
  StgClosurePtr spark;
63
  rtsBool retry;
64
65
  nat i = 0;

66
67
68
69
70
71
72
  if (!emptyRunQueue(cap)) {
      // If there are other threads, don't try to run any new
      // sparks: sparks might be speculative, we don't want to take
      // resources away from the main computation.
      return 0;
  }

73
74
75
76
77
78
79
80
81
  // first try to get a spark from our own pool.
  // We should be using reclaimSpark(), because it works without
  // needing any atomic instructions:
  //   spark = reclaimSpark(cap->sparks);
  // However, measurements show that this makes at least one benchmark
  // slower (prsa) and doesn't affect the others.
  spark = tryStealSpark(cap);
  if (spark != NULL) {
      cap->sparks_converted++;
82
83
84
85

      // Post event for running a spark from capability's own pool.
      postEvent(cap, EVENT_RUN_SPARK, cap->r.rCurrentTSO->id, 0);

86
87
88
89
90
      return spark;
  }

  if (n_capabilities == 1) { return NULL; } // makes no sense...

91
92
93
94
  debugTrace(DEBUG_sched,
	     "cap %d: Trying to steal work from other capabilities", 
	     cap->no);

95
96
  do {
      retry = rtsFalse;
97

98
99
100
101
102
103
      /* visit cap.s 0..n-1 in sequence until a theft succeeds. We could
      start at a random place instead of 0 as well.  */
      for ( i=0 ; i < n_capabilities ; i++ ) {
          robbed = &capabilities[i];
          if (cap == robbed)  // ourselves...
              continue;
104

105
106
107
          if (emptySparkPoolCap(robbed)) // nothing to steal here
              continue;

108
          spark = tryStealSpark(robbed);
109
110
111
112
113
114
115
116
          if (spark == NULL && !emptySparkPoolCap(robbed)) {
              // we conflicted with another thread while trying to steal;
              // try again later.
              retry = rtsTrue;
          }

          if (spark != NULL) {
              debugTrace(DEBUG_sched,
117
		 "cap %d: Stole a spark from capability %d",
118
                         cap->no, robbed->no);
119
              cap->sparks_converted++;
120
121
122
123
124

              postEvent(cap, EVENT_STEAL_SPARK, 
                        cap->r.rCurrentTSO->id, robbed->no);
                        
              
125
              return spark;
126
127
128
129
          }
          // otherwise: no success, try next one
      }
  } while (retry);
130

131
  debugTrace(DEBUG_sched, "No sparks stolen");
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
  return NULL;
}

// Returns True if any spark pool is non-empty at this moment in time
// The result is only valid for an instant, of course, so in a sense
// is immediately invalid, and should not be relied upon for
// correctness.
rtsBool
anySparks (void)
{
    nat i;

    for (i=0; i < n_capabilities; i++) {
        if (!emptySparkPoolCap(&capabilities[i])) {
            return rtsTrue;
        }
    }
    return rtsFalse;
150
}
151
#endif
152
153
154

/* -----------------------------------------------------------------------------
 * Manage the returning_tasks lists.
155
 *
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
 * These functions require cap->lock
 * -------------------------------------------------------------------------- */

#if defined(THREADED_RTS)
STATIC_INLINE void
newReturningTask (Capability *cap, Task *task)
{
    ASSERT_LOCK_HELD(&cap->lock);
    ASSERT(task->return_link == NULL);
    if (cap->returning_tasks_hd) {
	ASSERT(cap->returning_tasks_tl->return_link == NULL);
	cap->returning_tasks_tl->return_link = task;
    } else {
	cap->returning_tasks_hd = task;
    }
    cap->returning_tasks_tl = task;
172
173
}

174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
STATIC_INLINE Task *
popReturningTask (Capability *cap)
{
    ASSERT_LOCK_HELD(&cap->lock);
    Task *task;
    task = cap->returning_tasks_hd;
    ASSERT(task);
    cap->returning_tasks_hd = task->return_link;
    if (!cap->returning_tasks_hd) {
	cap->returning_tasks_tl = NULL;
    }
    task->return_link = NULL;
    return task;
}
#endif

