Simplify.lhs 90 KB
Newer Older
1
%
2
% (c) The AQUA Project, Glasgow University, 1993-1998
3 4 5 6
%
\section[Simplify]{The main module of the simplifier}

\begin{code}
7
module Simplify ( simplTopBinds, simplExpr ) where
8

9
#include "HsVersions.h"
10

simonpj@microsoft.com's avatar
Wibble  
simonpj@microsoft.com committed
11
import DynFlags
12
import SimplMonad
Ian Lynagh's avatar
Ian Lynagh committed
13 14
import Type hiding      ( substTy, extendTvSubst )
import SimplEnv
15
import SimplUtils
16
import FamInstEnv	( FamInstEnv )
17
import Id
18
import MkId		( mkImpossibleExpr, seqId )
19
import Var
20
import IdInfo
21
import Name		( mkSystemVarName )
22
import Coercion
Ian Lynagh's avatar
Ian Lynagh committed
23
import FamInstEnv       ( topNormaliseType )
24
import DataCon          ( DataCon, dataConWorkId, dataConRepStrictness )
25
import CoreSyn
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
26
import NewDemand        ( isStrictDmd, splitStrictSig )
Ian Lynagh's avatar
Ian Lynagh committed
27
import PprCore          ( pprParendExpr, pprCoreExpr )
28 29
import CoreUnfold       ( mkUnfolding, mkCoreUnfolding, mkInlineRule, 
                          exprIsConApp_maybe, callSiteInline, CallCtxt(..) )
30
import CoreUtils
31
import qualified CoreSubst
32
import CoreArity	( exprArity )
33
import Rules            ( lookupRule, getRules )
34
import BasicTypes       ( isMarkedStrict, Arity )
35
import CostCentre       ( currentCCS, pushCCisNop )
Ian Lynagh's avatar
Ian Lynagh committed
36 37 38 39
import TysPrim          ( realWorldStatePrimTy )
import PrelInfo         ( realWorldPrimId )
import BasicTypes       ( TopLevelFlag(..), isTopLevel,
                          RecFlag(..), isNonRuleLoopBreaker )
40
import MonadUtils	( foldlM )
Ian Lynagh's avatar
Ian Lynagh committed
41 42
import Maybes           ( orElse )
import Data.List        ( mapAccumL )
43
import Outputable
44
import FastString
45 46 47
\end{code}


48 49
The guts of the simplifier is in this module, but the driver loop for
the simplifier is in SimplCore.lhs.
50 51


52
-----------------------------------------
Ian Lynagh's avatar
Ian Lynagh committed
53
        *** IMPORTANT NOTE ***
54 55 56 57 58 59
-----------------------------------------
The simplifier used to guarantee that the output had no shadowing, but
it does not do so any more.   (Actually, it never did!)  The reason is
documented with simplifyArgs.


60
-----------------------------------------
Ian Lynagh's avatar
Ian Lynagh committed
61
        *** IMPORTANT NOTE ***
62 63 64 65 66 67 68 69 70 71
-----------------------------------------
Many parts of the simplifier return a bunch of "floats" as well as an
expression. This is wrapped as a datatype SimplUtils.FloatsWith.

All "floats" are let-binds, not case-binds, but some non-rec lets may
be unlifted (with RHS ok-for-speculation).



-----------------------------------------
Ian Lynagh's avatar
Ian Lynagh committed
72
        ORGANISATION OF FUNCTIONS
73 74 75 76 77 78
-----------------------------------------
simplTopBinds
  - simplify all top-level binders
  - for NonRec, call simplRecOrTopPair
  - for Rec,    call simplRecBind

Ian Lynagh's avatar
Ian Lynagh committed
79 80 81

        ------------------------------
simplExpr (applied lambda)      ==> simplNonRecBind
82 83 84
simplExpr (Let (NonRec ...) ..) ==> simplNonRecBind
simplExpr (Let (Rec ...)    ..) ==> simplify binders; simplRecBind

Ian Lynagh's avatar
Ian Lynagh committed
85 86
        ------------------------------
simplRecBind    [binders already simplfied]
87 88 89 90
  - use simplRecOrTopPair on each pair in turn

simplRecOrTopPair [binder already simplified]
  Used for: recursive bindings (top level and nested)
Ian Lynagh's avatar
Ian Lynagh committed
91 92
            top-level non-recursive bindings
  Returns:
93 94 95 96 97
  - check for PreInlineUnconditionally
  - simplLazyBind

simplNonRecBind
  Used for: non-top-level non-recursive bindings
Ian Lynagh's avatar
Ian Lynagh committed
98 99 100
            beta reductions (which amount to the same thing)
  Because it can deal with strict arts, it takes a
        "thing-inside" and returns an expression
101 102 103 104

  - check for PreInlineUnconditionally
  - simplify binder, including its IdInfo
  - if strict binding
Ian Lynagh's avatar
Ian Lynagh committed
105 106 107
        simplStrictArg
        mkAtomicArgs
        completeNonRecX
108
    else
Ian Lynagh's avatar
Ian Lynagh committed
109 110
        simplLazyBind
        addFloats
111

Ian Lynagh's avatar
Ian Lynagh committed
112
simplNonRecX:   [given a *simplified* RHS, but an *unsimplified* binder]
113 114 115 116
  Used for: binding case-binder and constr args in a known-constructor case
  - check for PreInLineUnconditionally
  - simplify binder
  - completeNonRecX
Ian Lynagh's avatar
Ian Lynagh committed
117 118 119

        ------------------------------
simplLazyBind:  [binder already simplified, RHS not]
120
  Used for: recursive bindings (top level and nested)
Ian Lynagh's avatar
Ian Lynagh committed
121 122 123
            top-level non-recursive bindings
            non-top-level, but *lazy* non-recursive bindings
        [must not be strict or unboxed]
124
  Returns floats + an augmented environment, not an expression
Ian Lynagh's avatar
Ian Lynagh committed
125 126
  - substituteIdInfo and add result to in-scope
        [so that rules are available in rec rhs]
127 128 129
  - simplify rhs
  - mkAtomicArgs
  - float if exposes constructor or PAP
130
  - completeBind
131 132


Ian Lynagh's avatar
Ian Lynagh committed
133
completeNonRecX:        [binder and rhs both simplified]
134
  - if the the thing needs case binding (unlifted and not ok-for-spec)
Ian Lynagh's avatar
Ian Lynagh committed
135
        build a Case
136
   else
Ian Lynagh's avatar
Ian Lynagh committed
137 138
        completeBind
        addFloats
139

