TcBinds.lhs 44.9 KB
Newer Older
1
%
Simon Marlow's avatar
Simon Marlow committed
2
% (c) The University of Glasgow 2006
3
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
4 5 6 7
%
\section[TcBinds]{TcBinds}

\begin{code}
8
{-# OPTIONS -w #-}
9 10 11
-- The above warning supression flag is a temporary kludge.
-- While working on this module you are encouraged to remove it and fix
-- any warnings in the module. See
Ian Lynagh's avatar
Ian Lynagh committed
12
--     http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#Warnings
13 14
-- for details

15 16
module TcBinds ( tcLocalBinds, tcTopBinds, 
		 tcHsBootSigs, tcMonoBinds, 
17 18
		 TcPragFun, tcSpecPrag, tcPrags, mkPragFun, 
		 TcSigInfo(..), TcSigFun, mkTcSigFun,
19
		 badBootDeclErr ) where
20

21
#include "HsVersions.h"
22

ross's avatar
ross committed
23
import {-# SOURCE #-} TcMatches ( tcGRHSsPat, tcMatchesFun )
24
import {-# SOURCE #-} TcExpr  ( tcMonoExpr )
25

Simon Marlow's avatar
Simon Marlow committed
26 27 28
import DynFlags
import HsSyn
import TcHsSyn
29

30
import TcRnMonad
Simon Marlow's avatar
Simon Marlow committed
31 32 33 34 35 36 37 38 39
import Inst
import TcEnv
import TcUnify
import TcSimplify
import TcHsType
import TcPat
import TcMType
import TcType
import {- Kind parts of -} Type
40
import Coercion
Simon Marlow's avatar
Simon Marlow committed
41 42 43 44
import VarEnv
import TysPrim
import Id
import IdInfo
45
import Var ( TyVar, varType )
Simon Marlow's avatar
Simon Marlow committed
46
import Name
47
import NameSet
48
import NameEnv
49
import VarSet
Simon Marlow's avatar
Simon Marlow committed
50
import SrcLoc
51
import Bag
Simon Marlow's avatar
Simon Marlow committed
52 53 54
import ErrUtils
import Digraph
import Maybes
55
import List
Simon Marlow's avatar
Simon Marlow committed
56 57
import Util
import BasicTypes
58
import Outputable
59
import FastString
60 61

import Control.Monad
62
\end{code}
63

64

65 66 67 68 69 70
%************************************************************************
%*									*
\subsection{Type-checking bindings}
%*									*
%************************************************************************

71
@tcBindsAndThen@ typechecks a @HsBinds@.  The "and then" part is because
72 73 74 75 76 77 78 79 80 81
it needs to know something about the {\em usage} of the things bound,
so that it can create specialisations of them.  So @tcBindsAndThen@
takes a function which, given an extended environment, E, typechecks
the scope of the bindings returning a typechecked thing and (most
important) an LIE.  It is this LIE which is then used as the basis for
specialising the things bound.

@tcBindsAndThen@ also takes a "combiner" which glues together the
bindings and the "thing" to make a new "thing".

82
The real work is done by @tcBindWithSigsAndThen@.
83 84 85 86 87 88 89 90 91 92

Recursive and non-recursive binds are handled in essentially the same
way: because of uniques there are no scoping issues left.  The only
difference is that non-recursive bindings can bind primitive values.

Even for non-recursive binding groups we add typings for each binder
to the LVE for the following reason.  When each individual binding is
checked the type of its LHS is unified with that of its RHS; and
type-checking the LHS of course requires that the binder is in scope.

93 94 95
At the top-level the LIE is sure to contain nothing but constant
dictionaries, which we resolve at the module level.

96
\begin{code}
97
tcTopBinds :: HsValBinds Name -> TcM (LHsBinds TcId, TcLclEnv)
98 99 100
	-- Note: returning the TcLclEnv is more than we really
	--       want.  The bit we care about is the local bindings
	--	 and the free type variables thereof
101
tcTopBinds binds
102
  = do	{ (ValBindsOut prs _, env) <- tcValBinds TopLevel binds getLclEnv
103
	; return (foldr (unionBags . snd) emptyBag prs, env) }
104
	-- The top level bindings are flattened into a giant 
105
	-- implicitly-mutually-recursive LHsBinds
106

107
tcHsBootSigs :: HsValBinds Name -> TcM [Id]
108 109
-- A hs-boot file has only one BindGroup, and it only has type
-- signatures in it.  The renamer checked all this
110 111
tcHsBootSigs (ValBindsOut binds sigs)
  = do	{ checkTc (null binds) badBootDeclErr
112
	; mapM (addLocM tc_boot_sig) (filter isVanillaLSig sigs) }
113
  where
114
    tc_boot_sig (TypeSig (L _ name) ty)
115
      = do { sigma_ty <- tcHsSigType (FunSigCtxt name) ty
116 117
	   ; return (mkVanillaGlobal name sigma_ty vanillaIdInfo) }
	-- Notice that we make GlobalIds, not LocalIds
118
tcHsBootSigs groups = pprPanic "tcHsBootSigs" (ppr groups)
119

120 121 122
badBootDeclErr :: Message
badBootDeclErr = ptext SLIT("Illegal declarations in an hs-boot file")

123 124 125
------------------------
tcLocalBinds :: HsLocalBinds Name -> TcM thing
	     -> TcM (HsLocalBinds TcId, thing)
sof's avatar
sof committed
126

127 128 129
tcLocalBinds EmptyLocalBinds thing_inside 
  = do	{ thing <- thing_inside
	; return (EmptyLocalBinds, thing) }
sof's avatar
sof committed
130

131 132 133
tcLocalBinds (HsValBinds binds) thing_inside
  = do	{ (binds', thing) <- tcValBinds NotTopLevel binds thing_inside
	; return (HsValBinds binds', thing) }
134

135 136 137
tcLocalBinds (HsIPBinds (IPBinds ip_binds _)) thing_inside
  = do	{ (thing, lie) <- getLIE thing_inside
	; (avail_ips, ip_binds') <- mapAndUnzipM (wrapLocSndM tc_ip_bind) ip_binds
138 139 140