190
/* ----------------------------------------------------------------------------
191
192
193
194
 * Initialisation
 *
 * The Capability is initially marked not free.
 * ------------------------------------------------------------------------- */
195
196

static void
197
initCapability( Capability *cap, nat i )
sof's avatar
sof committed
198
{
199
    nat g;
200

201
202
    cap->no = i;
    cap->in_haskell        = rtsFalse;
203
    cap->in_gc             = rtsFalse;
204
205
206
207
208
209
210
211
212
213
214

    cap->run_queue_hd      = END_TSO_QUEUE;
    cap->run_queue_tl      = END_TSO_QUEUE;

#if defined(THREADED_RTS)
    initMutex(&cap->lock);
    cap->running_task      = NULL; // indicates cap is free
    cap->spare_workers     = NULL;
    cap->suspended_ccalling_tasks = NULL;
    cap->returning_tasks_hd = NULL;
    cap->returning_tasks_tl = NULL;
215
216
    cap->wakeup_queue_hd    = END_TSO_QUEUE;
    cap->wakeup_queue_tl    = END_TSO_QUEUE;
217
218
219
    cap->sparks_created     = 0;
    cap->sparks_converted   = 0;
    cap->sparks_pruned      = 0;
220
221
#endif

222
    cap->f.stgEagerBlackholeInfo = (W_)&__stg_EAGER_BLACKHOLE_info;
sof's avatar
sof committed
223
    cap->f.stgGCEnter1     = (F_)__stg_gc_enter_1;
224
    cap->f.stgGCFun        = (F_)__stg_gc_fun;
225

226
    cap->mut_lists  = stgMallocBytes(sizeof(bdescr *) *
227
228
				     RtsFlags.GcFlags.generations,
				     "initCapability");
229
230
231
    cap->saved_mut_lists = stgMallocBytes(sizeof(bdescr *) *
                                          RtsFlags.GcFlags.generations,
                                          "initCapability");
232
233
234

    for (g = 0; g < RtsFlags.GcFlags.generations; g++) {
	cap->mut_lists[g] = NULL;
235
    }
236

tharris@microsoft.com's avatar
tharris@microsoft.com committed
237
238
    cap->free_tvar_watch_queues = END_STM_WATCH_QUEUE;
    cap->free_invariant_check_queues = END_INVARIANT_CHECK_QUEUE;
239
240
241
    cap->free_trec_chunks = END_STM_CHUNK_LIST;
    cap->free_trec_headers = NO_TREC;
    cap->transaction_tokens = 0;
242
    cap->context_switch = 0;
sof's avatar
sof committed
243
244
}

245
/* ---------------------------------------------------------------------------
sof's avatar
sof committed
246
247
 * Function:  initCapabilities()
 *
248
 * Purpose:   set up the Capability handling. For the THREADED_RTS build,
sof's avatar
sof committed
249
 *            we keep a table of them, the size of which is
250
 *            controlled by the user via the RTS flag -N.
sof's avatar
sof committed
251
 *
252
 * ------------------------------------------------------------------------- */
sof's avatar
sof committed
253
void
254
initCapabilities( void )
sof's avatar
sof committed
255
{
256
257
#if defined(THREADED_RTS)
    nat i;
258

259
#ifndef REG_Base
Simon Marlow's avatar
Simon Marlow committed
260
261
262
263
264
265
266
    // We can't support multiple CPUs if BaseReg is not a register
    if (RtsFlags.ParFlags.nNodes > 1) {
	errorBelch("warning: multiple CPUs not supported in this build, reverting to 1");
	RtsFlags.ParFlags.nNodes = 1;
    }
#endif

267
268
269
270
271
272
273
274
275
276
277
    n_capabilities = RtsFlags.ParFlags.nNodes;

    if (n_capabilities == 1) {
	capabilities = &MainCapability;
	// THREADED_RTS must work on builds that don't have a mutable
	// BaseReg (eg. unregisterised), so in this case
	// capabilities[0] must coincide with &MainCapability.
    } else {
	capabilities = stgMallocBytes(n_capabilities * sizeof(Capability),
				      "initCapabilities");
    }
278