Ian Lynagh's avatar
Ian Lynagh committed
140 141
completeBind:   [given a simplified RHS]
        [used for both rec and non-rec bindings, top level and not]
142 143 144 145 146 147 148 149
  - try PostInlineUnconditionally
  - add unfolding [this is the only place we add an unfolding]
  - add arity



Right hand sides and arguments
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Ian Lynagh's avatar
Ian Lynagh committed
150 151 152
In many ways we want to treat
        (a) the right hand side of a let(rec), and
        (b) a function argument
153 154 155
in the same way.  But not always!  In particular, we would
like to leave these arguments exactly as they are, so they
will match a RULE more easily.
Ian Lynagh's avatar
Ian Lynagh committed
156 157 158

        f (g x, h x)
        g (+ x)
159 160 161 162

It's harder to make the rule match if we ANF-ise the constructor,
or eta-expand the PAP:

Ian Lynagh's avatar
Ian Lynagh committed
163 164
        f (let { a = g x; b = h x } in (a,b))
        g (\y. + x y)
165 166 167

On the other hand if we see the let-defns

Ian Lynagh's avatar
Ian Lynagh committed
168 169
        p = (g x, h x)
        q = + x
170 171

then we *do* want to ANF-ise and eta-expand, so that p and q
Ian Lynagh's avatar
Ian Lynagh committed
172
can be safely inlined.
173 174 175 176 177

Even floating lets out is a bit dubious.  For let RHS's we float lets
out if that exposes a value, so that the value can be inlined more vigorously.
For example

Ian Lynagh's avatar
Ian Lynagh committed
178
        r = let x = e in (x,x)
179 180 181 182 183 184 185 186 187 188 189 190 191 192

Here, if we float the let out we'll expose a nice constructor. We did experiments
that showed this to be a generally good thing.  But it was a bad thing to float
lets out unconditionally, because that meant they got allocated more often.

For function arguments, there's less reason to expose a constructor (it won't
get inlined).  Just possibly it might make a rule match, but I'm pretty skeptical.
So for the moment we don't float lets out of function arguments either.


