DsBinds.lhs 36.3 KB
Newer Older
1
%
Simon Marlow's avatar
Simon Marlow committed
2
% (c) The University of Glasgow 2006
3
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
4
%
Simon Marlow's avatar
Simon Marlow committed
5 6

Pattern-matching bindings (HsBinds and MonoBinds)
7

8 9 10
Handles @HsBinds@; those at the top level require different handling,
in that the @Rec@/@NonRec@/etc structure is thrown away (whereas at
lower levels it is preserved with @let@/@letrec@s).
11 12

\begin{code}
Ian Lynagh's avatar
Ian Lynagh committed
13 14 15 16
{-# OPTIONS -fno-warn-tabs #-}
-- The above warning supression flag is a temporary kludge.
-- While working on this module you are encouraged to remove it and
-- detab the module (please do the detabbing in a separate patch). See
17
--     http://ghc.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#TabsvsSpaces
Ian Lynagh's avatar
Ian Lynagh committed
18 19
-- for details

20
module DsBinds ( dsTopLHsBinds, dsLHsBinds, decomposeRuleLhs, dsSpec,
21
                 dsHsWrapper, dsTcEvBinds, dsEvBinds
22
  ) where
23

24 25
#include "HsVersions.h"

26
import {-# SOURCE #-}	DsExpr( dsLExpr )
27 28
import {-# SOURCE #-}	Match( matchWrapper )

29
import DsMonad
Simon Marlow's avatar
Simon Marlow committed
30
import DsGRHSs
31
import DsUtils
32

33 34
import HsSyn		-- lots of things
import CoreSyn		-- lots of things
35
import Literal          ( Literal(MachStr) )
36
import CoreSubst
37
import MkCore
Simon Marlow's avatar
Simon Marlow committed
38
import CoreUtils
39
import CoreArity ( etaExpand )
40
import CoreUnfold
41
import CoreFVs
42 43
import UniqSupply
import Unique( Unique )
44
import Digraph
45

46

47
import TyCon      ( isTupleTyCon, tyConDataCons_maybe )
48
import TcEvidence
49
import TcType
50
import Type
batterseapower's avatar
batterseapower committed
51
import Coercion hiding (substCo)
Joachim Breitner's avatar
Joachim Breitner committed
52
import TysWiredIn ( eqBoxDataCon, coercibleDataCon, tupleCon )
Simon Marlow's avatar
Simon Marlow committed
53
import Id
54
import Class
batterseapower's avatar
batterseapower committed
55
import DataCon	( dataConWorkId )
56
import Name
57
import MkId	( seqId )
58
import Var
59
import VarSet
Simon Marlow's avatar
Simon Marlow committed
60
import Rules
61
import VarEnv
62
import Outputable
Simon Marlow's avatar
Simon Marlow committed
63 64
import SrcLoc
import Maybes
65
import OrdList
Simon Marlow's avatar
Simon Marlow committed
66 67
import Bag
import BasicTypes hiding ( TopLevel )
Ian Lynagh's avatar
Ian Lynagh committed
68
import DynFlags
Simon Marlow's avatar
Simon Marlow committed
69
import FastString
70
import ErrUtils( MsgDoc )
71
import ListSetOps( getNth )
72
import Util
73
import Control.Monad( when )
74
import MonadUtils
75
import Control.Monad(liftM)
76 77 78 79 80 81 82 83 84
\end{code}

%************************************************************************
%*									*
\subsection[dsMonoBinds]{Desugaring a @MonoBinds@}
%*									*
%************************************************************************

\begin{code}
85 86
dsTopLHsBinds :: LHsBinds Id -> DsM (OrdList (Id,CoreExpr))
dsTopLHsBinds binds = ds_lhs_binds binds
87

88
dsLHsBinds :: LHsBinds Id -> DsM [(Id,CoreExpr)]
89
dsLHsBinds binds = do { binds' <- ds_lhs_binds binds
90
                      ; return (fromOL binds') }
91 92

------------------------
93
ds_lhs_binds :: LHsBinds Id -> DsM (OrdList (Id,CoreExpr))
94

95 96
ds_lhs_binds binds = do { ds_bs <- mapBagM dsLHsBind binds
                        ; return (foldBag appOL id nilOL ds_bs) }
97

98 99
dsLHsBind :: LHsBind Id -> DsM (OrdList (Id,CoreExpr))
dsLHsBind (L loc bind) = putSrcSpanDs loc $ dsHsBind bind
100

101
dsHsBind :: HsBind Id -> DsM (OrdList (Id,CoreExpr))
102

103
dsHsBind (VarBind { var_id = var, var_rhs = expr, var_inline = inline_regardless })
104 105
  = do  { dflags <- getDynFlags
        ; core_expr <- dsLExpr expr
106 107 108

	        -- Dictionary bindings are always VarBinds,
	        -- so we only need do this here
109
        ; let var' | inline_regardless = var `setIdUnfolding` mkCompulsoryUnfolding core_expr
110
	      	   | otherwise         = var
111