279
    for (i = 0; i < n_capabilities; i++) {
280
	initCapability(&capabilities[i], i);
281
    }
282

Simon Marlow's avatar
Simon Marlow committed
283
    debugTrace(DEBUG_sched, "allocated %d capabilities", n_capabilities);
284
285
286

#else /* !THREADED_RTS */

287
    n_capabilities = 1;
288
    capabilities = &MainCapability;
289
    initCapability(&MainCapability, 0);
290

291
292
#endif

293
294
295
296
    // There are no free capabilities to begin with.  We will start
    // a worker Task to each Capability, which will quickly put the
    // Capability on the free list when it finds nothing to do.
    last_free_capability = &capabilities[0];
sof's avatar
sof committed
297
298
}

299
300
301
302
303
304
305
/* ----------------------------------------------------------------------------
 * setContextSwitches: cause all capabilities to context switch as
 * soon as possible.
 * ------------------------------------------------------------------------- */

void setContextSwitches(void)
{
306
307
308
309
    nat i;
    for (i=0; i < n_capabilities; i++) {
        contextSwitchCapability(&capabilities[i]);
    }
310
311
}

312
/* ----------------------------------------------------------------------------
313
314
315
316
317
318
319
320
321
322
 * Give a Capability to a Task.  The task must currently be sleeping
 * on its condition variable.
 *
 * Requires cap->lock (modifies cap->running_task).
 *
 * When migrating a Task, the migrater must take task->lock before
 * modifying task->cap, to synchronise with the waking up Task.
 * Additionally, the migrater should own the Capability (when
 * migrating the run queue), or cap->lock (when migrating
 * returning_workers).
323
324
 *
 * ------------------------------------------------------------------------- */
325
326
327

#if defined(THREADED_RTS)
STATIC_INLINE void
328
giveCapabilityToTask (Capability *cap USED_IF_DEBUG, Task *task)
329
{
330
331
    ASSERT_LOCK_HELD(&cap->lock);
    ASSERT(task->cap == cap);
Simon Marlow's avatar
Simon Marlow committed
332
333
334
    debugTrace(DEBUG_sched, "passing capability %d to %s %p",
               cap->no, task->tso ? "bound task" : "worker",
               (void *)task->id);
335
336
337
338
339
340
341
    ACQUIRE_LOCK(&task->lock);
    task->wakeup = rtsTrue;
    // the wakeup flag is needed because signalCondition() doesn't
    // flag the condition if the thread is already runniing, but we want
    // it to be sticky.
    signalCondition(&task->cond);
    RELEASE_LOCK(&task->lock);
342
}
343
#endif
344

345
/* ----------------------------------------------------------------------------
sof's avatar
sof committed
346
347
 * Function:  releaseCapability(Capability*)
 *
sof's avatar
sof committed
348
349
350
 * Purpose:   Letting go of a capability. Causes a
 *            'returning worker' thread or a 'waiting worker'
 *            to wake up, in that order.
351
352
 * ------------------------------------------------------------------------- */

353
#if defined(THREADED_RTS)
354
void
355
356
releaseCapability_ (Capability* cap, 
                    rtsBool always_wakeup)
357
{
358
359
360
361
    Task *task;

    task = cap->running_task;

362
    ASSERT_PARTIAL_CAPABILITY_INVARIANTS(cap,task);
363
364

    cap->running_task = NULL;
365

366
367
    // Check to see whether a worker thread can be given
    // the go-ahead to return the result of an external call..
368
369
370
371
    if (cap->returning_tasks_hd != NULL) {
	giveCapabilityToTask(cap,cap->returning_tasks_hd);
	// The Task pops itself from the queue (see waitForReturnCapability())
	return;
372
    }
373

374
    if (waiting_for_gc == PENDING_GC_SEQ) {
375
      last_free_capability = cap; // needed?
Simon Marlow's avatar
Simon Marlow committed
376
      debugTrace(DEBUG_sched, "GC pending, set capability %d free", cap->no);
377
378
379
380
      return;
    } 