Eta expansion
~~~~~~~~~~~~~~
For eta expansion, we want to catch things like

Ian Lynagh's avatar
Ian Lynagh committed
193
        case e of (a,b) -> \x -> case a of (p,q) -> \y -> r
194 195 196 197 198

If the \x was on the RHS of a let, we'd eta expand to bring the two
lambdas together.  And in general that's a good thing to do.  Perhaps
we should eta expand wherever we find a (value) lambda?  Then the eta
expansion at a let RHS can concentrate solely on the PAP case.
199 200


201
%************************************************************************
Ian Lynagh's avatar
Ian Lynagh committed
202
%*                                                                      *
203
\subsection{Bindings}
Ian Lynagh's avatar
Ian Lynagh committed
204
%*                                                                      *
205 206 207
%************************************************************************

\begin{code}
208
simplTopBinds :: SimplEnv -> [InBind] -> SimplM SimplEnv
209

Ian Lynagh's avatar
Ian Lynagh committed
210
simplTopBinds env0 binds0
Ian Lynagh's avatar
Ian Lynagh committed
211 212 213 214
  = do  {       -- Put all the top-level binders into scope at the start
                -- so that if a transformation rule has unexpectedly brought
                -- anything into scope, then we don't get a complaint about that.
                -- It's rather as if the top-level binders were imported.
Ian Lynagh's avatar
Ian Lynagh committed
215
        ; env1 <- simplRecBndrs env0 (bindersOfBinds binds0)
Ian Lynagh's avatar
Ian Lynagh committed
216 217 218
        ; dflags <- getDOptsSmpl
        ; let dump_flag = dopt Opt_D_dump_inlinings dflags ||
                          dopt Opt_D_dump_rule_firings dflags
Ian Lynagh's avatar
Ian Lynagh committed
219
        ; env2 <- simpl_binds dump_flag env1 binds0
Ian Lynagh's avatar
Ian Lynagh committed
220
        ; freeTick SimplifierDone
221
        ; return env2 }
222
  where
Ian Lynagh's avatar
Ian Lynagh committed
223 224 225 226 227 228
        -- We need to track the zapped top-level binders, because
        -- they should have their fragile IdInfo zapped (notably occurrence info)
        -- That's why we run down binds and bndrs' simultaneously.
        --
        -- The dump-flag emits a trace for each top-level binding, which
        -- helps to locate the tracing for inlining and rule firing
229
    simpl_binds :: Bool -> SimplEnv -> [InBind] -> SimplM SimplEnv
Ian Lynagh's avatar
Ian Lynagh committed
230 231
    simpl_binds _    env []           = return env
    simpl_binds dump env (bind:binds) = do { env' <- trace_bind dump bind $
Ian Lynagh's avatar
Ian Lynagh committed
232 233
                                                     simpl_bind env bind
                                           ; simpl_binds dump env' binds }
234

Ian Lynagh's avatar
Ian Lynagh committed
235 236
    trace_bind True  bind = pprTrace "SimplBind" (ppr (bindersOf bind))
    trace_bind False _    = \x -> x
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
237

238 239
    simpl_bind env (Rec pairs)  = simplRecBind      env  TopLevel pairs
    simpl_bind env (NonRec b r) = simplRecOrTopPair env' TopLevel b b' r
Ian Lynagh's avatar
Ian Lynagh committed
240 241
        where
          (env', b') = addBndrRules env b (lookupRecBndr env b)
242 243 244 245
\end{code}


%************************************************************************
Ian Lynagh's avatar
Ian Lynagh committed
246
%*                                                                      *
247
\subsection{Lazy bindings}
Ian Lynagh's avatar
Ian Lynagh committed
248
%*                                                                      *
249 250 251
%************************************************************************

simplRecBind is used for
Ian Lynagh's avatar
Ian Lynagh committed
252
        * recursive bindings only
253 254 255

\begin{code}
simplRecBind :: SimplEnv -> TopLevelFlag
Ian Lynagh's avatar
Ian Lynagh committed
256 257
             -> [(InId, InExpr)]
             -> SimplM SimplEnv
Ian Lynagh's avatar
Ian Lynagh committed
258 259 260 261 262
simplRecBind env0 top_lvl pairs0
  = do  { let (env_with_info, triples) = mapAccumL add_rules env0 pairs0
        ; env1 <- go (zapFloats env_with_info) triples
        ; return (env0 `addRecFloats` env1) }
        -- addFloats adds the floats from env1,
Thomas Schilling's avatar
Thomas Schilling committed
263
        -- _and_ updates env0 with the in-scope set from env1
264
  where
265
    add_rules :: SimplEnv -> (InBndr,InExpr) -> (SimplEnv, (InBndr, OutBndr, InExpr))
Ian Lynagh's avatar
Ian Lynagh committed
266
        -- Add the (substituted) rules to the binder
267
    add_rules env (bndr, rhs) = (env', (bndr, bndr', rhs))
Ian Lynagh's avatar
Ian Lynagh committed
268 269
        where
          (env', bndr') = addBndrRules env bndr (lookupRecBndr env bndr)
270

271
    go env [] = return env
Ian Lynagh's avatar
Ian Lynagh committed
272

273
    go env ((old_bndr, new_bndr, rhs) : pairs)
Ian Lynagh's avatar
Ian Lynagh committed
274 275
        = do { env' <- simplRecOrTopPair env top_lvl old_bndr new_bndr rhs
             ; go env' pairs }
276 277
\end{code}

278
simplOrTopPair is used for
Ian Lynagh's avatar
Ian Lynagh committed
279 280
        * recursive bindings (whether top level or not)
        * top-level non-recursive bindings
281 282 283 284 285

It assumes the binder has already been simplified, but not its IdInfo.

\begin{code}
simplRecOrTopPair :: SimplEnv
Ian Lynagh's avatar
Ian Lynagh committed
286 287 288
                  -> TopLevelFlag
                  -> InId -> OutBndr -> InExpr  -- Binder and rhs
                  -> SimplM SimplEnv    -- Returns an env that includes the binding
289

290
simplRecOrTopPair env top_lvl old_bndr new_bndr rhs
Ian Lynagh's avatar
Ian Lynagh committed
291 292 293
  | preInlineUnconditionally env top_lvl old_bndr rhs   -- Check for unconditional inline
  = do  { tick (PreInlineUnconditionally old_bndr)
        ; return (extendIdSubst env old_bndr (mkContEx env rhs)) }
294 295

  | otherwise
Ian Lynagh's avatar
Ian Lynagh committed
296 297
  = simplLazyBind env top_lvl Recursive old_bndr new_bndr rhs env
        -- May not actually be recursive, but it doesn't matter
298 299 300 301
\end{code}


simplLazyBind is used for
302 303
  * [simplRecOrTopPair] recursive bindings (whether top level or not)
  * [simplRecOrTopPair] top-level non-recursive bindings
Ian Lynagh's avatar
Ian Lynagh committed
304
  * [simplNonRecE]      non-top-level *lazy* non-recursive bindings
305 306

Nota bene:
Ian Lynagh's avatar
Ian Lynagh committed
307
    1. It assumes that the binder is *already* simplified,
308
       and is in scope, and its IdInfo too, except unfolding
309 310 311 312 313 314 315 316

    2. It assumes that the binder type is lifted.

    3. It does not check for pre-inline-unconditionallly;
       that should have been done already.

\begin{code}
simplLazyBind :: SimplEnv
Ian Lynagh's avatar
Ian Lynagh committed
317 318 319 320 321
              -> TopLevelFlag -> RecFlag
              -> InId -> OutId          -- Binder, both pre-and post simpl
                                        -- The OutId has IdInfo, except arity, unfolding
              -> InExpr -> SimplEnv     -- The RHS and its environment
              -> SimplM SimplEnv
322

323
simplLazyBind env top_lvl is_rec bndr bndr1 rhs rhs_se
Ian Lynagh's avatar
Ian Lynagh committed
324
  = do  { let   rhs_env     = rhs_se `setInScope` env
325 326 327 328 329 330 331 332 333 334
		(tvs, body) = case collectTyBinders rhs of
			        (tvs, body) | not_lam body -> (tvs,body)
					    | otherwise	   -> ([], rhs)
		not_lam (Lam _ _) = False
		not_lam _	  = True
			-- Do not do the "abstract tyyvar" thing if there's
			-- a lambda inside, becuase it defeats eta-reduction
			--    f = /\a. \x. g a x  
			-- should eta-reduce

Ian Lynagh's avatar
Ian Lynagh committed
335
        ; (body_env, tvs') <- simplBinders rhs_env tvs
336
                -- See Note [Floating and type abstraction] in SimplUtils
Ian Lynagh's avatar
Ian Lynagh committed
337

338
        -- Simplify the RHS
339
        ; (body_env1, body1) <- simplExprF body_env body mkRhsStop
Ian Lynagh's avatar
Ian Lynagh committed
340