112
        ; return (unitOL (makeCorePair dflags var' False 0 core_expr)) }
113

114 115 116
dsHsBind (FunBind { fun_id = L _ fun, fun_matches = matches
                  , fun_co_fn = co_fn, fun_tick = tick
                  , fun_infix = inf })
117 118
 = do	{ dflags <- getDynFlags
        ; (args, body) <- matchWrapper (FunRhs (idName fun) inf) matches
119
        ; let body' = mkOptTickBox tick body
120
        ; rhs <- dsHsWrapper co_fn (mkLams args body')
121
        ; {- pprTrace "dsHsBind" (ppr fun <+> ppr (idInlinePragma fun)) $ -}
122
           return (unitOL (makeCorePair dflags fun False 0 rhs)) }
123 124 125

dsHsBind (PatBind { pat_lhs = pat, pat_rhs = grhss, pat_rhs_ty = ty
                  , pat_ticks = (rhs_tick, var_ticks) })
126
  = do	{ body_expr <- dsGuarded grhss ty
127 128
        ; let body' = mkOptTickBox rhs_tick body_expr
        ; sel_binds <- mkSelectorBinds var_ticks pat body'
129 130
	  -- We silently ignore inline pragmas; no makeCorePair
	  -- Not so cool, but really doesn't matter
131
    ; return (toOL sel_binds) }
sof's avatar
sof committed
132

133
	-- A common case: one exported variable
134
	-- Non-recursive bindings come through this way
135 136
	-- So do self-recursive bindings, and recursive bindings
	-- that have been chopped up with type signatures
137 138 139
dsHsBind (AbsBinds { abs_tvs = tyvars, abs_ev_vars = dicts
                   , abs_exports = [export]
                   , abs_ev_binds = ev_binds, abs_binds = binds })
140 141
  | ABE { abe_wrap = wrap, abe_poly = global
        , abe_mono = local, abe_prags = prags } <- export
142 143
  = do  { dflags <- getDynFlags
        ; bind_prs    <- ds_lhs_binds binds
144
	; let	core_bind = Rec (fromOL bind_prs)
145 146
        ; ds_binds <- dsTcEvBinds ev_binds
        ; rhs <- dsHsWrapper wrap $  -- Usually the identity
147
			    mkLams tyvars $ mkLams dicts $ 
148
	                    mkCoreLets ds_binds $
149 150
                            Let core_bind $
                            Var local
151
    
152
	; (spec_binds, rules) <- dsSpecs rhs prags
153 154

	; let   global'   = addIdSpecialisations global rules
155
		main_bind = makeCorePair dflags global' (isDefaultMethod prags)
156
                                         (dictArity dicts) rhs 
157
    
158
	; return (main_bind `consOL` spec_binds) }
sof's avatar
sof committed
159

160 161 162
dsHsBind (AbsBinds { abs_tvs = tyvars, abs_ev_vars = dicts
                   , abs_exports = exports, abs_ev_binds = ev_binds
                   , abs_binds = binds })
163
         -- See Note [Desugaring AbsBinds]
164 165 166
  = do  { dflags <- getDynFlags
        ; bind_prs    <- ds_lhs_binds binds
        ; let core_bind = Rec [ makeCorePair dflags (add_inline lcl_id) False 0 rhs
167
                              | (lcl_id, rhs) <- fromOL bind_prs ]
168
	      	-- Monomorphic recursion possible, hence Rec
169

170
	      locals       = map abe_mono exports
171 172
	      tup_expr     = mkBigCoreVarTup locals
	      tup_ty	   = exprType tup_expr
173 174
        ; ds_binds <- dsTcEvBinds ev_binds
	; let poly_tup_rhs = mkLams tyvars $ mkLams dicts $
175
	      		     mkCoreLets ds_binds $
176 177
			     Let core_bind $
	 	     	     tup_expr
178

179
	; poly_tup_id <- newSysLocalDs (exprType poly_tup_rhs)
180

181 182
	; let mk_bind (ABE { abe_wrap = wrap, abe_poly = global
                           , abe_mono = local, abe_prags = spec_prags })
183
	        = do { tup_id  <- newSysLocalDs tup_ty
184
	             ; rhs <- dsHsWrapper wrap $ 
185
                                 mkLams tyvars $ mkLams dicts $
186 187
	      	     		 mkTupleSelector locals local tup_id $
			         mkVarApps (Var poly_tup_id) (tyvars ++ dicts)
188
                     ; let rhs_for_spec = Let (NonRec poly_tup_id poly_tup_rhs) rhs
189
		     ; (spec_binds, rules) <- dsSpecs rhs_for_spec spec_prags
190 191 192 193 194
		     ; let global' = (global `setInlinePragma` defaultInlinePragma)
                                             `addIdSpecialisations` rules
                           -- Kill the INLINE pragma because it applies to
                           -- the user written (local) function.  The global
                           -- Id is just the selector.  Hmm.  
195
		     ; return ((global', rhs) `consOL` spec_binds) }
196

197
        ; export_binds_s <- mapM mk_bind exports
198

199 200
	; return ((poly_tup_id, poly_tup_rhs) `consOL` 
		    concatOL export_binds_s) }
201 202 203 204 205 206 207 208 209 210 211
  where
    inline_env :: IdEnv Id   -- Maps a monomorphic local Id to one with
                             -- the inline pragma from the source
                             -- The type checker put the inline pragma
                             -- on the *global* Id, so we need to transfer it
    inline_env = mkVarEnv [ (lcl_id, setInlinePragma lcl_id prag)
                          | ABE { abe_mono = lcl_id, abe_poly = gbl_id } <- exports
                          , let prag = idInlinePragma gbl_id ]

    add_inline :: Id -> Id    -- tran
    add_inline lcl_id = lookupVarEnv inline_env lcl_id `orElse` lcl_id
212