	-- If the binding binds ?x = E, we  must now 
	-- discharge any ?x constraints in expr_lie
141 142
	; dict_binds <- tcSimplifyIPs avail_ips lie
	; return (HsIPBinds (IPBinds ip_binds' dict_binds), thing) }
143 144 145 146
  where
	-- I wonder if we should do these one at at time
	-- Consider	?x = 4
	--		?y = ?x + 1
147 148 149 150 151
    tc_ip_bind (IPBind ip expr) = do
        ty <- newFlexiTyVarTy argTypeKind
        (ip', ip_inst) <- newIPDict (IPBindOrigin ip) ip ty
        expr' <- tcMonoExpr expr ty
        return (ip_inst, (IPBind ip' expr'))
152

153 154 155 156 157
------------------------
tcValBinds :: TopLevelFlag 
	   -> HsValBinds Name -> TcM thing
	   -> TcM (HsValBinds TcId, thing) 

158 159 160
tcValBinds top_lvl (ValBindsIn binds sigs) thing_inside
  = pprPanic "tcValBinds" (ppr binds)

161
tcValBinds top_lvl (ValBindsOut binds sigs) thing_inside
162
  = do 	{   	-- Typecheck the signature
163
	; let { prag_fn = mkPragFun sigs
164
	      ; ty_sigs = filter isVanillaLSig sigs
165
	      ; sig_fn  = mkTcSigFun ty_sigs }
166 167

	; poly_ids <- mapM tcTySig ty_sigs
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
168 169 170 171 172
		-- No recovery from bad signatures, because the type sigs
		-- may bind type variables, so proceeding without them
		-- can lead to a cascade of errors
		-- ToDo: this means we fall over immediately if any type sig
		-- is wrong, which is over-conservative, see Trac bug #745
173

174 175
		-- Extend the envt right away with all 
		-- the Ids declared with type signatures
176
	; poly_rec <- doptM Opt_RelaxedPolyRec
177
  	; (binds', thing) <- tcExtendIdEnv poly_ids $
178
			     tc_val_binds poly_rec top_lvl sig_fn prag_fn 
179
					  binds thing_inside
180

181
	; return (ValBindsOut binds' sigs, thing) }
182

183
------------------------
184
tc_val_binds :: Bool -> TopLevelFlag -> TcSigFun -> TcPragFun
185
	     -> [(RecFlag, LHsBinds Name)] -> TcM thing
186 187 188 189
	     -> TcM ([(RecFlag, LHsBinds TcId)], thing)
-- Typecheck a whole lot of value bindings,
-- one strongly-connected component at a time

190
tc_val_binds poly_rec top_lvl sig_fn prag_fn [] thing_inside
191 192 193
  = do	{ thing <- thing_inside
	; return ([], thing) }

194
tc_val_binds poly_rec top_lvl sig_fn prag_fn (group : groups) thing_inside
195
  = do	{ (group', (groups', thing))
196 197
		<- tc_group poly_rec top_lvl sig_fn prag_fn group $ 
		   tc_val_binds poly_rec top_lvl sig_fn prag_fn groups thing_inside
198
	; return (group' ++ groups', thing) }
sof's avatar
sof committed
199

200
------------------------
201
tc_group :: Bool -> TopLevelFlag -> TcSigFun -> TcPragFun
202
	 -> (RecFlag, LHsBinds Name) -> TcM thing
203 204 205 206 207 208
 	 -> TcM ([(RecFlag, LHsBinds TcId)], thing)

-- Typecheck one strongly-connected component of the original program.
-- We get a list of groups back, because there may 
-- be specialisations etc as well

209
tc_group poly_rec top_lvl sig_fn prag_fn (NonRecursive, binds) thing_inside
210
    	-- A single non-recursive binding
211 212
     	-- We want to keep non-recursive things non-recursive
        -- so that we desugar unlifted bindings correctly
213
 =  do	{ (binds, thing) <- tc_haskell98 top_lvl sig_fn prag_fn NonRecursive binds thing_inside
214 215
	; return ([(NonRecursive, b) | b <- binds], thing) }

216 217
tc_group poly_rec top_lvl sig_fn prag_fn (Recursive, binds) thing_inside
  | not poly_rec	-- Recursive group, normal Haskell 98 route
218 219 220 221 222
  = do	{ (binds1, thing) <- tc_haskell98 top_lvl sig_fn prag_fn Recursive binds thing_inside
	; return ([(Recursive, unionManyBags binds1)], thing) }

  | otherwise		-- Recursive group, with gla-exts
  =	-- To maximise polymorphism (with -fglasgow-exts), we do a new 
223
	-- strongly-connected-component analysis, this time omitting 
224
	-- any references to variables with type signatures.
225
	--
226 227
	-- Notice that the bindInsts thing covers *all* the bindings in the original
	-- group at once; an earlier one may use a later one!
228
    do	{ traceTc (text "tc_group rec" <+> pprLHsBinds binds)
229 230 231
	; (binds1,thing) <- bindLocalInsts top_lvl $
			    go (stronglyConnComp (mkEdges sig_fn binds))
	; return ([(Recursive, unionManyBags binds1)], thing) }
232 233
		-- Rec them all together
  where
234 235 236 237 238
--  go :: SCC (LHsBind Name) -> TcM ([LHsBind TcId], [TcId], thing)
    go (scc:sccs) = do	{ (binds1, ids1) <- tc_scc scc
			; (binds2, ids2, thing) <- tcExtendIdEnv ids1 $ go sccs
			; return (binds1 ++ binds2, ids1 ++ ids2, thing) }
    go [] 	  = do	{ thing <- thing_inside; return ([], [], thing) }
239

240 241
    tc_scc (AcyclicSCC bind) = tc_sub_group NonRecursive (unitBag bind)
    tc_scc (CyclicSCC binds) = tc_sub_group Recursive    (listToBag binds)
sof's avatar
sof committed
242

243
    tc_sub_group = tcPolyBinds top_lvl sig_fn prag_fn Recursive
sof's avatar
sof committed
244

245 246 247 248 249 250 251 252 253 254
tc_haskell98 top_lvl sig_fn prag_fn rec_flag binds thing_inside
  = bindLocalInsts top_lvl $ do
    { (binds1, ids) <- tcPolyBinds top_lvl sig_fn prag_fn rec_flag rec_flag binds
    ; thing <- tcExtendIdEnv ids thing_inside
    ; return (binds1, ids, thing) }