381
382
383
384
385
386
387
388
    // If the next thread on the run queue is a bound thread,
    // give this Capability to the appropriate Task.
    if (!emptyRunQueue(cap) && cap->run_queue_hd->bound) {
	// Make sure we're not about to try to wake ourselves up
	ASSERT(task != cap->run_queue_hd->bound);
	task = cap->run_queue_hd->bound;
	giveCapabilityToTask(cap,task);
	return;
389
    }
390

391
    if (!cap->spare_workers) {
392
393
394
395
	// Create a worker thread if we don't have one.  If the system
	// is interrupted, we only create a worker task if there
	// are threads that need to be completed.  If the system is
	// shutting down, we never create a new worker.
396
	if (sched_state < SCHED_SHUTTING_DOWN || !emptyRunQueue(cap)) {
Simon Marlow's avatar
Simon Marlow committed
397
398
	    debugTrace(DEBUG_sched,
		       "starting new worker on capability %d", cap->no);
399
400
401
	    startWorkerTask(cap, workerStart);
	    return;
	}
402
    }
403

404
405
    // If we have an unbound thread on the run queue, or if there's
    // anything else to do, give the Capability to a worker thread.
406
407
408
    if (always_wakeup || 
        !emptyRunQueue(cap) || !emptyWakeupQueue(cap) ||
        !emptySparkPoolCap(cap) || globalWorkToDo()) {
409
410
411
412
413
414
415
	if (cap->spare_workers) {
	    giveCapabilityToTask(cap,cap->spare_workers);
	    // The worker Task pops itself from the queue;
	    return;
	}
    }

416
    last_free_capability = cap;
Simon Marlow's avatar
Simon Marlow committed
417
    debugTrace(DEBUG_sched, "freeing capability %d", cap->no);
sof's avatar
sof committed
418
419
}

420
void
421
releaseCapability (Capability* cap USED_IF_THREADS)
422
423
{
    ACQUIRE_LOCK(&cap->lock);
424
425
426
427
428
429
430
431
432
    releaseCapability_(cap, rtsFalse);
    RELEASE_LOCK(&cap->lock);
}

void
releaseAndWakeupCapability (Capability* cap USED_IF_THREADS)
{
    ACQUIRE_LOCK(&cap->lock);
    releaseCapability_(cap, rtsTrue);
433
434
435
436
    RELEASE_LOCK(&cap->lock);
}

static void
437
releaseCapabilityAndQueueWorker (Capability* cap USED_IF_THREADS)
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
{
    Task *task;

    ACQUIRE_LOCK(&cap->lock);

    task = cap->running_task;

    // If the current task is a worker, save it on the spare_workers
    // list of this Capability.  A worker can mark itself as stopped,
    // in which case it is not replaced on the spare_worker queue.
    // This happens when the system is shutting down (see
    // Schedule.c:workerStart()).
    // Also, be careful to check that this task hasn't just exited
    // Haskell to do a foreign call (task->suspended_tso).
    if (!isBoundTask(task) && !task->stopped && !task->suspended_tso) {
	task->next = cap->spare_workers;
	cap->spare_workers = task;
    }
    // Bound tasks just float around attached to their TSOs.

458
    releaseCapability_(cap,rtsFalse);
459
460
461
462

    RELEASE_LOCK(&cap->lock);
}
#endif
sof's avatar
sof committed
463

464
/* ----------------------------------------------------------------------------
465
 * waitForReturnCapability( Task *task )
sof's avatar
sof committed
466
467
 *
 * Purpose:  when an OS thread returns from an external call,
468
469
 * it calls waitForReturnCapability() (via Schedule.resumeThread())
 * to wait for permission to enter the RTS & communicate the
sof's avatar
sof committed
470
 * result of the external call back to the Haskell thread that
sof's avatar
sof committed
471
472
 * made it.
 *
473
 * ------------------------------------------------------------------------- */
sof's avatar
sof committed
474
void
475
waitForReturnCapability (Capability **pCap, Task *task)
sof's avatar
sof committed
476
{
477
#if !defined(THREADED_RTS)
478