Gergő Érdi's avatar
Gergő Érdi committed
213 214
dsHsBind (PatSynBind{}) = panic "dsHsBind: PatSynBind"

215
------------------------
216 217
makeCorePair :: DynFlags -> Id -> Bool -> Arity -> CoreExpr -> (Id, CoreExpr)
makeCorePair dflags gbl_id is_default_method dict_arity rhs
218 219 220
  | is_default_method		      -- Default methods are *always* inlined
  = (gbl_id `setIdUnfolding` mkCompulsoryUnfolding rhs, rhs)

221 222 223 224 225 226
  | otherwise
  = case inlinePragmaSpec inline_prag of
      	  EmptyInlineSpec -> (gbl_id, rhs)
      	  NoInline        -> (gbl_id, rhs)
      	  Inlinable       -> (gbl_id `setIdUnfolding` inlinable_unf, rhs)
          Inline          -> inline_pair
227

228 229
  where
    inline_prag   = idInlinePragma gbl_id
230
    inlinable_unf = mkInlinableUnfolding dflags rhs
231 232
    inline_pair
       | Just arity <- inlinePragmaSat inline_prag
233 234
      	-- Add an Unfolding for an INLINE (but not for NOINLINE)
	-- And eta-expand the RHS; see Note [Eta-expanding INLINE things]
235
       , let real_arity = dict_arity + arity
236
        -- NB: The arity in the InlineRule takes account of the dictionaries
237 238 239 240 241 242
       = ( gbl_id `setIdUnfolding` mkInlineUnfolding (Just real_arity) rhs
         , etaExpand real_arity rhs)

       | otherwise
       = pprTrace "makeCorePair: arity missing" (ppr gbl_id) $
         (gbl_id `setIdUnfolding` mkInlineUnfolding Nothing rhs, rhs)
243 244 245 246 247


dictArity :: [Var] -> Arity
-- Don't count coercion variables in arity
dictArity dicts = count isId dicts
248 249
\end{code}

250 251 252 253 254 255 256 257 258 259
[Desugaring AbsBinds]
~~~~~~~~~~~~~~~~~~~~~
In the general AbsBinds case we desugar the binding to this:

       tup a (d:Num a) = let fm = ...gm...
                             gm = ...fm...
                         in (fm,gm)
       f a d = case tup a d of { (fm,gm) -> fm }
       g a d = case tup a d of { (fm,gm) -> fm }

260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
Note [Rules and inlining]
~~~~~~~~~~~~~~~~~~~~~~~~~
Common special case: no type or dictionary abstraction
This is a bit less trivial than you might suppose
The naive way woudl be to desguar to something like
	f_lcl = ...f_lcl...	-- The "binds" from AbsBinds
	M.f = f_lcl		-- Generated from "exports"
But we don't want that, because if M.f isn't exported,
it'll be inlined unconditionally at every call site (its rhs is 
trivial).  That would be ok unless it has RULES, which would 
thereby be completely lost.  Bad, bad, bad.

Instead we want to generate
	M.f = ...f_lcl...
	f_lcl = M.f
Now all is cool. The RULES are attached to M.f (by SimplCore), 
and f_lcl is rapidly inlined away.

This does not happen in the same way to polymorphic binds,
because they desugar to
	M.f = /\a. let f_lcl = ...f_lcl... in f_lcl
Although I'm a bit worried about whether full laziness might
282
float the f_lcl binding out and then inline M.f at its call site
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342

Note [Specialising in no-dict case]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Even if there are no tyvars or dicts, we may have specialisation pragmas.
Class methods can generate
      AbsBinds [] [] [( ... spec-prag]
         { AbsBinds [tvs] [dicts] ...blah }
So the overloading is in the nested AbsBinds. A good example is in GHC.Float:

  class  (Real a, Fractional a) => RealFrac a  where
    round :: (Integral b) => a -> b

  instance  RealFrac Float  where
    {-# SPECIALIZE round :: Float -> Int #-}

The top-level AbsBinds for $cround has no tyvars or dicts (because the 
instance does not).  But the method is locally overloaded!

Note [Abstracting over tyvars only]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When abstracting over type variable only (not dictionaries), we don't really need to
built a tuple and select from it, as we do in the general case. Instead we can take

	AbsBinds [a,b] [ ([a,b], fg, fl, _),
		         ([b],   gg, gl, _) ]
		{ fl = e1
		  gl = e2
		   h = e3 }

and desugar it to

	fg = /\ab. let B in e1
	gg = /\b. let a = () in let B in S(e2)
	h  = /\ab. let B in e3

where B is the *non-recursive* binding
	fl = fg a b
	gl = gg b
	h  = h a b    -- See (b); note shadowing!

Notice (a) g has a different number of type variables to f, so we must
	     use the mkArbitraryType thing to fill in the gaps.  
	     We use a type-let to do that.

	 (b) The local variable h isn't in the exports, and rather than
	     clone a fresh copy we simply replace h by (h a b), where
	     the two h's have different types!  Shadowing happens here,
	     which looks confusing but works fine.

	 (c) The result is *still* quadratic-sized if there are a lot of
	     small bindings.  So if there are more than some small
	     number (10), we filter the binding set B by the free
	     variables of the particular RHS.  Tiresome.

Why got to this trouble?  It's a common case, and it removes the
quadratic-sized tuple desugaring.  Less clutter, hopefullly faster
compilation, especially in a case where there are a *lot* of
bindings.