------------------------
bindLocalInsts :: TopLevelFlag -> TcM ([LHsBinds TcId], [TcId], a) -> TcM ([LHsBinds TcId], a)
bindLocalInsts top_lvl thing_inside
  | isTopLevel top_lvl = do { (binds, ids, thing) <- thing_inside; return (binds, thing) }
255
  	-- For the top level don't bother with all this bindInstsOfLocalFuns stuff. 
256 257 258 259 260 261 262
	-- All the top level things are rec'd together anyway, so it's fine to
	-- leave them to the tcSimplifyTop, and quite a bit faster too

  | otherwise	-- Nested case
  = do	{ ((binds, ids, thing), lie) <- getLIE thing_inside
	; lie_binds <- bindInstsOfLocalFuns lie ids
	; return (binds ++ [lie_binds], thing) }
263 264 265 266 267 268 269 270

------------------------
mkEdges :: TcSigFun -> LHsBinds Name
	-> [(LHsBind Name, BKey, [BKey])]

type BKey  = Int -- Just number off the bindings

mkEdges sig_fn binds
271 272
  = [ (bind, key, [key | n <- nameSetToList (bind_fvs (unLoc bind)),
			 Just key <- [lookupNameEnv key_map n], no_sig n ])
273 274 275 276 277 278 279 280 281 282 283 284 285
    | (bind, key) <- keyd_binds
    ]
  where
    no_sig :: Name -> Bool
    no_sig n = isNothing (sig_fn n)

    keyd_binds = bagToList binds `zip` [0::BKey ..]

    key_map :: NameEnv BKey	-- Which binding it comes from
    key_map = mkNameEnv [(bndr, key) | (L _ bind, key) <- keyd_binds
				     , bndr <- bindersOfHsBind bind ]

bindersOfHsBind :: HsBind Name -> [Name]
286 287
bindersOfHsBind (PatBind { pat_lhs = pat })  = collectPatBinders pat
bindersOfHsBind (FunBind { fun_id = L _ f }) = [f]
288

289
------------------------
290
tcPolyBinds :: TopLevelFlag -> TcSigFun -> TcPragFun
291
	    -> RecFlag			-- Whether the group is really recursive
292 293
	    -> RecFlag			-- Whether it's recursive after breaking
					-- dependencies based on type signatures
294
	    -> LHsBinds Name
295
	    -> TcM ([LHsBinds TcId], [TcId])
296 297 298 299 300

-- Typechecks a single bunch of bindings all together, 
-- and generalises them.  The bunch may be only part of a recursive
-- group, because we use type signatures to maximise polymorphism
--
301 302 303
-- Returns a list because the input may be a single non-recursive binding,
-- in which case the dependency order of the resulting bindings is
-- important.  
304
-- 
305 306
-- Knows nothing about the scope of the bindings

307
tcPolyBinds top_lvl sig_fn prag_fn rec_group rec_tc binds
308
  = let 
309
	bind_list    = bagToList binds
310 311
        binder_names = collectHsBindBinders binds
	loc          = getLoc (head bind_list)
312 313 314
		-- TODO: location a bit awkward, but the mbinds have been
		--	 dependency analysed and may no longer be adjacent
    in
315
	-- SET UP THE MAIN RECOVERY; take advantage of any type sigs
316
    setSrcSpan loc				$
317
    recoverM (recoveryCode binder_names sig_fn)	$ do 
318

319 320
  { traceTc (ptext SLIT("------------------------------------------------"))
  ; traceTc (ptext SLIT("Bindings for") <+> ppr binder_names)
321 322

   	-- TYPECHECK THE BINDINGS
323
  ; ((binds', mono_bind_infos), lie_req) 
324
	<- getLIE (tcMonoBinds bind_list sig_fn rec_tc)
325
  ; traceTc (text "temp" <+> (ppr binds' $$ ppr lie_req))
326

327 328 329 330
	-- CHECK FOR UNLIFTED BINDINGS
	-- These must be non-recursive etc, and are not generalised
	-- They desugar to a case expression in the end
  ; zonked_mono_tys <- zonkTcTypes (map getMonoType mono_bind_infos)
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
331 332 333 334 335
  ; is_strict <- checkStrictBinds top_lvl rec_group binds' 
				  zonked_mono_tys mono_bind_infos
  ; if is_strict then
    do	{ extendLIEs lie_req
	; let exports = zipWith mk_export mono_bind_infos zonked_mono_tys
336 337
	      mk_export (name, Nothing,  mono_id) mono_ty = ([], mkLocalId name mono_ty, mono_id, [])
	      mk_export (name, Just sig, mono_id) mono_ty = ([], sig_id sig,             mono_id, [])
338
			-- ToDo: prags for unlifted bindings
339

340 341
	; return ( [unitBag $ L loc $ AbsBinds [] [] exports binds'],
		   [poly_id | (_, poly_id, _, _) <- exports]) }	-- Guaranteed zonked
342 343

    else do	-- The normal lifted case: GENERALISE
344
  { dflags <- getDOpts 
345
  ; (tyvars_to_gen, dicts, dict_binds)
346
	<- addErrCtxt (genCtxt (bndrNames mono_bind_infos)) $
347
	   generalise dflags top_lvl bind_list sig_fn mono_bind_infos lie_req
348

349
	-- BUILD THE POLYMORPHIC RESULT IDs
350 351
  ; let dict_vars = map instToVar dicts	-- May include equality constraints
  ; exports <- mapM (mkExport top_lvl prag_fn tyvars_to_gen (map varType dict_vars))
352
		    mono_bind_infos
sof's avatar
sof committed
353

354
  ; let	poly_ids = [poly_id | (_, poly_id, _, _) <- exports]
355
  ; traceTc (text "binding:" <+> ppr (poly_ids `zip` map idType poly_ids))
356

357
  ; let abs_bind = L loc $ AbsBinds tyvars_to_gen
358
	 		            dict_vars exports
359 360
	 		    	    (dict_binds `unionBags` binds')

361
  ; return ([unitBag abs_bind], poly_ids)	-- poly_ids are guaranteed zonked by mkExport
362 363 364 365
  } }


--------------
366 367
mkExport :: TopLevelFlag -> TcPragFun -> [TyVar] -> [TcType]
	 -> MonoBindInfo
368
	 -> TcM ([TyVar], Id, Id, [LPrag])
369 370 371 372 373 374 375 376 377 378 379
-- mkExport generates exports with 
--	zonked type variables, 
--	zonked poly_ids
-- The former is just because no further unifications will change
-- the quantified type variables, so we can fix their final form
-- right now.
-- The latter is needed because the poly_ids are used to extend the
-- type environment; see the invariant on TcEnv.tcExtendIdEnv 