        -- ANF-ise a constructor or PAP rhs
341
        ; (body_env2, body2) <- prepareRhs body_env1 bndr1 body1
Ian Lynagh's avatar
Ian Lynagh committed
342 343 344 345

        ; (env', rhs')
            <-  if not (doFloatFromRhs top_lvl is_rec False body2 body_env2)
                then                            -- No floating, just wrap up!
346
                     do { rhs' <- mkLam env tvs' (wrapFloats body_env2 body2)
Ian Lynagh's avatar
Ian Lynagh committed
347 348 349 350 351 352 353 354 355
                        ; return (env, rhs') }

                else if null tvs then           -- Simple floating
                     do { tick LetFloatFromLet
                        ; return (addFloats env body_env2, body2) }

                else                            -- Do type-abstraction first
                     do { tick LetFloatFromLet
                        ; (poly_binds, body3) <- abstractFloats tvs' body_env2 body2
356
                        ; rhs' <- mkLam env tvs' body3
357
                        ; env' <- foldlM (addPolyBind top_lvl) env poly_binds
358
                        ; return (env', rhs') }
Ian Lynagh's avatar
Ian Lynagh committed
359 360

        ; completeBind env' top_lvl bndr bndr1 rhs' }
361
\end{code}
362

Ian Lynagh's avatar
Ian Lynagh committed
363
A specialised variant of simplNonRec used when the RHS is already simplified,
364 365 366 367
notably in knownCon.  It uses case-binding where necessary.

\begin{code}
simplNonRecX :: SimplEnv
Ian Lynagh's avatar
Ian Lynagh committed
368 369 370
             -> InId            -- Old binder
             -> OutExpr         -- Simplified RHS
             -> SimplM SimplEnv
371 372

simplNonRecX env bndr new_rhs
373 374 375
  | isDeadBinder bndr	-- Not uncommon; e.g. case (a,b) of b { (p,q) -> p }
  = return env		-- 		 Here b is dead, and we avoid creating
  | otherwise		--		 the binding b = (a,b)
Ian Lynagh's avatar
Ian Lynagh committed
376
  = do  { (env', bndr') <- simplBinder env bndr
377
        ; completeNonRecX env' (isStrictId bndr) bndr bndr' new_rhs }
378 379

completeNonRecX :: SimplEnv
380
                -> Bool
Ian Lynagh's avatar
Ian Lynagh committed
381 382 383 384
                -> InId                 -- Old binder
                -> OutId                -- New binder
                -> OutExpr              -- Simplified RHS
                -> SimplM SimplEnv
385

386
completeNonRecX env is_strict old_bndr new_bndr new_rhs
387
  = do  { (env1, rhs1) <- prepareRhs (zapFloats env) new_bndr new_rhs
Ian Lynagh's avatar
Ian Lynagh committed
388
        ; (env2, rhs2) <-
389
                if doFloatFromRhs NotTopLevel NonRecursive is_strict rhs1 env1
Ian Lynagh's avatar
Ian Lynagh committed
390 391 392 393
                then do { tick LetFloatFromLet
                        ; return (addFloats env env1, rhs1) }   -- Add the floats to the main env
                else return (env, wrapFloats env1 rhs1)         -- Wrap the floats around the RHS
        ; completeBind env2 NotTopLevel old_bndr new_bndr rhs2 }
394 395 396 397
\end{code}

{- No, no, no!  Do not try preInlineUnconditionally in completeNonRecX
   Doing so risks exponential behaviour, because new_rhs has been simplified once already
Ian Lynagh's avatar
Ian Lynagh committed
398
   In the cases described by the folowing commment, postInlineUnconditionally will
399
   catch many of the relevant cases.
Ian Lynagh's avatar
Ian Lynagh committed
400 401 402 403 404 405 406 407
        -- This happens; for example, the case_bndr during case of
        -- known constructor:  case (a,b) of x { (p,q) -> ... }
        -- Here x isn't mentioned in the RHS, so we don't want to
        -- create the (dead) let-binding  let x = (a,b) in ...
        --
        -- Similarly, single occurrences can be inlined vigourously
        -- e.g.  case (f x, g y) of (a,b) -> ....
        -- If a,b occur once we can avoid constructing the let binding for them.
408

409
   Furthermore in the case-binding case preInlineUnconditionally risks extra thunks
Ian Lynagh's avatar
Ian Lynagh committed
410 411 412 413 414 415
        -- Consider     case I# (quotInt# x y) of
        --                I# v -> let w = J# v in ...
        -- If we gaily inline (quotInt# x y) for v, we end up building an
        -- extra thunk:
        --                let w = J# (quotInt# x y) in ...
        -- because quotInt# can fail.
416

417 418 419 420
  | preInlineUnconditionally env NotTopLevel bndr new_rhs
  = thing_inside (extendIdSubst env bndr (DoneEx new_rhs))
-}

421
----------------------------------
422
prepareRhs takes a putative RHS, checks whether it's a PAP or
Ian Lynagh's avatar
Ian Lynagh committed
423
constructor application and, if so, converts it to ANF, so that the
424
resulting thing can be inlined more easily.  Thus
Ian Lynagh's avatar
Ian Lynagh committed
425
        x = (f a, g b)
426
becomes
Ian Lynagh's avatar
Ian Lynagh committed
427 428 429
        t1 = f a
        t2 = g b
        x = (t1,t2)
430

431
We also want to deal well cases like this
Ian Lynagh's avatar
Ian Lynagh committed
432
        v = (f e1 `cast` co) e2
433
Here we want to make e1,e2 trivial and get
Ian Lynagh's avatar
Ian Lynagh committed
434
        x1 = e1; x2 = e2; v = (f x1 `cast` co) v2
435 436
That's what the 'go' loop in prepareRhs does

437
\begin{code}
438
prepareRhs :: SimplEnv -> OutId -> OutExpr -> SimplM (SimplEnv, OutExpr)
439
-- Adds new floats to the env iff that allows us to return a good RHS
440
prepareRhs env id (Cast rhs co)    -- Note [Float coercions]
Ian Lynagh's avatar
Ian Lynagh committed
441
  | (ty1, _ty2) <- coercionKind co       -- Do *not* do this if rhs has an unlifted type
Ian Lynagh's avatar
Ian Lynagh committed
442
  , not (isUnLiftedType ty1)            -- see Note [Float coercions (unlifted)]
443
  = do  { (env', rhs') <- makeTrivialWithInfo env sanitised_info rhs
Ian Lynagh's avatar
Ian Lynagh committed
444
        ; return (env', Cast rhs' co) }
445 446 447 448
  where
    sanitised_info = vanillaIdInfo `setNewStrictnessInfo` newStrictnessInfo info
                                   `setNewDemandInfo`     newDemandInfo info
    info = idInfo id
449

450
prepareRhs env0 _ rhs0
Ian Lynagh's avatar
Ian Lynagh committed
451 452
  = do  { (_is_val, env1, rhs1) <- go 0 env0 rhs0
        ; return (env1, rhs1) }
453
  where
454
    go n_val_args env (Cast rhs co)
Ian Lynagh's avatar
Ian Lynagh committed
455 456
        = do { (is_val, env', rhs') <- go n_val_args env rhs
             ; return (is_val, env', Cast rhs' co) }
457
    go n_val_args env (App fun (Type ty))
Ian Lynagh's avatar
Ian Lynagh committed
458 459
        = do { (is_val, env', rhs') <- go n_val_args env fun
             ; return (is_val, env', App rhs' (Type ty)) }
460
    go n_val_args env (App fun arg)
Ian Lynagh's avatar
Ian Lynagh committed
461 462 463 464 465
        = do { (is_val, env', fun') <- go (n_val_args+1) env fun
             ; case is_val of
                True -> do { (env'', arg') <- makeTrivial env' arg
                           ; return (True, env'', App fun' arg') }
                False -> return (False, env, App fun arg) }
466
    go n_val_args env (Var fun)
Ian Lynagh's avatar
Ian Lynagh committed
467 468 469 470
        = return (is_val, env, Var fun)
        where
          is_val = n_val_args > 0       -- There is at least one arg
                                        -- ...and the fun a constructor or PAP
471
                 && (isConLikeId fun || n_val_args < idArity fun)
472
		        	   -- See Note [CONLIKE pragma] in BasicTypes
Ian Lynagh's avatar
Ian Lynagh committed
473
    go _ env other
Ian Lynagh's avatar
Ian Lynagh committed
474
        = return (False, env, other)
475 476
\end{code}

477

478 479 480
Note [Float coercions]
~~~~~~~~~~~~~~~~~~~~~~
When we find the binding
Ian Lynagh's avatar
Ian Lynagh committed
481
        x = e `cast` co
482
we'd like to transform it to
Ian Lynagh's avatar
Ian Lynagh committed
483 484
        x' = e
        x = x `cast` co         -- A trivial binding
485 486 487 488 489 490 491 492 493 494 495 496 497
There's a chance that e will be a constructor application or function, or something
like that, so moving the coerion to the usage site may well cancel the coersions
and lead to further optimisation.  Example:

     data family T a :: *
     data instance T Int = T Int

     foo :: Int -> Int -> Int
     foo m n = ...
        where
          x = T m
          go 0 = 0
          go n = case x of { T m -> go (n-m) }
Ian Lynagh's avatar
Ian Lynagh committed
498
                -- This case should optimise
499

500 501 502 503 504 505 506 507 508 509 510
Note [Preserve strictness when floating coercions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In the Note [Float coercions] transformation, keep the strictness info.
Eg
	f = e `cast` co	   -- f has strictness SSL
When we transform to
        f' = e		   -- f' also has strictness SSL
        f = f' `cast` co   -- f still has strictness SSL

Its not wrong to drop it on the floor, but better to keep it.

511 512
Note [Float coercions (unlifted)]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Ian Lynagh's avatar
Ian Lynagh committed
513
BUT don't do [Float coercions] if 'e' has an unlifted type.
514 515
This *can* happen:

Ian Lynagh's avatar
Ian Lynagh committed
516 517
     foo :: Int = (error (# Int,Int #) "urk")
                  `cast` CoUnsafe (# Int,Int #) Int
518 519 520

If do the makeTrivial thing to the error call, we'll get
    foo = case error (# Int,Int #) "urk" of v -> v `cast` ...
Ian Lynagh's avatar
Ian Lynagh committed
521
But 'v' isn't in scope!
522 523

These strange casts can happen as a result of case-of-case
Ian Lynagh's avatar
Ian Lynagh committed
524 525
        bar = case (case x of { T -> (# 2,3 #); F -> error "urk" }) of
                (# p,q #) -> p+q
526

527 528 529 530

\begin{code}
makeTrivial :: SimplEnv -> OutExpr -> SimplM (SimplEnv, OutExpr)
-- Binds the expression to a variable, if it's not trivial, returning the variable
531 532 533 534 535 536
makeTrivial env expr = makeTrivialWithInfo env vanillaIdInfo expr

makeTrivialWithInfo :: SimplEnv -> IdInfo -> OutExpr -> SimplM (SimplEnv, OutExpr)
-- Propagate strictness and demand info to the new binder
-- Note [Preserve strictness when floating coercions]
makeTrivialWithInfo env info expr
537 538
  | exprIsTrivial expr
  = return (env, expr)
Ian Lynagh's avatar
Ian Lynagh committed
539
  | otherwise           -- See Note [Take care] below
540 541 542
  = do  { uniq <- getUniqueM
        ; let name = mkSystemVarName uniq (fsLit "a")
              var = mkLocalIdWithInfo name (exprType expr) info
543
        ; env' <- completeNonRecX env False var var expr
544
	; return (env', substExpr env' (Var var)) }
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
545 546 547 548 549 550 551
	-- The substitution is needed becase we're constructing a new binding
	--     a = rhs
	-- And if rhs is of form (rhs1 |> co), then we might get
	--     a1 = rhs1
	--     a = a1 |> co
	-- and now a's RHS is trivial and can be substituted out, and that
	-- is what completeNonRecX will do
552
\end{code}
553 554


555
%************************************************************************
Ian Lynagh's avatar
Ian Lynagh committed
556
%*                                                                      *
557
\subsection{Completing a lazy binding}
Ian Lynagh's avatar
Ian Lynagh committed
558
%*                                                                      *
559 560
%************************************************************************

561 562 563 564 565
completeBind
  * deals only with Ids, not TyVars
  * takes an already-simplified binder and RHS
  * is used for both recursive and non-recursive bindings
  * is used for both top-level and non-top-level bindings
566 567 568 569 570 571 572 573

It does the following:
  - tries discarding a dead binding
  - tries PostInlineUnconditionally
  - add unfolding [this is the only place we add an unfolding]
  - add arity

It does *not* attempt to do let-to-case.  Why?  Because it is used for
Ian Lynagh's avatar
Ian Lynagh committed
574
  - top-level bindings (when let-to-case is impossible)
575
  - many situations where the "rhs" is known to be a WHNF
Ian Lynagh's avatar
Ian Lynagh committed
576
                (so let-to-case is inappropriate).
577

578 579
Nor does it do the atomic-argument thing

580
\begin{code}
581
completeBind :: SimplEnv
Ian Lynagh's avatar
Ian Lynagh committed
582 583 584 585 586 587 588
             -> TopLevelFlag            -- Flag stuck into unfolding
             -> InId                    -- Old binder
             -> OutId -> OutExpr        -- New binder and RHS
             -> SimplM SimplEnv
-- completeBind may choose to do its work
--      * by extending the substitution (e.g. let x = y in ...)
--      * or by adding to the floats in the envt
589 590

completeBind env top_lvl old_bndr new_bndr new_rhs
591 592 593
  = do	{ let old_info = idInfo old_bndr
	      old_unf  = unfoldingInfo old_info
	      occ_info = occInfo old_info
594

595 596 597 598 599 600 601 602 603 604 605 606 607
	; new_unfolding <- simplUnfolding env top_lvl old_bndr occ_info new_rhs old_unf

	; if postInlineUnconditionally env top_lvl new_bndr occ_info new_rhs new_unfolding
	                -- Inline and discard the binding
	  then do  { tick (PostInlineUnconditionally old_bndr)
	            ; return (extendIdSubst env old_bndr (DoneEx new_rhs)) }
	        -- Use the substitution to make quite, quite sure that the
	        -- substitution will happen, since we are going to discard the binding

	  else return (addNonRecWithUnf env new_bndr new_rhs new_unfolding) }

------------------------------
addPolyBind :: TopLevelFlag -> SimplEnv -> OutBind -> SimplM SimplEnv
608 609 610 611 612 613 614 615 616 617 618 619
-- Add a new binding to the environment, complete with its unfolding
-- but *do not* do postInlineUnconditionally, because we have already
-- processed some of the scope of the binding
-- We still want the unfolding though.  Consider
--	let 
--	      x = /\a. let y = ... in Just y
--	in body
-- Then we float the y-binding out (via abstractFloats and addPolyBind)
-- but 'x' may well then be inlined in 'body' in which case we'd like the 
-- opportunity to inline 'y' too.