479
480
481
    MainCapability.running_task = task;
    task->cap = &MainCapability;
    *pCap = &MainCapability;
482

483
#else
484
485
486
487
488
489
490
491
    Capability *cap = *pCap;

    if (cap == NULL) {
	// Try last_free_capability first
	cap = last_free_capability;
	if (!cap->running_task) {
	    nat i;
	    // otherwise, search for a free capability
492
            cap = NULL;
493
	    for (i = 0; i < n_capabilities; i++) {
494
495
		if (!capabilities[i].running_task) {
                    cap = &capabilities[i];
496
497
498
		    break;
		}
	    }
499
500
501
502
            if (cap == NULL) {
                // Can't find a free one, use last_free_capability.
                cap = last_free_capability;
            }
503
504
505
506
507
	}

	// record the Capability as the one this Task is now assocated with.
	task->cap = cap;

508
    } else {
509
	ASSERT(task->cap == cap);
510
511
    }

512
    ACQUIRE_LOCK(&cap->lock);
sof's avatar
sof committed
513

Simon Marlow's avatar
Simon Marlow committed
514
    debugTrace(DEBUG_sched, "returning; I want capability %d", cap->no);
sof's avatar
sof committed
515

516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
    if (!cap->running_task) {
	// It's free; just grab it
	cap->running_task = task;
	RELEASE_LOCK(&cap->lock);
    } else {
	newReturningTask(cap,task);
	RELEASE_LOCK(&cap->lock);

	for (;;) {
	    ACQUIRE_LOCK(&task->lock);
	    // task->lock held, cap->lock not held
	    if (!task->wakeup) waitCondition(&task->cond, &task->lock);
	    cap = task->cap;
	    task->wakeup = rtsFalse;
	    RELEASE_LOCK(&task->lock);

	    // now check whether we should wake up...
	    ACQUIRE_LOCK(&cap->lock);
	    if (cap->running_task == NULL) {
		if (cap->returning_tasks_hd != task) {
		    giveCapabilityToTask(cap,cap->returning_tasks_hd);
		    RELEASE_LOCK(&cap->lock);
		    continue;
		}
		cap->running_task = task;
		popReturningTask(cap);
		RELEASE_LOCK(&cap->lock);
		break;
	    }
	    RELEASE_LOCK(&cap->lock);
	}

    }

550
    ASSERT_FULL_CAPABILITY_INVARIANTS(cap,task);
551

Simon Marlow's avatar
Simon Marlow committed
552
    debugTrace(DEBUG_sched, "resuming capability %d", cap->no);
553
554
555
556
557
558

    *pCap = cap;
#endif
}

#if defined(THREADED_RTS)
559
/* ----------------------------------------------------------------------------
560
 * yieldCapability
561
 * ------------------------------------------------------------------------- */
sof's avatar
sof committed
562

sof's avatar
sof committed
563
void
564
yieldCapability (Capability** pCap, Task *task)
sof's avatar
sof committed
565
{
566
567
    Capability *cap = *pCap;

568
569
    if (waiting_for_gc == PENDING_GC_PAR) {
	debugTrace(DEBUG_sched, "capability %d: becoming a GC thread", cap->no);
Simon Marlow's avatar
Simon Marlow committed
570
        postEvent(cap, EVENT_GC_START, 0, 0);
571
        gcWorkerThread(cap);
Simon Marlow's avatar
Simon Marlow committed
572
        postEvent(cap, EVENT_GC_END, 0, 0);
573
574
575
        return;
    }

Simon Marlow's avatar
Simon Marlow committed
576
	debugTrace(DEBUG_sched, "giving up capability %d", cap->no);
577
578