-- Pre-condition: the inferred_tvs are already zonked

380 381 382 383
mkExport top_lvl prag_fn inferred_tvs dict_tys (poly_name, mb_sig, mono_id)
  = do	{ warn_missing_sigs <- doptM Opt_WarnMissingSigs
	; let warn = isTopLevel top_lvl && warn_missing_sigs
	; (tvs, poly_id) <- mk_poly_id warn mb_sig
384
		-- poly_id has a zonked type
385

386
	; prags <- tcPrags poly_id (prag_fn poly_name)
387 388
		-- tcPrags requires a zonked poly_id

389
	; return (tvs, poly_id, mono_id, prags) }
390 391 392
  where
    poly_ty = mkForAllTys inferred_tvs (mkFunTys dict_tys (idType mono_id))

393 394 395
    mk_poly_id warn Nothing    = do { poly_ty' <- zonkTcType poly_ty
				    ; missingSigWarn warn poly_name poly_ty'
				    ; return (inferred_tvs, mkLocalId poly_name poly_ty') }
396 397
    mk_poly_id warn (Just sig) = do { tvs <- mapM zonk_tv (sig_tvs sig)
			            ; return (tvs,  sig_id sig) }
398

399
    zonk_tv tv = do { ty <- zonkTcTyVar tv; return (tcGetTyVar "mkExport" ty) }
400 401 402 403 404 405 406

------------------------
type TcPragFun = Name -> [LSig Name]

mkPragFun :: [LSig Name] -> TcPragFun
mkPragFun sigs = \n -> lookupNameEnv env n `orElse` []
	where
407 408
	  prs = [(expectJust "mkPragFun" (sigName sig), sig) 
		| sig <- sigs, isPragLSig sig]
409 410 411
	  env = foldl add emptyNameEnv prs
	  add env (n,p) = extendNameEnv_Acc (:) singleton env n p

412 413
tcPrags :: Id -> [LSig Name] -> TcM [LPrag]
tcPrags poly_id prags = mapM (wrapLocM tc_prag) prags
414
  where
415 416
    tc_prag prag = addErrCtxt (pragSigCtxt prag) $ 
		   tcPrag poly_id prag
417 418 419 420

pragSigCtxt prag = hang (ptext SLIT("In the pragma")) 2 (ppr prag)

tcPrag :: TcId -> Sig Name -> TcM Prag
421 422
-- Pre-condition: the poly_id is zonked
-- Reason: required by tcSubExp
423 424 425
tcPrag poly_id (SpecSig orig_name hs_ty inl) = tcSpecPrag poly_id hs_ty inl
tcPrag poly_id (SpecInstSig hs_ty)	     = tcSpecPrag poly_id hs_ty defaultInlineSpec
tcPrag poly_id (InlineSig v inl)             = return (InlinePrag inl)
426

427

428 429
tcSpecPrag :: TcId -> LHsType Name -> InlineSpec -> TcM Prag
tcSpecPrag poly_id hs_ty inl
430 431
  = do	{ let name = idName poly_id
	; spec_ty <- tcHsSigType (FunSigCtxt name) hs_ty
432 433
	; co_fn <- tcSubExp (SpecPragOrigin name) (idType poly_id) spec_ty
	; return (SpecPrag (mkHsWrap co_fn (HsVar poly_id)) spec_ty inl) }
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
434 435
	-- Most of the work of specialisation is done by 
	-- the desugarer, guided by the SpecPrag
436 437
  
--------------
438 439 440
-- If typechecking the binds fails, then return with each
-- signature-less binder given type (forall a.a), to minimise 
-- subsequent error messages
441
recoveryCode binder_names sig_fn
442
  = do	{ traceTc (text "tcBindsWithSigs: error recovery" <+> ppr binder_names)
443
	; poly_ids <- mapM mk_dummy binder_names
444
	; return ([], poly_ids) }
445
  where
446 447 448
    mk_dummy name 
	| isJust (sig_fn name) = tcLookupId name	-- Had signature; look it up
	| otherwise	       = return (mkLocalId name forall_a_a)    -- No signature
449 450 451 452

forall_a_a :: TcType
forall_a_a = mkForAllTy alphaTyVar (mkTyVarTy alphaTyVar)

453

454 455 456
-- Check that non-overloaded unlifted bindings are
-- 	a) non-recursive,
--	b) not top level, 
457 458
--	c) not a multiple-binding group (more or less implied by (a))

simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
459 460 461 462 463
checkStrictBinds :: TopLevelFlag -> RecFlag
		 -> LHsBinds TcId -> [TcType] -> [MonoBindInfo]
		 -> TcM Bool
checkStrictBinds top_lvl rec_group mbind mono_tys infos
  | unlifted || bang_pat
464
  = do 	{ checkTc (isNotTopLevel top_lvl)
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
465
	  	  (strictBindErr "Top-level" unlifted mbind)
466
	; checkTc (isNonRec rec_group)
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
467
	  	  (strictBindErr "Recursive" unlifted mbind)
468
	; checkTc (isSingletonBag mbind)
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
469 470 471 472 473
	    	  (strictBindErr "Multiple" unlifted mbind) 
	; mapM_ check_sig infos
	; return True }
  | otherwise
  = return False
474
  where
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
475 476
    unlifted = any isUnLiftedType mono_tys
    bang_pat = anyBag (isBangHsBind . unLoc) mbind
477
    check_sig (_, Just sig, _) = checkTc (null (sig_tvs sig) && null (sig_theta sig))
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
478
					 (badStrictSig unlifted sig)
479
    check_sig other	       = return ()
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
480 481

strictBindErr flavour unlifted mbind
482 483
  = hang (text flavour <+> msg <+> ptext SLIT("aren't allowed:")) 
	 4 (pprLHsBinds mbind)
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
484 485 486 487 488 489 490 491 492 493
  where
    msg | unlifted  = ptext SLIT("bindings for unlifted types")
	| otherwise = ptext SLIT("bang-pattern bindings")

badStrictSig unlifted sig
  = hang (ptext SLIT("Illegal polymorphic signature in") <+> msg)
	 4 (ppr sig)
  where
    msg | unlifted  = ptext SLIT("an unlifted binding")
	| otherwise = ptext SLIT("a bang-pattern binding")
494 495
\end{code}

496

497 498
%************************************************************************
%*									*
499
\subsection{tcMonoBind}
500 501 502
%*									*
%************************************************************************

503
@tcMonoBinds@ deals with a perhaps-recursive group of HsBinds.
504 505
The signatures have been dealt with already.