343 344 345 346 347 348 349 350 351 352 353 354 355
Note [Eta-expanding INLINE things]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
   foo :: Eq a => a -> a
   {-# INLINE foo #-}
   foo x = ...

If (foo d) ever gets floated out as a common sub-expression (which can
happen as a result of method sharing), there's a danger that we never 
get to do the inlining, which is a Terribly Bad thing given that the
user said "inline"!

To avoid this we pre-emptively eta-expand the definition, so that foo
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
356 357 358
has the arity with which it is declared in the source code.  In this
example it has arity 2 (one for the Eq and one for x). Doing this 
should mean that (foo d) is a PAP and we don't share it.
359 360 361

Note [Nested arities]
~~~~~~~~~~~~~~~~~~~~~
362 363 364 365 366 367 368 369 370 371 372 373 374 375
For reasons that are not entirely clear, method bindings come out looking like
this:

  AbsBinds [] [] [$cfromT <= [] fromT]
    $cfromT [InlPrag=INLINE] :: T Bool -> Bool
    { AbsBinds [] [] [fromT <= [] fromT_1]
        fromT :: T Bool -> Bool
        { fromT_1 ((TBool b)) = not b } } }

Note the nested AbsBind.  The arity for the InlineRule on $cfromT should be
gotten from the binding for fromT_1.

It might be better to have just one level of AbsBinds, but that requires more
thought!
376

377 378 379 380 381
Note [Implementing SPECIALISE pragmas]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Example:
	f :: (Eq a, Ix b) => a -> b -> Bool
	{-# SPECIALISE f :: (Ix p, Ix q) => Int -> (p,q) -> Bool #-}
382
        f = <poly_rhs>
383 384 385 386 387 388 389 390 391

From this the typechecker generates

    AbsBinds [ab] [d1,d2] [([ab], f, f_mono, prags)] binds

    SpecPrag (wrap_fn :: forall a b. (Eq a, Ix b) => XXX
                      -> forall p q. (Ix p, Ix q) => XXX[ Int/a, (p,q)/b ])

Note that wrap_fn can transform *any* function with the right type prefix 
392 393
    forall ab. (Eq a, Ix b) => XXX
regardless of XXX.  It's sort of polymorphic in XXX.  This is
394 395 396 397 398 399 400 401
useful: we use the same wrapper to transform each of the class ops, as
well as the dict.

From these we generate:

    Rule: 	forall p, q, (dp:Ix p), (dq:Ix q). 
                    f Int (p,q) dInt ($dfInPair dp dq) = f_spec p q dp dq

402
    Spec bind:	f_spec = wrap_fn <poly_rhs>
403 404 405 406 407 408 409

Note that 

  * The LHS of the rule may mention dictionary *expressions* (eg
    $dfIxPair dp dq), and that is essential because the dp, dq are
    needed on the RHS.

410 411
  * The RHS of f_spec, <poly_rhs> has a *copy* of 'binds', so that it 
    can fully specialise it.
412

413 414
\begin{code}
------------------------
415
dsSpecs :: CoreExpr     -- Its rhs
416
        -> TcSpecPrags
417
        -> DsM ( OrdList (Id,CoreExpr) 	-- Binding for specialised Ids
418
	       , [CoreRule] )		-- Rules for the Global Ids
419
-- See Note [Implementing SPECIALISE pragmas]
420 421 422 423 424 425 426 427 428 429 430 431
dsSpecs _ IsDefaultMethod = return (nilOL, [])
dsSpecs poly_rhs (SpecPrags sps)
  = do { pairs <- mapMaybeM (dsSpec (Just poly_rhs)) sps
       ; let (spec_binds_s, rules) = unzip pairs
       ; return (concatOL spec_binds_s, rules) }

dsSpec :: Maybe CoreExpr  	-- Just rhs => RULE is for a local binding
       	  			-- Nothing => RULE is for an imported Id
				-- 	      rhs is in the Id's unfolding
       -> Located TcSpecPrag
       -> DsM (Maybe (OrdList (Id,CoreExpr), CoreRule))
dsSpec mb_poly_rhs (L loc (SpecPrag poly_id spec_co spec_inl))
432 433 434 435 436 437 438 439
  | isJust (isClassOpId_maybe poly_id)
  = putSrcSpanDs loc $ 
    do { warnDs (ptext (sLit "Ignoring useless SPECIALISE pragma for class method selector") 
                 <+> quotes (ppr poly_id))
       ; return Nothing  }  -- There is no point in trying to specialise a class op
       	 		    -- Moreover, classops don't (currently) have an inl_sat arity set
			    -- (it would be Just 0) and that in turn makes makeCorePair bleat

440 441 442 443 444 445 446
  | no_act_spec && isNeverActive rule_act 
  = putSrcSpanDs loc $ 
    do { warnDs (ptext (sLit "Ignoring useless SPECIALISE pragma for NOINLINE function:")
                 <+> quotes (ppr poly_id))
       ; return Nothing  }  -- Function is NOINLINE, and the specialiation inherits that
       	 		    -- See Note [Activation pragmas for SPECIALISE]

447
  | otherwise
448
  = putSrcSpanDs loc $ 
449 450
    do { uniq <- newUnique
       ; let poly_name = idName poly_id
451 452
             spec_occ  = mkSpecOcc (getOccName poly_name)
             spec_name = mkInternalName uniq spec_occ (getSrcSpan poly_name)
453 454 455
       ; (bndrs, ds_lhs) <- liftM collectBinders
                                  (dsHsWrapper spec_co (Var poly_id))
       ; let spec_ty = mkPiTypes bndrs (exprType ds_lhs)
456 457