	// We must now release the capability and wait to be woken up
579
	// again.
580
	task->wakeup = rtsFalse;
581
582
583
584
585
586
587
588
589
590
	releaseCapabilityAndQueueWorker(cap);

	for (;;) {
	    ACQUIRE_LOCK(&task->lock);
	    // task->lock held, cap->lock not held
	    if (!task->wakeup) waitCondition(&task->cond, &task->lock);
	    cap = task->cap;
	    task->wakeup = rtsFalse;
	    RELEASE_LOCK(&task->lock);

Simon Marlow's avatar
Simon Marlow committed
591
592
	    debugTrace(DEBUG_sched, "woken up on capability %d", cap->no);

593
594
	    ACQUIRE_LOCK(&cap->lock);
	    if (cap->running_task != NULL) {
Simon Marlow's avatar
Simon Marlow committed
595
596
		debugTrace(DEBUG_sched, 
			   "capability %d is owned by another task", cap->no);
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
		RELEASE_LOCK(&cap->lock);
		continue;
	    }

	    if (task->tso == NULL) {
		ASSERT(cap->spare_workers != NULL);
		// if we're not at the front of the queue, release it
		// again.  This is unlikely to happen.
		if (cap->spare_workers != task) {
		    giveCapabilityToTask(cap,cap->spare_workers);
		    RELEASE_LOCK(&cap->lock);
		    continue;
		}
		cap->spare_workers = task->next;
		task->next = NULL;
	    }
	    cap->running_task = task;
	    RELEASE_LOCK(&cap->lock);
	    break;
	}

Simon Marlow's avatar
Simon Marlow committed
618
	debugTrace(DEBUG_sched, "resuming capability %d", cap->no);
619
	ASSERT(cap->running_task == task);
620

621
    *pCap = cap;
622

623
    ASSERT_FULL_CAPABILITY_INVARIANTS(cap,task);
624

625
    return;
sof's avatar
sof committed
626
627
}

628
629
630
631
632
633
634
635
/* ----------------------------------------------------------------------------
 * Wake up a thread on a Capability.
 *
 * This is used when the current Task is running on a Capability and
 * wishes to wake up a thread on a different Capability.
 * ------------------------------------------------------------------------- */

void
636
637
638
wakeupThreadOnCapability (Capability *my_cap, 
                          Capability *other_cap, 
                          StgTSO *tso)
639
{
640
    ACQUIRE_LOCK(&other_cap->lock);
641

642
643
644
645
646
647
648
649
    // ASSUMES: cap->lock is held (asserted in wakeupThreadOnCapability)
    if (tso->bound) {
	ASSERT(tso->bound->cap == tso->cap);
    	tso->bound->cap = other_cap;
    }
    tso->cap = other_cap;

    ASSERT(tso->bound ? tso->bound->cap == other_cap : 1);
650

651
    if (other_cap->running_task == NULL) {
652
653
654
	// nobody is running this Capability, we can add our thread
	// directly onto the run queue and start up a Task to run it.

655
656
657
658
659
	other_cap->running_task = myTask(); 
            // precond for releaseCapability_() and appendToRunQueue()

	appendToRunQueue(other_cap,tso);

660
	releaseCapability_(other_cap,rtsFalse);
661
    } else {
662
	appendToWakeupQueue(my_cap,other_cap,tso);
663
        other_cap->context_switch = 1;
664
665
666
667
	// someone is running on this Capability, so it cannot be
	// freed without first checking the wakeup queue (see
	// releaseCapability_).
    }
668

669
    RELEASE_LOCK(&other_cap->lock);
670
671
}

672
/* ----------------------------------------------------------------------------
673
 * prodCapability
674
 *
675
676
 * If a Capability is currently idle, wake up a Task on it.  Used to 
 * get every Capability into the GC.
677
 * ------------------------------------------------------------------------- */
678

679
void
680
prodCapability (Capability *cap, Task *task)
681
{
682
683
684
685
686
687
    ACQUIRE_LOCK(&cap->lock);
    if (!cap->running_task) {
        cap->running_task = task;
        releaseCapability_(cap,rtsTrue);
    }
    RELEASE_LOCK(&cap->lock);
688
}
689
690
691
692
693
694
695
696
697
698
699
700
701