addPolyBind top_lvl env (NonRec poly_id rhs)
620 621 622 623
  = do	{ unfolding <- simplUnfolding env top_lvl poly_id NoOccInfo rhs noUnfolding
    	  		-- Assumes that poly_id did not have an INLINE prag
			-- which is perhaps wrong.  ToDo: think about this
        ; return (addNonRecWithUnf env poly_id rhs unfolding) }
624

625
addPolyBind _ env bind@(Rec _) = return (extendFloats env bind)
626 627 628 629
		-- Hack: letrecs are more awkward, so we extend "by steam"
		-- without adding unfoldings etc.  At worst this leads to
		-- more simplifier iterations

630
------------------------------
631
addNonRecWithUnf :: SimplEnv
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
             	 -> OutId -> OutExpr    -- New binder and RHS
	     	 -> Unfolding		-- New unfolding
             	 -> SimplEnv
addNonRecWithUnf env new_bndr new_rhs new_unfolding
  = let new_arity = exprArity new_rhs
	old_arity = idArity new_bndr
        info1 = idInfo new_bndr `setArityInfo` new_arity
	
              -- Unfolding info: Note [Setting the new unfolding]
	info2 = info1 `setUnfoldingInfo` new_unfolding

        -- Demand info: Note [Setting the demand info]
        info3 | isEvaldUnfolding new_unfolding = zapDemandInfo info2 `orElse` info2
              | otherwise                      = info2

        final_id = new_bndr `setIdInfo` info3
	dmd_arity = length $ fst $ splitStrictSig $ idNewStrictness new_bndr
    in
    ASSERT( isId new_bndr )
651
    WARN( new_arity < old_arity || new_arity < dmd_arity, 
652
          (ptext (sLit "Arity decrease:") <+> ppr final_id <+> ppr old_arity
653
		<+> ppr new_arity <+> ppr dmd_arity) )
654
	-- Note [Arity decrease]
Simon Marlow's avatar
Simon Marlow committed
655

656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
    final_id `seq`   -- This seq forces the Id, and hence its IdInfo,
	             -- and hence any inner substitutions
	    -- pprTrace "Binding" (ppr final_id <+> ppr unfolding) $
    addNonRec env final_id new_rhs
		-- The addNonRec adds it to the in-scope set too

------------------------------
simplUnfolding :: SimplEnv-> TopLevelFlag
	       -> Id	-- Debug output only
	       -> OccInfo -> OutExpr
	       -> Unfolding -> SimplM Unfolding
-- Note [Setting the new unfolding]
simplUnfolding env _ _ _ _ (DFunUnfolding con ops)
  = return (DFunUnfolding con ops')
  where
    ops' = map (CoreSubst.substExpr (mkCoreSubst env)) ops

simplUnfolding env top_lvl _ _ _ 
    (CoreUnfolding { uf_tmpl = expr, uf_arity = arity
                   , uf_guidance = guide@(InlineRule {}) })
676
  = do { expr' <- simplExpr (setMode simplGentlyForInlineRules env) expr
677 678
       	       -- See Note [Simplifying gently inside InlineRules] in SimplUtils
       ; let mb_wkr' = CoreSubst.substInlineRuleInfo (mkCoreSubst env) (ir_info guide)
679
       ; return (mkCoreUnfolding (isTopLevel top_lvl) expr' arity 
680
                                 (guide { ir_info = mb_wkr' })) }
681 682 683 684 685 686 687
		-- See Note [Top-level flag on inline rules] in CoreUnfold

simplUnfolding _ top_lvl _ occ_info new_rhs _
  | omit_unfolding = return NoUnfolding	
  | otherwise	   = return (mkUnfolding (isTopLevel top_lvl) new_rhs)
  where
    omit_unfolding = isNonRuleLoopBreaker occ_info
SamB's avatar
SamB committed
688
\end{code}
689