       ; case decomposeRuleLhs bndrs ds_lhs of {
           Left msg -> do { warnDs msg; return Nothing } ;
458
           Right (rule_bndrs, _fn, args) -> do
459

460 461 462
       { dflags <- getDynFlags
       ; let spec_unf = specUnfolding bndrs args (realIdUnfolding poly_id)
             spec_id  = mkLocalId spec_name spec_ty 
463 464 465
         	            `setInlinePragma` inl_prag
         	 	    `setIdUnfolding`  spec_unf
             rule =  mkRule False {- Not auto -} is_local_id
Ian Lynagh's avatar
Ian Lynagh committed
466
                        (mkFastString ("SPEC " ++ showPpr dflags poly_name))
467
       			rule_act poly_name
468
       		        rule_bndrs args
469 470
       			(mkVarApps (Var spec_id) bndrs)

471
       ; spec_rhs <- dsHsWrapper spec_co poly_rhs
472
       ; let spec_pair = makeCorePair dflags spec_id False (dictArity bndrs) spec_rhs
473

Ian Lynagh's avatar
Ian Lynagh committed
474 475
       ; when (isInlinePragma id_inl && wopt Opt_WarnPointlessPragmas dflags)
              (warnDs (specOnInline poly_name))
476
       ; return (Just (unitOL spec_pair, rule))
477 478 479 480
       } } }
  where
    is_local_id = isJust mb_poly_rhs
    poly_rhs | Just rhs <-  mb_poly_rhs
481 482 483 484 485 486
             = rhs  	    -- Local Id; this is its rhs
             | Just unfolding <- maybeUnfoldingTemplate (realIdUnfolding poly_id)
             = unfolding    -- Imported Id; this is its unfolding
	       		    -- Use realIdUnfolding so we get the unfolding 
			    -- even when it is a loop breaker. 
			    -- We want to specialise recursive functions!
487
             | otherwise = pprPanic "dsImpSpecs" (ppr poly_id)
488
	                    -- The type checker has checked that it *has* an unfolding
489

490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
    id_inl = idInlinePragma poly_id

    -- See Note [Activation pragmas for SPECIALISE]
    inl_prag | not (isDefaultInlinePragma spec_inl)    = spec_inl
             | not is_local_id  -- See Note [Specialising imported functions]
             	    		 -- in OccurAnal
             , isStrongLoopBreaker (idOccInfo poly_id) = neverInlinePragma
             | otherwise                               = id_inl
     -- Get the INLINE pragma from SPECIALISE declaration, or,
     -- failing that, from the original Id

    spec_prag_act = inlinePragmaActivation spec_inl

    -- See Note [Activation pragmas for SPECIALISE]
    -- no_act_spec is True if the user didn't write an explicit
    -- phase specification in the SPECIALISE pragma
    no_act_spec = case inlinePragmaSpec spec_inl of
                    NoInline -> isNeverActive  spec_prag_act
                    _        -> isAlwaysActive spec_prag_act
    rule_act | no_act_spec = inlinePragmaActivation id_inl   -- Inherit
             | otherwise   = spec_prag_act                   -- Specified by user


513 514 515 516 517 518 519
specUnfolding :: [Var] -> [CoreExpr] -> Unfolding -> Unfolding
specUnfolding new_bndrs new_args df@(DFunUnfolding { df_bndrs = bndrs, df_args = args })
  = ASSERT2( equalLength new_args bndrs, ppr df $$ ppr new_args $$ ppr new_bndrs )
    df { df_bndrs = new_bndrs, df_args = map (substExpr (text "specUnfolding") subst) args }
  where
    subst = mkOpenSubst (mkInScopeSet fvs) (bndrs `zip` new_args)
    fvs = (exprsFreeVars args `delVarSetList` bndrs) `extendVarSetList` new_bndrs
520

521
specUnfolding _ _ _ = noUnfolding
522 523 524 525

specOnInline :: Name -> MsgDoc
specOnInline f = ptext (sLit "SPECIALISE pragma on INLINE function probably won't fire:") 
                 <+> quotes (ppr f)
526 527
\end{code}

528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569

Note [Activation pragmas for SPECIALISE]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
From a user SPECIALISE pragma for f, we generate
  a) A top-level binding    spec_fn = rhs
  b) A RULE                 f dOrd = spec_fn

We need two pragma-like things:

* spec_fn's inline pragma: inherited from f's inline pragma (ignoring 
                           activation on SPEC), unless overriden by SPEC INLINE

* Activation of RULE: from SPECIALISE pragma (if activation given)
                      otherwise from f's inline pragma

This is not obvious (see Trac #5237)!

Examples      Rule activation   Inline prag on spec'd fn
---------------------------------------------------------------------
SPEC [n] f :: ty            [n]   Always, or NOINLINE [n]
                                  copy f's prag

NOINLINE f
SPEC [n] f :: ty            [n]   NOINLINE
                                  copy f's prag

NOINLINE [k] f
SPEC [n] f :: ty            [n]   NOINLINE [k]
                                  copy f's prag

INLINE [k] f
SPEC [n] f :: ty            [n]   INLINE [k] 
                                  copy f's prag

SPEC INLINE [n] f :: ty     [n]   INLINE [n]
                                  (ignore INLINE prag on f,