/* ----------------------------------------------------------------------------
 * shutdownCapability
 *
 * At shutdown time, we want to let everything exit as cleanly as
 * possible.  For each capability, we let its run queue drain, and
 * allow the workers to stop.
 *
 * This function should be called when interrupted and
 * shutting_down_scheduler = rtsTrue, thus any worker that wakes up
 * will exit the scheduler and call taskStop(), and any bound thread
 * that wakes up will return to its caller.  Runnable threads are
 * killed.
702
 *
703
 * ------------------------------------------------------------------------- */
704
705

void
706
shutdownCapability (Capability *cap, Task *task, rtsBool safe)
707
{
708
709
710
711
    nat i;

    task->cap = cap;

712
713
714
715
716
717
718
    // Loop indefinitely until all the workers have exited and there
    // are no Haskell threads left.  We used to bail out after 50
    // iterations of this loop, but that occasionally left a worker
    // running which caused problems later (the closeMutex() below
    // isn't safe, for one thing).

    for (i = 0; /* i < 50 */; i++) {
Simon Marlow's avatar
Simon Marlow committed
719
720
        ASSERT(sched_state == SCHED_SHUTTING_DOWN);

Simon Marlow's avatar
Simon Marlow committed
721
722
	debugTrace(DEBUG_sched, 
		   "shutting down capability %d, attempt %d", cap->no, i);
723
724
725
	ACQUIRE_LOCK(&cap->lock);
	if (cap->running_task) {
	    RELEASE_LOCK(&cap->lock);
Simon Marlow's avatar
Simon Marlow committed
726
	    debugTrace(DEBUG_sched, "not owner, yielding");
727
728
	    yieldThread();
	    continue;
729
	}
730
	cap->running_task = task;
Simon Marlow's avatar
Simon Marlow committed
731
732
733
734
735
736
737
738
739
740
741
742
743

        if (cap->spare_workers) {
            // Look for workers that have died without removing
            // themselves from the list; this could happen if the OS
            // summarily killed the thread, for example.  This
            // actually happens on Windows when the system is
            // terminating the program, and the RTS is running in a
            // DLL.
            Task *t, *prev;
            prev = NULL;
            for (t = cap->spare_workers; t != NULL; t = t->next) {
                if (!osThreadIsAlive(t->id)) {
                    debugTrace(DEBUG_sched, 
744
                               "worker thread %p has died unexpectedly", (void *)t->id);
Simon Marlow's avatar
Simon Marlow committed
745
746
747
748
749
750
751
752
753
754
                        if (!prev) {
                            cap->spare_workers = t->next;
                        } else {
                            prev->next = t->next;
                        }
                        prev = t;
                }
            }
        }

755
	if (!emptyRunQueue(cap) || cap->spare_workers) {
Simon Marlow's avatar
Simon Marlow committed
756
757
	    debugTrace(DEBUG_sched, 
		       "runnable threads or workers still alive, yielding");
758
	    releaseCapability_(cap,rtsFalse); // this will wake up a worker
759
760
761
	    RELEASE_LOCK(&cap->lock);
	    yieldThread();
	    continue;
762
	}
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778

        // If "safe", then busy-wait for any threads currently doing
        // foreign calls.  If we're about to unload this DLL, for
        // example, we need to be sure that there are no OS threads
        // that will try to return to code that has been unloaded.
        // We can be a bit more relaxed when this is a standalone
        // program that is about to terminate, and let safe=false.
        if (cap->suspended_ccalling_tasks && safe) {
	    debugTrace(DEBUG_sched, 
		       "thread(s) are involved in foreign calls, yielding");
            cap->running_task = NULL;
	    RELEASE_LOCK(&cap->lock);
            yieldThread();
            continue;
        }
            
Simon Marlow's avatar
Simon Marlow committed
779
        postEvent(cap, EVENT_SHUTDOWN, 0, 0);
Simon Marlow's avatar
Simon Marlow committed
780
	debugTrace(DEBUG_sched, "capability %d is stopped.", cap->no);
781
782
	RELEASE_LOCK(&cap->lock);
	break;
783
    }
784
785
    // we now have the Capability, its run queue and spare workers
    // list are both empty.
786