690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
Note [Arity decrease]
~~~~~~~~~~~~~~~~~~~~~
Generally speaking the arity of a binding should not decrease.  But it *can* 
legitimately happen becuase of RULES.  Eg
	f = g Int
where g has arity 2, will have arity 2.  But if there's a rewrite rule
	g Int --> h
where h has arity 1, then f's arity will decrease.  Here's a real-life example,
which is in the output of Specialise:

     Rec {
	$dm {Arity 2} = \d.\x. op d
	{-# RULES forall d. $dm Int d = $s$dm #-}
	
	dInt = MkD .... opInt ...
	opInt {Arity 1} = $dm dInt

	$s$dm {Arity 0} = \x. op dInt }

Here opInt has arity 1; but when we apply the rule its arity drops to 0.
That's why Specialise goes to a little trouble to pin the right arity
on specialised functions too.
712

713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
Note [Setting the new unfolding]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* If there's an INLINE pragma, we simplify the RHS gently.  Maybe we
  should do nothing at all, but simplifying gently might get rid of 
  more crap.

* If not, we make an unfolding from the new RHS.  But *only* for
  non-loop-breakers. Making loop breakers not have an unfolding at all
  means that we can avoid tests in exprIsConApp, for example.  This is
  important: if exprIsConApp says 'yes' for a recursive thing, then we
  can get into an infinite loop

If there's an InlineRule on a loop breaker, we hang on to the inlining.
It's pretty dodgy, but the user did say 'INLINE'.  May need to revisit
this choice.

Note [Setting the demand info]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If the unfolding is a value, the demand info may
go pear-shaped, so we nuke it.  Example:
     let x = (a,b) in
     case x of (p,q) -> h p q x
Here x is certainly demanded. But after we've nuked
the case, we'll get just
     let x = (a,b) in h a b x
and now x is not demanded (I'm assuming h is lazy)
This really happens.  Similarly
     let f = \x -> e in ...f..f...
After inlining f at some of its call sites the original binding may
(for example) be no longer strictly demanded.
The solution here is a bit ad hoc...

745

746
%************************************************************************
Ian Lynagh's avatar
Ian Lynagh committed
747
%*                                                                      *
748
\subsection[Simplify-simplExpr]{The main function: simplExpr}
Ian Lynagh's avatar
Ian Lynagh committed
749
%*                                                                      *
750 751
%************************************************************************

752 753 754 755 756 757
The reason for this OutExprStuff stuff is that we want to float *after*
simplifying a RHS, not before.  If we do so naively we get quadratic
behaviour as things float out.

To see why it's important to do it after, consider this (real) example:

Ian Lynagh's avatar
Ian Lynagh committed
758 759
        let t = f x
        in fst t
760
==>
Ian Lynagh's avatar
Ian Lynagh committed
761 762 763 764
        let t = let a = e1
                    b = e2
                in (a,b)
        in fst t
765
==>
Ian Lynagh's avatar
Ian Lynagh committed
766 767 768 769 770
        let a = e1
            b = e2
            t = (a,b)
        in
        a       -- Can't inline a this round, cos it appears twice
771
==>
Ian Lynagh's avatar
Ian Lynagh committed
772
        e1
773 774 775 776

Each of the ==> steps is a round of simplification.  We'd save a
whole round if we float first.  This can cascade.  Consider

Ian Lynagh's avatar
Ian Lynagh committed
777 778
        let f = g d
        in \x -> ...f...
779
==>
Ian Lynagh's avatar
Ian Lynagh committed
780 781
        let f = let d1 = ..d.. in \y -> e
        in \x -> ...f...
782
==>
Ian Lynagh's avatar
Ian Lynagh committed
783 784
        let d1 = ..d..
        in \x -> ...(\y ->e)...
785

Ian Lynagh's avatar
Ian Lynagh committed
786
Only in this second round can the \y be applied, and it
787 788 789
might do the same again.


790
\begin{code}
791
simplExpr :: SimplEnv -> CoreExpr -> SimplM CoreExpr
792
simplExpr env expr = simplExprC env expr mkBoringStop
793

794
simplExprC :: SimplEnv -> CoreExpr -> SimplCont -> SimplM CoreExpr
Ian Lynagh's avatar
Ian Lynagh committed
795 796
        -- Simplify an expression, given a continuation
simplExprC env expr cont
797
  = -- pprTrace "simplExprC" (ppr expr $$ ppr cont {- $$ ppr (seIdSubst env) -} $$ ppr (seFloats env) ) $
Ian Lynagh's avatar
Ian Lynagh committed
798 799 800 801
    do  { (env', expr') <- simplExprF (zapFloats env) expr cont
        ; -- pprTrace "simplExprC ret" (ppr expr $$ ppr expr') $
          -- pprTrace "simplExprC ret3" (ppr (seInScope env')) $
          -- pprTrace "simplExprC ret4" (ppr (seFloats env')) $
802 803 804 805
          return (wrapFloats env' expr') }

--------------------------------------------------
simplExprF :: SimplEnv -> InExpr -> SimplCont
Ian Lynagh's avatar
Ian Lynagh committed
806
           -> SimplM (SimplEnv, OutExpr)
807

Ian Lynagh's avatar
Ian Lynagh committed
808
simplExprF env e cont
809 810
  = -- pprTrace "simplExprF" (ppr e $$ ppr cont $$ ppr (seTvSubst env) $$ ppr (seIdSubst env) {- $$ ppr (seFloats env) -} ) $
    simplExprF' env e cont
Ian Lynagh's avatar
Ian Lynagh committed
811

Ian Lynagh's avatar
Ian Lynagh committed
812 813
simplExprF' :: SimplEnv -> InExpr -> SimplCont
            -> SimplM (SimplEnv, OutExpr)
Ian Lynagh's avatar
Ian Lynagh committed
814
simplExprF' env (Var v)        cont = simplVar env v cont
815 816 817 818
simplExprF' env (Lit lit)      cont = rebuild env (Lit lit) cont
simplExprF' env (Note n expr)  cont = simplNote env n expr cont
simplExprF' env (Cast body co) cont = simplCast env body co cont
simplExprF' env (App fun arg)  cont = simplExprF env fun $
Ian Lynagh's avatar
Ian Lynagh committed
819
                                      ApplyTo NoDup arg env cont
820

Ian Lynagh's avatar
Ian Lynagh committed
821
simplExprF' env expr@(Lam _ _) cont
822
  = simplLam env (map zap bndrs) body cont
Ian Lynagh's avatar
Ian Lynagh committed
823 824 825 826 827 828
        -- The main issue here is under-saturated lambdas
        --   (\x1. \x2. e) arg1
        -- Here x1 might have "occurs-once" occ-info, because occ-info
        -- is computed assuming that a group of lambdas is applied
        -- all at once.  If there are too few args, we must zap the
        -- occ-info.
829 830 831 832
  where
    n_args   = countArgs cont
    n_params = length bndrs
    (bndrs, body) = collectBinders expr
Ian Lynagh's avatar
Ian Lynagh committed
833 834 835 836 837
    zap | n_args >= n_params = \b -> b
        | otherwise          = \b -> if isTyVar b then b
                                     else zapLamIdInfo b
        -- NB: we count all the args incl type args
        -- so we must count all the binders (incl type lambdas)
838

839
simplExprF' env (Type ty) cont
840
  = ASSERT( contIsRhsOrArg cont )
841
    do  { ty' <- simplCoercion env ty
Ian Lynagh's avatar
Ian Lynagh committed
842
        ; rebuild env (Type ty') cont }
843

844
simplExprF' env (Case scrut bndr _ alts) cont
845
  | not (switchIsOn (getSwitchChecker env) NoCaseOfCase)
Ian Lynagh's avatar
Ian Lynagh committed
846
  =     -- Simplify the scrutinee with a Select continuation