506
\begin{code}
507 508
tcMonoBinds :: [LHsBind Name]
	    -> TcSigFun
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
509 510 511
	    -> RecFlag	-- Whether the binding is recursive for typechecking purposes
			-- i.e. the binders are mentioned in their RHSs, and
			--	we are not resuced by a type signature
512 513
	    -> TcM (LHsBinds TcId, [MonoBindInfo])

514 515
tcMonoBinds [L b_loc (FunBind { fun_id = L nm_loc name, fun_infix = inf, 
				fun_matches = matches, bind_fvs = fvs })]
516
	    sig_fn 		-- Single function binding,
517
	    NonRecursive	-- binder isn't mentioned in RHS,
518
  | Nothing <- sig_fn name	-- ...with no type signature
519 520 521 522 523 524
  = 	-- In this very special case we infer the type of the
	-- right hand side first (it may have a higher-rank type)
	-- and *then* make the monomorphic Id for the LHS
	-- e.g.		f = \(x::forall a. a->a) -> <body>
	-- 	We want to infer a higher-rank type for f
    setSrcSpan b_loc  	$
525
    do	{ ((co_fn, matches'), rhs_ty) <- tcInfer (tcMatchesFun name inf matches)
526

527 528 529 530 531 532 533 534
		-- Check for an unboxed tuple type
		--	f = (# True, False #)
		-- Zonk first just in case it's hidden inside a meta type variable
		-- (This shows up as a (more obscure) kind error 
		--  in the 'otherwise' case of tcMonoBinds.)
	; zonked_rhs_ty <- zonkTcType rhs_ty
	; checkTc (not (isUnboxedTupleType zonked_rhs_ty))
		  (unboxedTupleErr name zonked_rhs_ty)
535

536
	; mono_name <- newLocalName name
537
	; let mono_id = mkLocalId mono_name zonked_rhs_ty
538 539
	; return (unitBag (L b_loc (FunBind { fun_id = L nm_loc mono_id, fun_infix = inf,
					      fun_matches = matches', bind_fvs = fvs,
andy@galois.com's avatar
andy@galois.com committed
540
					      fun_co_fn = co_fn, fun_tick = Nothing })),
541 542
		  [(name, Nothing, mono_id)]) }

543 544 545 546
tcMonoBinds [L b_loc (FunBind { fun_id = L nm_loc name, fun_infix = inf, 
				fun_matches = matches, bind_fvs = fvs })]
	    sig_fn 		-- Single function binding
	    non_rec	
547
  | Just scoped_tvs <- sig_fn name	-- ...with a type signature
548 549 550 551
  = 	-- When we have a single function binding, with a type signature
	-- we can (a) use genuine, rigid skolem constants for the type variables
	--	  (b) bring (rigid) scoped type variables into scope
    setSrcSpan b_loc  	$
552
    do	{ tc_sig <- tcInstSig True name
553 554 555 556
	; mono_name <- newLocalName name
	; let mono_ty = sig_tau tc_sig
	      mono_id = mkLocalId mono_name mono_ty
	      rhs_tvs = [ (name, mkTyVarTy tv)
557 558 559 560
		        | (name, tv) <- scoped_tvs `zip` sig_tvs tc_sig ]
			-- See Note [More instantiated than scoped]
			-- Note that the scoped_tvs and the (sig_tvs sig) 
			-- may have different Names. That's quite ok.
561

562
	; (co_fn, matches') <- tcExtendTyVarEnv2 rhs_tvs $
563
		    	       tcMatchesFun mono_name inf matches mono_ty
564 565 566

	; let fun_bind' = FunBind { fun_id = L nm_loc mono_id, 
				    fun_infix = inf, fun_matches = matches',
andy@galois.com's avatar
andy@galois.com committed
567 568
			            bind_fvs = placeHolderNames, fun_co_fn = co_fn, 
				    fun_tick = Nothing }
569 570 571
	; return (unitBag (L b_loc fun_bind'),
		  [(name, Just tc_sig, mono_id)]) }

572 573
tcMonoBinds binds sig_fn non_rec
  = do	{ tc_binds <- mapM (wrapLocM (tcLhs sig_fn)) binds
574

575
	-- Bring the monomorphic Ids, into scope for the RHSs
576
	; let mono_info  = getMonoBindInfo tc_binds
577 578 579
	      rhs_id_env = [(name,mono_id) | (name, Nothing, mono_id) <- mono_info]
			 	-- A monomorphic binding for each term variable that lacks 
				-- a type sig.  (Ones with a sig are already in scope.)
580

581
	; binds' <- tcExtendIdEnv2 rhs_id_env $ do
582
		    traceTc (text "tcMonoBinds" <+> vcat [ ppr n <+> ppr id <+> ppr (idType id) 
583
							 | (n,id) <- rhs_id_env])
584 585
		    mapM (wrapLocM tcRhs) tc_binds
	; return (listToBag binds', mono_info) }
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606

------------------------
-- tcLhs typechecks the LHS of the bindings, to construct the environment in which
-- we typecheck the RHSs.  Basically what we are doing is this: for each binder:
--	if there's a signature for it, use the instantiated signature type
--	otherwise invent a type variable
-- You see that quite directly in the FunBind case.
-- 
-- But there's a complication for pattern bindings:
--	data T = MkT (forall a. a->a)
--	MkT f = e
-- Here we can guess a type variable for the entire LHS (which will be refined to T)
-- but we want to get (f::forall a. a->a) as the RHS environment.
-- The simplest way to do this is to typecheck the pattern, and then look up the
-- bound mono-ids.  Then we want to retain the typechecked pattern to avoid re-doing
-- it; hence the TcMonoBind data type in which the LHS is done but the RHS isn't

data TcMonoBind		-- Half completed; LHS done, RHS not done
  = TcFunBind  MonoBindInfo  (Located TcId) Bool (MatchGroup Name) 
  | TcPatBind [MonoBindInfo] (LPat TcId) (GRHSs Name) TcSigmaType

607 608 609 610 611 612 613 614 615 616
type MonoBindInfo = (Name, Maybe TcSigInfo, TcId)
	-- Type signature (if any), and
	-- the monomorphic bound things

bndrNames :: [MonoBindInfo] -> [Name]
bndrNames mbi = [n | (n,_,_) <- mbi]

getMonoType :: MonoBindInfo -> TcTauType
getMonoType (_,_,mono_id) = idType mono_id