                                  same activation for rule and spec'd fn)

NOINLINE [k] f
SPEC f :: ty                [n]   INLINE [k]


570 571 572 573 574 575 576
%************************************************************************
%*									*
\subsection{Adding inline pragmas}
%*									*
%************************************************************************

\begin{code}
577
decomposeRuleLhs :: [Var] -> CoreExpr -> Either SDoc ([Var], Id, [CoreExpr])
unknown's avatar
unknown committed
578 579 580 581
-- (decomposeRuleLhs bndrs lhs) takes apart the LHS of a RULE,
-- The 'bndrs' are the quantified binders of the rules, but decomposeRuleLhs
-- may add some extra dictionary binders (see Note [Constant rule dicts])
--
582
-- Returns Nothing if the LHS isn't of the expected shape
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
-- Note [Decomposing the left-hand side of a RULE]
decomposeRuleLhs orig_bndrs orig_lhs
  | not (null unbound)    -- Check for things unbound on LHS
                          -- See Note [Unused spec binders]
  = Left (vcat (map dead_msg unbound))

  | Var fn_var <- fun
  , not (fn_var `elemVarSet` orig_bndr_set)
  = Right (bndrs1, fn_var, args)

  | Case scrut bndr ty [(DEFAULT, _, body)] <- fun
  , isDeadBinder bndr	-- Note [Matching seqId]
  , let args' = [Type (idType bndr), Type ty, scrut, body]
  = Right (bndrs1, seqId, args' ++ args)

  | otherwise 
  = Left bad_shape_msg
600
 where
601 602 603 604 605 606
   lhs1       = drop_dicts orig_lhs
   lhs2       = simpleOptExpr lhs1  -- See Note [Simplify rule LHS]
   (fun,args) = collectArgs lhs2
   lhs_fvs    = exprFreeVars lhs2
   unbound    = filterOut (`elemVarSet` lhs_fvs) orig_bndrs
   bndrs1     = orig_bndrs ++ extra_dict_bndrs
607

608
   orig_bndr_set = mkVarSet orig_bndrs
609

610 611 612 613
        -- Add extra dict binders: Note [Constant rule dicts]
   extra_dict_bndrs = [ mkLocalId (localiseName (idName d)) (idType d)
                      | d <- varSetElems (lhs_fvs `delVarSetList` orig_bndrs)
                      , isDictId d ]
614 615

   bad_shape_msg = hang (ptext (sLit "RULE left-hand side too complicated to desugar"))
616 617
                      2 (vcat [ text "Optimised lhs:" <+> ppr lhs2
                              , text "Orig lhs:" <+> ppr orig_lhs])
618 619
   dead_msg bndr = hang (sep [ ptext (sLit "Forall'd") <+> pp_bndr bndr
			     , ptext (sLit "is not bound in RULE lhs")])
620
                      2 (ppr lhs2)
621
   pp_bndr bndr
622 623 624
    | isTyVar bndr                      = ptext (sLit "type variable") <+> quotes (ppr bndr)
    | Just pred <- evVarPred_maybe bndr = ptext (sLit "constraint") <+> quotes (ppr pred)
    | otherwise                         = ptext (sLit "variable") <+> quotes (ppr bndr)
625 626 627 628 629 630 631 632

   drop_dicts :: CoreExpr -> CoreExpr
   drop_dicts (Let (NonRec d rhs) body)
     | isDictId d
     , not (exprFreeVars rhs `intersectsVarSet` orig_bndr_set)
     = drop_dicts body
   drop_dicts (Let bnd body) = Let bnd (drop_dicts body)
   drop_dicts body           = body
633 634
\end{code}

635
Note [Decomposing the left-hand side of a RULE]
636
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
There are several things going on here.  
* drop_dicts: see Note [Drop dictionary bindings on rule LHS]
* simpleOptExpr: see Note [Simplify rule LHS]
* extra_dict_bndrs: see Note [Free rule dicts]

Note [Drop dictionary bindings on rule LHS]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
drop_dicts drops dictionary bindings on the LHS where possible.  
   E.g.  let d:Eq [Int] = $fEqList $fEqInt in f d
     --> f d
   Reasoning here is that there is only one d:Eq [Int], and so we can 
   quantify over it. That makes 'd' free in the LHS, but that is later
   picked up by extra_dict_bndrs (Note [Dead spec binders]).

   NB 1: We can only drop the binding if the RHS doesn't bind
         one of the orig_bndrs, which we assume occur on RHS. 
         Example
            f :: (Eq a) => b -> a -> a
            {-# SPECIALISE f :: Eq a => b -> [a] -> [a] #-}
         Here we want to end up with
            RULE forall d:Eq a.  f ($dfEqList d) = f_spec d
         Of course, the ($dfEqlist d) in the pattern makes it less likely
         to match, but ther is no other way to get d:Eq a

   NB 2: We do drop_dicts *before* simplOptEpxr, so that we expect all 
         the evidence bindings to be wrapped around the outside of the
         LHS.  (After simplOptExpr they'll usually have been inlined.)
         dsHsWrapper does dependency analysis, so that civilised ones
         will be simple NonRec bindings.  We don't handle recursive
         dictionaries!

   Trac #8848 is a good example of where there are some intersting
   dictionary bindings to discard.

Note [Simplify rule LHS]
~~~~~~~~~~~~~~~~~~~~~~~~
simplOptExpr occurrence-analyses and simplifies the LHS:

   (a) Inline any remaining dictionary bindings (which hopefully 
       occur just once)

   (b) Substitute trivial lets so that they don't get in the way
       Note that we substitute the function too; we might 
       have this as a LHS:  let f71 = M.f Int in f71

   (c) Do eta reduction.  To see why, consider the fold/build rule, 
       which without simplification looked like:
          fold k z (build (/\a. g a))  ==>  ...
       This doesn't match unless you do eta reduction on the build argument.
       Similarly for a LHS like
       	 augment g (build h) 
       we do not want to get
       	 augment (\a. g a) (build h)
       otherwise we don't match when given an argument like
          augment (\a. h a a) (build h)
692

693
Note [Matching seqId]
694 695 696 697 698
~~~~~~~~~~~~~~~~~~~
The desugarer turns (seq e r) into (case e of _ -> r), via a special-case hack
and this code turns it back into an application of seq!  
See Note [Rules for seq] in MkId for the details.

699 700 701 702 703 704 705 706 707
Note [Unused spec binders]
~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
	f :: a -> a
	{-# SPECIALISE f :: Eq a => a -> a #-}
It's true that this *is* a more specialised type, but the rule
we get is something like this:
	f_spec d = f
	RULE: f = f_spec d
Gabor Greif's avatar
typos  
Gabor Greif committed
708 709
Note that the rule is bogus, because it mentions a 'd' that is
not bound on the LHS!  But it's a silly specialisation anyway, because
710 711 712 713
the constraint is unused.  We could bind 'd' to (error "unused")
but it seems better to reject the program because it's almost certainly
a mistake.  That's what the isDeadBinder call detects.

714 715
Note [Free dictionaries]
~~~~~~~~~~~~~~~~~~~~~~~~
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
When the LHS of a specialisation rule, (/\as\ds. f es) has a free dict, 
which is presumably in scope at the function definition site, we can quantify 
over it too.  *Any* dict with that type will do.

So for example when you have
	f :: Eq a => a -> a
	f = <rhs>
	{-# SPECIALISE f :: Int -> Int #-}

Then we get the SpecPrag
	SpecPrag (f Int dInt) 

And from that we want the rule
	
	RULE forall dInt. f Int dInt = f_spec
	f_spec = let f = <rhs> in f Int dInt

But be careful!  That dInt might be GHC.Base.$fOrdInt, which is an External
Name, and you can't bind them in a lambda or forall without getting things
confused.   Likewise it might have an InlineRule or something, which would be
utterly bogus. So we really make a fresh Id, with the same unique and type
as the old one, but with an Internal name and no IdInfo.

739

740 741
%************************************************************************
%*									*
742
		Desugaring evidence
743 744 745 746 747
%*									*
%************************************************************************


\begin{code}
748
dsHsWrapper :: HsWrapper -> CoreExpr -> DsM CoreExpr
749 750 751 752 753
dsHsWrapper WpHole 	      e = return e
dsHsWrapper (WpTyApp ty)      e = return $ App e (Type ty)
dsHsWrapper (WpLet ev_binds)  e = do bs <- dsTcEvBinds ev_binds
                                     return (mkCoreLets bs e)
dsHsWrapper (WpCompose c1 c2) e = dsHsWrapper c1 =<< dsHsWrapper c2 e
754
dsHsWrapper (WpCast co)       e = ASSERT(tcCoercionRole co == Representational)
Joachim Breitner's avatar
Joachim Breitner committed
755
                                  dsTcCoercion co (mkCast e)
756 757 758
dsHsWrapper (WpEvLam ev)      e = return $ Lam ev e 
dsHsWrapper (WpTyLam tv)      e = return $ Lam tv e 
dsHsWrapper (WpEvApp evtrm)   e = liftM (App e) (dsEvTerm evtrm)
759 760

--------------------------------------
761
dsTcEvBinds :: TcEvBinds -> DsM [CoreBind]
762
dsTcEvBinds (TcEvBinds {}) = panic "dsEvBinds"    -- Zonker has got rid of this
763 764
dsTcEvBinds (EvBinds bs)   = dsEvBinds bs

765
dsEvBinds :: Bag EvBind -> DsM [CoreBind]
766
dsEvBinds bs = mapM ds_scc (sccEvBinds bs)
767
  where
768 769
    ds_scc (AcyclicSCC (EvBind v r)) = liftM (NonRec v) (dsEvTerm r)
    ds_scc (CyclicSCC bs)            = liftM Rec (mapM ds_pair bs)
770

771
    ds_pair (EvBind v r) = liftM ((,) v) (dsEvTerm r)
772 773 774 775 776 777 778 779

sccEvBinds :: Bag EvBind -> [SCC EvBind]
sccEvBinds bs = stronglyConnCompFromEdgedVertices edges
  where
    edges :: [(EvBind, EvVar, [EvVar])]
    edges = foldrBag ((:) . mk_node) [] bs 

    mk_node :: EvBind -> (EvBind, EvVar, [EvVar])
780
    mk_node b@(EvBind var term) = (b, var, varSetElems (evVarsOfTerm term))
781 782 783


---------------------------------------
784
dsEvTerm :: EvTerm -> DsM CoreExpr
785
dsEvTerm (EvId v) = return (Var v)
786