847
    simplExprF env scrut (Select NoDup bndr alts env cont)
848

849
  | otherwise
Ian Lynagh's avatar
Ian Lynagh committed
850 851 852 853
  =     -- If case-of-case is off, simply simplify the case expression
        -- in a vanilla Stop context, and rebuild the result around it
    do  { case_expr' <- simplExprC env scrut case_cont
        ; rebuild env case_expr' cont }
854
  where
855
    case_cont = Select NoDup bndr alts env mkBoringStop
856

857
simplExprF' env (Let (Rec pairs) body) cont
Ian Lynagh's avatar
Ian Lynagh committed
858
  = do  { env' <- simplRecBndrs env (map fst pairs)
Ian Lynagh's avatar
Ian Lynagh committed
859 860
                -- NB: bndrs' don't have unfoldings or rules
                -- We add them as we go down
861

Ian Lynagh's avatar
Ian Lynagh committed
862 863
        ; env'' <- simplRecBind env' NotTopLevel pairs
        ; simplExprF env'' body cont }
864

865 866
simplExprF' env (Let (NonRec bndr rhs) body) cont
  = simplNonRecE env bndr (rhs, env) ([], body) cont
867 868

---------------------------------
869
simplType :: SimplEnv -> InType -> SimplM OutType
Ian Lynagh's avatar
Ian Lynagh committed
870
        -- Kept monadic just so we can do the seqType
871
simplType env ty
872
  = -- pprTrace "simplType" (ppr ty $$ ppr (seTvSubst env)) $
873
    seqType new_ty   `seq`   return new_ty
874
  where
875
    new_ty = substTy env ty
876 877 878

---------------------------------
simplCoercion :: SimplEnv -> InType -> SimplM OutType
879 880
-- The InType isn't *necessarily* a coercion, but it might be
-- (in a type application, say) and optCoercion is a no-op on types
881 882 883
simplCoercion env co
  = do { co' <- simplType env co
       ; return (optCoercion co') }
884 885 886
\end{code}


887
%************************************************************************
Ian Lynagh's avatar
Ian Lynagh committed
888
%*                                                                      *
889
\subsection{The main rebuilder}
Ian Lynagh's avatar
Ian Lynagh committed
890
%*                                                                      *
891 892 893 894 895 896
%************************************************************************

\begin{code}
rebuild :: SimplEnv -> OutExpr -> SimplCont -> SimplM (SimplEnv, OutExpr)
-- At this point the substitution in the SimplEnv should be irrelevant
-- only the in-scope set and floats should matter
Ian Lynagh's avatar
Ian Lynagh committed
897 898 899
rebuild env expr cont0
  = -- pprTrace "rebuild" (ppr expr $$ ppr cont0 $$ ppr (seFloats env)) $
    case cont0 of
Ian Lynagh's avatar
Ian Lynagh committed
900 901
      Stop {}                      -> return (env, expr)
      CoerceIt co cont             -> rebuild env (mkCoerce co expr) cont
902
      Select _ bndr alts se cont   -> rebuildCase (se `setFloats` env) expr bndr alts cont
903
      StrictArg fun _ info cont    -> rebuildCall env (fun `App` expr) info cont
904
      StrictBind b bs body se cont -> do { env' <- simplNonRecX (se `setFloats` env) b expr
Ian Lynagh's avatar
Ian Lynagh committed
905 906 907
                                         ; simplLam env' bs body cont }
      ApplyTo _ arg se cont        -> do { arg' <- simplExpr (se `setInScope` env) arg
                                         ; rebuild env (App expr arg') cont }
908 909 910
\end{code}


911
%************************************************************************
Ian Lynagh's avatar
Ian Lynagh committed
912
%*                                                                      *
913
\subsection{Lambdas}
Ian Lynagh's avatar
Ian Lynagh committed
914
%*                                                                      *
915 916 917
%************************************************************************

\begin{code}
918
simplCast :: SimplEnv -> InExpr -> Coercion -> SimplCont
Ian Lynagh's avatar
Ian Lynagh committed
919
          -> SimplM (SimplEnv, OutExpr)
Ian Lynagh's avatar
Ian Lynagh committed
920
simplCast env body co0 cont0
921
  = do  { co1 <- simplCoercion env co0
Ian Lynagh's avatar
Ian Lynagh committed
922
        ; simplExprF env body (addCoerce co1 cont0) }
923
  where
924 925
       addCoerce co cont = add_coerce co (coercionKind co) cont

Ian Lynagh's avatar
Ian Lynagh committed
926
       add_coerce _co (s1, k1) cont     -- co :: ty~ty
Ian Lynagh's avatar
Ian Lynagh committed
927
         | s1 `coreEqType` k1 = cont    -- is a no-op
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
928

Ian Lynagh's avatar
Ian Lynagh committed
929 930
       add_coerce co1 (s1, _k2) (CoerceIt co2 cont)
         | (_l1, t1) <- coercionKind co2
931
		-- 	e |> (g1 :: S1~L) |> (g2 :: L~T1)
Ian Lynagh's avatar
Ian Lynagh committed
932
                -- ==>
933 934
                --      e,                       if S1=T1
                --      e |> (g1 . g2 :: S1~T1)  otherwise
Ian Lynagh's avatar
Ian Lynagh committed
935 936 937 938 939 940
                --
                -- For example, in the initial form of a worker
                -- we may find  (coerce T (coerce S (\x.e))) y
                -- and we'd like it to simplify to e[y/x] in one round
                -- of simplification
         , s1 `coreEqType` t1  = cont            -- The coerces cancel out
941
         | otherwise           = CoerceIt (mkTransCoercion co1 co2) cont
Ian Lynagh's avatar
Ian Lynagh committed
942

Ian Lynagh's avatar
Ian Lynagh committed
943
       add_coerce co (s1s2, _t1t2) (ApplyTo dup (Type arg_ty) arg_se cont)
944
                -- (f |> g) ty  --->   (f ty) |> (g @ ty)
Ian Lynagh's avatar
Ian Lynagh committed
945 946 947 948 949
                -- This implements the PushT rule from the paper
         | Just (tyvar,_) <- splitForAllTy_maybe s1s2
         , not (isCoVar tyvar)
         = ApplyTo dup (Type ty') (zapSubstEnv env) (addCoerce (mkInstCoercion co ty') cont)
         where
950
           ty' = substTy (arg_se `setInScope` env) arg_ty
951

Ian Lynagh's avatar
Ian Lynagh committed
952
        -- ToDo: the PushC rule is not implemented at all
953

Ian Lynagh's avatar
Ian Lynagh committed
954
       add_coerce co (s1s2, _t1t2) (ApplyTo dup arg arg_se cont)
955
         | not (isTypeArg arg)  -- This implements the Push rule from the paper
Ian Lynagh's avatar
Ian Lynagh committed
956
         , isFunTy s1s2   -- t1t2 must be a function type, becuase it's applied
957
                --      (e |> (g :: s1s2 ~ t1->t2)) f
Ian Lynagh's avatar
Ian Lynagh committed
958
                -- ===>
959 960
                --      (e (f |> (arg g :: t1~s1))
		--	|> (res g :: s2->t2)
Ian Lynagh's avatar
Ian Lynagh committed
961
                --
962
                -- t1t2 must be a function type, t1->t2, because it's applied
Ian Lynagh's avatar
Ian Lynagh committed
963 964 965 966 967 968 969 970
                -- to something but s1s2 might conceivably not be
                --
                -- When we build the ApplyTo we can't mix the out-types
                -- with the InExpr in the argument, so we simply substitute
                -- to make it all consistent.  It's a bit messy.
                -- But it isn't a common case.
                --
                -- Example of use: Trac #995
971
         = ApplyTo dup new_arg (zapSubstEnv env) (addCoerce co2 cont)