617
tcLhs :: TcSigFun -> HsBind Name -> TcM TcMonoBind
618
tcLhs sig_fn (FunBind { fun_id = L nm_loc name, fun_infix = inf, fun_matches = matches })
619
  = do	{ mb_sig <- tcInstSig_maybe sig_fn name
620 621 622 623 624 625
	; mono_name <- newLocalName name
	; mono_ty   <- mk_mono_ty mb_sig
	; let mono_id = mkLocalId mono_name mono_ty
	; return (TcFunBind (name, mb_sig, mono_id) (L nm_loc mono_id) inf matches) }
  where
    mk_mono_ty (Just sig) = return (sig_tau sig)
626 627 628
    mk_mono_ty Nothing    = newFlexiTyVarTy argTypeKind

tcLhs sig_fn bind@(PatBind { pat_lhs = pat, pat_rhs = grhss })
629
  = do	{ mb_sigs <- mapM (tcInstSig_maybe sig_fn) names
630 631 632 633 634 635 636 637 638
	; mono_pat_binds <- doptM Opt_MonoPatBinds
		-- With -fmono-pat-binds, we do no generalisation of pattern bindings
		-- But the signature can still be polymoprhic!
		--	data T = MkT (forall a. a->a)
		--	x :: forall a. a->a
		--	MkT x = <rhs>
		-- The function get_sig_ty decides whether the pattern-bound variables
		-- should have exactly the type in the type signature (-fmono-pat-binds), 
		-- or the instantiated version (-fmono-pat-binds)
639

640
	; let nm_sig_prs  = names `zip` mb_sigs
641 642 643 644
	      get_sig_ty | mono_pat_binds = idType . sig_id
			 | otherwise	  = sig_tau
	      tau_sig_env = mkNameEnv [ (name, get_sig_ty sig) 
				      | (name, Just sig) <- nm_sig_prs]
645
	      sig_tau_fn  = lookupNameEnv tau_sig_env
646

647
	      tc_pat exp_ty = tcLetPat sig_tau_fn pat exp_ty $
648 649 650 651 652 653 654 655 656 657
			      mapM lookup_info nm_sig_prs

		-- After typechecking the pattern, look up the binder
		-- names, which the pattern has brought into scope.
	      lookup_info :: (Name, Maybe TcSigInfo) -> TcM MonoBindInfo
	      lookup_info (name, mb_sig) = do { mono_id <- tcLookupId name
					      ; return (name, mb_sig, mono_id) }

	; ((pat', infos), pat_ty) <- addErrCtxt (patMonoBindsCtxt pat grhss) $
				     tcInfer tc_pat
658

659 660 661 662 663
	; return (TcPatBind infos pat' grhss pat_ty) }
  where
    names = collectPatBinders pat


664
tcLhs sig_fn other_bind = pprPanic "tcLhs" (ppr other_bind)
665 666
	-- AbsBind, VarBind impossible

667 668
-------------------
tcRhs :: TcMonoBind -> TcM (HsBind TcId)
669 670 671 672 673
-- When we are doing pattern bindings, or multiple function bindings at a time
-- we *don't* bring any scoped type variables into scope
-- Wny not?  They are not completely rigid.
-- That's why we have the special case for a single FunBind in tcMonoBinds
tcRhs (TcFunBind (_,_,mono_id) fun' inf matches)
674 675
  = do	{ (co_fn, matches') <- tcMatchesFun (idName mono_id) inf 
				    	    matches (idType mono_id)
676
	; return (FunBind { fun_id = fun', fun_infix = inf, fun_matches = matches',
andy@galois.com's avatar
andy@galois.com committed
677 678
			    bind_fvs = placeHolderNames, fun_co_fn = co_fn,
			    fun_tick = Nothing }) }
679 680 681

tcRhs bind@(TcPatBind _ pat' grhss pat_ty)
  = do	{ grhss' <- addErrCtxt (patMonoBindsCtxt pat' grhss) $
682 683 684
		    tcGRHSsPat grhss pat_ty
	; return (PatBind { pat_lhs = pat', pat_rhs = grhss', pat_rhs_ty = pat_ty, 
			    bind_fvs = placeHolderNames }) }
685 686 687


---------------------
688
getMonoBindInfo :: [Located TcMonoBind] -> [MonoBindInfo]
689
getMonoBindInfo tc_binds
690
  = foldr (get_info . unLoc) [] tc_binds
691 692 693 694 695 696 697 698
  where
    get_info (TcFunBind info _ _ _)  rest = info : rest
    get_info (TcPatBind infos _ _ _) rest = infos ++ rest
\end{code}


%************************************************************************
%*									*
699
		Generalisation
700 701 702 703
%*									*
%************************************************************************

\begin{code}
704 705
generalise :: DynFlags -> TopLevelFlag 
	   -> [LHsBind Name] -> TcSigFun 
706
	   -> [MonoBindInfo] -> [Inst]
707 708 709
	   -> TcM ([TyVar], [Inst], TcDictBinds)
-- The returned [TyVar] are all ready to quantify

710 711
generalise dflags top_lvl bind_list sig_fn mono_infos lie_req
  | isMonoGroup dflags bind_list
712 713
  = do	{ extendLIEs lie_req
	; return ([], [], emptyBag) }
714 715

  | isRestrictedGroup dflags bind_list sig_fn 	-- RESTRICTED CASE
716 717
  = 	-- Check signature contexts are empty 
    do	{ checkTc (all is_mono_sig sigs)
718
	  	  (restrictedBindCtxtErr bndrs)
719

720 721
	-- Now simplify with exactly that set of tyvars
	-- We have to squash those Methods
722
	; (qtvs, binds) <- tcSimplifyRestricted doc top_lvl bndrs 
723
						tau_tvs lie_req
724

725
   	-- Check that signature type variables are OK
726
	; final_qtvs <- checkSigsTyVars qtvs sigs
727

728
	; return (final_qtvs, [], binds) }
729

730 731 732 733
  | null sigs	-- UNRESTRICTED CASE, NO TYPE SIGS
  = tcSimplifyInfer doc tau_tvs lie_req

  | otherwise	-- UNRESTRICTED CASE, WITH TYPE SIGS
734
  = do	{ sig_lie <- unifyCtxts sigs	-- sigs is non-empty; sig_lie is zonked
735 736
	; let	-- The "sig_avails" is the stuff available.  We get that from
		-- the context of the type signature, BUT ALSO the lie_avail
737
		-- so that polymorphic recursion works right (see Note [Polymorphic recursion])
738 739
		local_meths = [mkMethInst sig mono_id | (_, Just sig, mono_id) <- mono_infos]
		sig_avails = sig_lie ++ local_meths
740
		loc = sig_loc (head sigs)
741