787
788
789
790
    // ToDo: we can't drop this mutex, because there might still be
    // threads performing foreign calls that will eventually try to 
    // return via resumeThread() and attempt to grab cap->lock.
    // closeMutex(&cap->lock);
791
}
792

793
794
795
796
/* ----------------------------------------------------------------------------
 * tryGrabCapability
 *
 * Attempt to gain control of a Capability if it is free.
797
 *
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
 * ------------------------------------------------------------------------- */

rtsBool
tryGrabCapability (Capability *cap, Task *task)
{
    if (cap->running_task != NULL) return rtsFalse;
    ACQUIRE_LOCK(&cap->lock);
    if (cap->running_task != NULL) {
	RELEASE_LOCK(&cap->lock);
	return rtsFalse;
    }
    task->cap = cap;
    cap->running_task = task;
    RELEASE_LOCK(&cap->lock);
    return rtsTrue;
}


816
#endif /* THREADED_RTS */
817

818
819
820
static void
freeCapability (Capability *cap)
{
Ian Lynagh's avatar
Ian Lynagh committed
821
822
    stgFree(cap->mut_lists);
#if defined(THREADED_RTS) || defined(PARALLEL_HASKELL)
823
    freeSparkPool(cap->sparks);
Ian Lynagh's avatar
Ian Lynagh committed
824
825
#endif
}
826

827
828
829
830
831
832
833
834
835
836
837
838
839
void
freeCapabilities (void)
{
#if defined(THREADED_RTS)
    nat i;
    for (i=0; i < n_capabilities; i++) {
        freeCapability(&capabilities[i]);
    }
#else
    freeCapability(&MainCapability);
#endif
}

840
841
842
843
844
845
846
/* ---------------------------------------------------------------------------
   Mark everything directly reachable from the Capabilities.  When
   using multiple GC threads, each GC thread marks all Capabilities
   for which (c `mod` n == 0), for Capability c and thread n.
   ------------------------------------------------------------------------ */

void
847
848
markSomeCapabilities (evac_fn evac, void *user, nat i0, nat delta, 
                      rtsBool prune_sparks USED_IF_THREADS)
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
{
    nat i;
    Capability *cap;
    Task *task;

    // Each GC thread is responsible for following roots from the
    // Capability of the same number.  There will usually be the same
    // or fewer Capabilities as GC threads, but just in case there
    // are more, we mark every Capability whose number is the GC
    // thread's index plus a multiple of the number of GC threads.
    for (i = i0; i < n_capabilities; i += delta) {
	cap = &capabilities[i];
	evac(user, (StgClosure **)(void *)&cap->run_queue_hd);
	evac(user, (StgClosure **)(void *)&cap->run_queue_tl);
#if defined(THREADED_RTS)
	evac(user, (StgClosure **)(void *)&cap->wakeup_queue_hd);
	evac(user, (StgClosure **)(void *)&cap->wakeup_queue_tl);
#endif
	for (task = cap->suspended_ccalling_tasks; task != NULL; 
	     task=task->next) {
	    debugTrace(DEBUG_sched,
		       "evac'ing suspended TSO %lu", (unsigned long)task->suspended_tso->id);
	    evac(user, (StgClosure **)(void *)&task->suspended_tso);
	}
873
874

#if defined(THREADED_RTS)
875
876
877
878
879
        if (prune_sparks) {
            pruneSparkQueue (evac, user, cap);
        } else {
            traverseSparkQueue (evac, user, cap);
        }
880
#endif
881
    }
882

883
884
885
886
887
888
889
890
891
892
#if !defined(THREADED_RTS)
    evac(user, (StgClosure **)(void *)&blocked_queue_hd);
    evac(user, (StgClosure **)(void *)&blocked_queue_tl);
    evac(user, (StgClosure **)(void *)&sleeping_queue);
#endif 
}

void
markCapabilities (evac_fn evac, void *user)
{
893
    markSomeCapabilities(evac, user, 0, 1, rtsFalse);
894
}