742 743
	-- Check that the needed dicts can be
	-- expressed in terms of the signature ones
744
	; (qtvs, binds) <- tcSimplifyInferCheck loc tau_tvs sig_avails lie_req
745 746
	
   	-- Check that signature type variables are OK
747
	; final_qtvs <- checkSigsTyVars qtvs sigs
748

749
	; return (final_qtvs, sig_lie, binds) }
750
  where
751 752
    bndrs   = bndrNames mono_infos
    sigs    = [sig | (_, Just sig, _) <- mono_infos]
753 754 755
    get_tvs | isTopLevel top_lvl = tyVarsOfType	 -- See Note [Silly type synonym] in TcType
	    | otherwise		 = exactTyVarsOfType
    tau_tvs = foldr (unionVarSet . get_tvs . getMonoType) emptyVarSet mono_infos
756
    is_mono_sig sig = null (sig_theta sig)
757
    doc = ptext SLIT("type signature(s) for") <+> pprBinders bndrs
758

759
    mkMethInst (TcSigInfo { sig_id = poly_id, sig_tvs = tvs, 
760
		            sig_theta = theta, sig_loc = loc }) mono_id
761 762
      = Method {tci_id = mono_id, tci_oid = poly_id, tci_tys = mkTyVarTys tvs,
		tci_theta = theta, tci_loc = loc}
763
\end{code}
764

765 766 767
unifyCtxts checks that all the signature contexts are the same
The type signatures on a mutually-recursive group of definitions
must all have the same context (or none).
768

769 770 771 772 773 774 775 776 777
The trick here is that all the signatures should have the same
context, and we want to share type variables for that context, so that
all the right hand sides agree a common vocabulary for their type
constraints

We unify them because, with polymorphic recursion, their types
might not otherwise be related.  This is a rather subtle issue.

\begin{code}
778
unifyCtxts :: [TcSigInfo] -> TcM [Inst]
779
-- Post-condition: the returned Insts are full zonked
780 781
unifyCtxts (sig1 : sigs) 	-- Argument is always non-empty
  = do	{ mapM unify_ctxt sigs
782 783
	; theta <- zonkTcThetaType (sig_theta sig1)
	; newDictBndrs (sig_loc sig1) theta }
784 785 786 787
  where
    theta1 = sig_theta sig1
    unify_ctxt :: TcSigInfo -> TcM ()
    unify_ctxt sig@(TcSigInfo { sig_theta = theta })
788
	= setSrcSpan (instLocSpan (sig_loc sig)) 	$
789
	  addErrCtxt (sigContextsCtxt sig1 sig)		$
790 791 792 793 794 795 796 797 798 799 800
	  do { cois <- unifyTheta theta1 theta
	     ; -- Check whether all coercions are identity coercions
	       -- That can happen if we have, say
	       -- 	  f :: C [a]   => ...
	       -- 	  g :: C (F a) => ...
	       -- where F is a type function and (F a ~ [a])
	       -- Then unification might succeed with a coercion.  But it's much
	       -- much simpler to require that such signatures have identical contexts
	       checkTc (all isIdentityCoercion cois)
		       (ptext SLIT("Mutually dependent functions have syntactically distinct contexts"))
	     }
801

802 803
checkSigsTyVars :: [TcTyVar] -> [TcSigInfo] -> TcM [TcTyVar]
checkSigsTyVars qtvs sigs 
804
  = do	{ gbl_tvs <- tcGetGlobalTyVars
805
	; sig_tvs_s <- mapM (check_sig gbl_tvs) sigs
806 807 808 809 810 811 812 813 814 815 816

	; let	-- Sigh.  Make sure that all the tyvars in the type sigs
		-- appear in the returned ty var list, which is what we are
		-- going to generalise over.  Reason: we occasionally get
		-- silly types like
		--	type T a = () -> ()
		--	f :: T a
		--	f () = ()
		-- Here, 'a' won't appear in qtvs, so we have to add it
	 	sig_tvs = foldl extendVarSetList emptyVarSet sig_tvs_s
		all_tvs = varSetElems (extendVarSetList sig_tvs qtvs)
817
	; return all_tvs }
818
  where
819 820 821 822 823
    check_sig gbl_tvs (TcSigInfo {sig_id = id, sig_tvs = tvs, 
				  sig_theta = theta, sig_tau = tau})
      = addErrCtxt (ptext SLIT("In the type signature for") <+> quotes (ppr id))	$
	addErrCtxtM (sigCtxt id tvs theta tau)						$
	do { tvs' <- checkDistinctTyVars tvs
824 825
	   ; when (any (`elemVarSet` gbl_tvs) tvs')
	          (bleatEscapedTvs gbl_tvs tvs tvs')
826 827 828 829 830 831 832 833 834 835 836 837 838
	   ; return tvs' }

checkDistinctTyVars :: [TcTyVar] -> TcM [TcTyVar]
-- (checkDistinctTyVars tvs) checks that the tvs from one type signature
-- are still all type variables, and all distinct from each other.  
-- It returns a zonked set of type variables.
-- For example, if the type sig is
--	f :: forall a b. a -> b -> b
-- we want to check that 'a' and 'b' haven't 
--	(a) been unified with a non-tyvar type
--	(b) been unified with each other (all distinct)

checkDistinctTyVars sig_tvs
839
  = do	{ zonked_tvs <- mapM zonkSigTyVar sig_tvs
840 841 842 843 844 845 846 847
	; foldlM check_dup emptyVarEnv (sig_tvs `zip` zonked_tvs)
	; return zonked_tvs }
  where
    check_dup :: TyVarEnv TcTyVar -> (TcTyVar, TcTyVar) -> TcM (TyVarEnv TcTyVar)
	-- The TyVarEnv maps each zonked type variable back to its
	-- corresponding user-written signature type variable
    check_dup acc (sig_tv, zonked_tv)
	= case lookupVarEnv acc zonked_tv of
848
		Just sig_tv' -> bomb_out sig_tv sig_tv'
849 850 851

		Nothing -> return (extendVarEnv acc zonked_tv sig_tv)

852
    bomb_out sig_tv1 sig_tv2
853 854 855 856 857 858 859
       = do { env0 <- tcInitTidyEnv
	    ; let (env1, tidy_tv1) = tidyOpenTyVar env0 sig_tv1
		  (env2, tidy_tv2) = tidyOpenTyVar env1 sig_tv2
	          msg = ptext SLIT("Quantified type variable") <+> quotes (ppr tidy_tv1) 
		         <+> ptext SLIT("is unified with another quantified type variable") 
		         <+> quotes (ppr tidy_tv2)
	    ; failWithTcM (env2, msg) }
860
       where
SamB's avatar
SamB committed
861
\end{code}
862

863

864
@getTyVarsToGen@ decides what type variables to generalise over.
865 866 867 868 869 870 871 872 873 874 875 876 877 878 879

For a "restricted group" -- see the monomorphism restriction
for a definition -- we bind no dictionaries, and
remove from tyvars_to_gen any constrained type variables

*Don't* simplify dicts at this point, because we aren't going
to generalise over these dicts.  By the time we do simplify them
we may well know more.  For example (this actually came up)
	f :: Array Int Int
	f x = array ... xs where xs = [1,2,3,4,5]
We don't want to generate lots of (fromInt Int 1), (fromInt Int 2)
stuff.  If we simplify only at the f-binding (not the xs-binding)
we'll know that the literals are all Ints, and we can just produce
Int literals!

880 881 882 883
Find all the type variables involved in overloading, the
"constrained_tyvars".  These are the ones we *aren't* going to
generalise.  We must be careful about doing this:

884 885 886 887 888 889 890 891
 (a) If we fail to generalise a tyvar which is not actually
	constrained, then it will never, ever get bound, and lands
	up printed out in interface files!  Notorious example:
		instance Eq a => Eq (Foo a b) where ..
	Here, b is not constrained, even though it looks as if it is.
	Another, more common, example is when there's a Method inst in
	the LIE, whose type might very well involve non-overloaded
	type variables.
892 893
  [NOTE: Jan 2001: I don't understand the problem here so I'm doing 
	the simple thing instead]
894

895 896 897 898 899 900 901 902
 (b) On the other hand, we mustn't generalise tyvars which are constrained,
	because we are going to pass on out the unmodified LIE, with those
	tyvars in it.  They won't be in scope if we've generalised them.

So we are careful, and do a complete simplification just to find the
constrained tyvars. We don't use any of the results, except to
find which tyvars are constrained.

903 904 905
Note [Polymorphic recursion]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The game plan for polymorphic recursion in the code above is 
906

907 908 909
	* Bind any variable for which we have a type signature
	  to an Id with a polymorphic type.  Then when type-checking 
	  the RHSs we'll make a full polymorphic call.
910

911 912
This fine, but if you aren't a bit careful you end up with a horrendous
amount of partial application and (worse) a huge space leak. For example:
913

914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
	f :: Eq a => [a] -> [a]
	f xs = ...f...

If we don't take care, after typechecking we get

	f = /\a -> \d::Eq a -> let f' = f a d
			       in
			       \ys:[a] -> ...f'...

Notice the the stupid construction of (f a d), which is of course
identical to the function we're executing.  In this case, the
polymorphic recursion isn't being used (but that's a very common case).
This can lead to a massive space leak, from the following top-level defn
(post-typechecking)

	ff :: [Int] -> [Int]
	ff = f Int dEqInt

Now (f dEqInt) evaluates to a lambda that has f' as a free variable; but
f' is another thunk which evaluates to the same thing... and you end
up with a chain of identical values all hung onto by the CAF ff.

	ff = f Int dEqInt

	   = let f' = f Int dEqInt in \ys. ...f'...

	   = let f' = let f' = f Int dEqInt in \ys. ...f'...
		      in \ys. ...f'...

Etc.
944 945 946 947

NOTE: a bit of arity anaysis would push the (f a d) inside the (\ys...),
which would make the space leak go away in this case

948 949 950 951 952 953
Solution: when typechecking the RHSs we always have in hand the
*monomorphic* Ids for each binding.  So we just need to make sure that
if (Method f a d) shows up in the constraints emerging from (...f...)
we just use the monomorphic Id.  We achieve this by adding monomorphic Ids
to the "givens" when simplifying constraints.  That's what the "lies_avail"
is doing.
954

955 956 957 958 959 960 961 962
Then we get

	f = /\a -> \d::Eq a -> letrec
				 fm = \ys:[a] -> ...fm...
			       in
			       fm


963 964 965

%************************************************************************
%*									*
966
		Signatures
967 968 969
%*									*
%************************************************************************

970
Type signatures are tricky.  See Note [Signature skolems] in TcType
971

972 973 974 975 976 977 978 979 980
@tcSigs@ checks the signatures for validity, and returns a list of
{\em freshly-instantiated} signatures.  That is, the types are already
split up, and have fresh type variables installed.  All non-type-signature
"RenamedSigs" are ignored.

The @TcSigInfo@ contains @TcTypes@ because they are unified with
the variable's type, and after that checked to see whether they've
been instantiated.

981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
Note [Scoped tyvars]
~~~~~~~~~~~~~~~~~~~~
The -XScopedTypeVariables flag brings lexically-scoped type variables
into scope for any explicitly forall-quantified type variables:
	f :: forall a. a -> a
	f x = e
Then 'a' is in scope inside 'e'.

However, we do *not* support this 
  - For pattern bindings e.g
	f :: forall a. a->a
	(f,g) = e

  - For multiple function bindings, unless Opt_RelaxedPolyRec is on
   	f :: forall a. a -> a
	f = g
   	g :: forall b. b -> b
	g = ...f...
    Reason: we use mutable variables for 'a' and 'b', since they may
    unify to each other, and that means the scoped type variable would
    not stand for a completely rigid variable.

    Currently, we simply make Opt_ScopedTypeVariables imply Opt_RelaxedPolyRec


Note [More instantiated than scoped]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
There may be more instantiated type variables than lexically-scoped 
ones.  For example:
	type T a = forall b. b -> (a,b)
	f :: forall c. T c
Here, the signature for f will have one scoped type variable, c,
but two instantiated type variables, c' and b'.  

We assume that the scoped ones are at the *front* of sig_tvs,
and remember the names from the original HsForAllTy in the TcSigFun.


1019
\begin{code}
1020 1021 1022 1023
type TcSigFun = Name -> Maybe [Name]	-- Maps a let-binder to the list of
					-- type variables brought into scope
					-- by its type signature.
					-- Nothing => no type signature
1024

1025
mkTcSigFun :: [LSig Name] -> TcSigFun