787 788
dsEvTerm (EvCast tm co) 
  = do { tm' <- dsEvTerm tm
789
       ; dsTcCoercion co $ mkCast tm' }
790 791 792 793 794
                        -- 'v' is always a lifted evidence variable so it is
                        -- unnecessary to call varToCoreExpr v here.

dsEvTerm (EvDFunApp df tys tms) = do { tms' <- mapM dsEvTerm tms
                                     ; return (Var df `mkTyApps` tys `mkApps` tms') }
795 796

dsEvTerm (EvCoercion (TcCoVarCo v)) = return (Var v)  -- See Note [Simple coercions]
Joachim Breitner's avatar
Joachim Breitner committed
797
dsEvTerm (EvCoercion co)            = dsTcCoercion co mkEqBox
798

799
dsEvTerm (EvTupleSel v n)
800 801 802 803 804
   = do { tm' <- dsEvTerm v
        ; let scrut_ty = exprType tm'
              (tc, tys) = splitTyConApp scrut_ty
    	      Just [dc] = tyConDataCons_maybe tc
    	      xs = mkTemplateLocals tys
805
              the_x = getNth xs n
806 807 808 809 810 811 812 813 814 815 816
        ; ASSERT( isTupleTyCon tc )
          return $
          Case tm' (mkWildValBinder scrut_ty) (idType the_x) [(DataAlt dc, xs, Var the_x)] }

dsEvTerm (EvTupleMk tms) 
  = do { tms' <- mapM dsEvTerm tms
       ; let tys = map exprType tms'
       ; return $ Var (dataConWorkId dc) `mkTyApps` tys `mkApps` tms' }
  where 
    dc = tupleCon ConstraintTuple (length tms)

817
dsEvTerm (EvSuperClass d n)
818 819 820 821
  = do { d' <- dsEvTerm d
       ; let (cls, tys) = getClassPredTys (exprType d')
             sc_sel_id  = classSCSelId cls n	-- Zero-indexed
       ; return $ Var sc_sel_id `mkTyApps` tys `App` d' }
822
  where
823

824 825 826
dsEvTerm (EvDelayedError ty msg) = return $ Var errorId `mkTyApps` [ty] `mkApps` [litMsg]
  where 
    errorId = rUNTIME_ERROR_ID
827
    litMsg  = Lit (MachStr (fastStringToByteString msg))
828

829 830 831 832
dsEvTerm (EvLit l) =
  case l of
    EvNum n -> mkIntegerExpr n
    EvStr s -> mkStringExprFS s
833

834
---------------------------------------
Joachim Breitner's avatar
Joachim Breitner committed
835
dsTcCoercion :: TcCoercion -> (Coercion -> CoreExpr) -> DsM CoreExpr
836
-- This is the crucial function that moves 
837
-- from TcCoercions to Coercions; see Note [TcCoercions] in Coercion
838 839 840 841
-- e.g.  dsTcCoercion (trans g1 g2) k
--       = case g1 of EqBox g1# ->
--         case g2 of EqBox g2# ->
--         k (trans g1# g2#)
842
-- thing_inside will get a coercion at the role requested
Joachim Breitner's avatar
Joachim Breitner committed
843
dsTcCoercion co thing_inside
844
  = do { us <- newUniqueSupply
845 846 847
       ; let eqvs_covs :: [(EqVar,CoVar)]
             eqvs_covs = zipWith mk_co_var (varSetElems (coVarsOfTcCo co))
                                           (uniqsFromSupply us)
848

849
             subst = mkCvSubst emptyInScopeSet [(eqv, mkCoVarCo cov) | (eqv, cov) <- eqvs_covs]
Joachim Breitner's avatar
Joachim Breitner committed
850
             result_expr = thing_inside (ds_tc_coercion subst co)
851
             result_ty   = exprType result_expr
852

853 854 855 856 857 858 859 860
       ; return (foldr (wrap_in_case result_ty) result_expr eqvs_covs) }
  where
    mk_co_var :: Id -> Unique -> (Id, Id)
    mk_co_var eqv uniq = (eqv, mkUserLocal occ uniq ty loc)
       where
         eq_nm = idName eqv
         occ = nameOccName eq_nm
         loc = nameSrcSpan eq_nm
Joachim Breitner's avatar
Joachim Breitner committed
861
         ty  = mkCoercionType (getEqPredRole (evVarPred eqv)) ty1 ty2
862 863
         (ty1, ty2) = getEqPredTys (evVarPred eqv)

Joachim Breitner's avatar
Joachim Breitner committed
864 865 866 867 868
    wrap_in_case result_ty (eqv, cov) body
      = case getEqPredRole (evVarPred eqv) of
         Nominal          -> Case (Var eqv) eqv result_ty [(DataAlt eqBoxDataCon, [cov], body)]
         Representational -> Case (Var eqv) eqv result_ty [(DataAlt coercibleDataCon, [cov], body)]
         Phantom          -> panic "wrap_in_case/phantom"
869

Joachim Breitner's avatar
Joachim Breitner committed
870 871 872 873
ds_tc_coercion :: CvSubst -> TcCoercion -> Coercion
-- If the incoming TcCoercion if of type (a ~ b)   (resp.  Coercible a b)
--                 the result is of type (a ~# b)  (reps.  a ~# b)
-- The VarEnv maps EqVars of type (a ~ b) to Coercions of type (a ~# b) (resp. and so on)
874
-- No need for InScope set etc because the 
Joachim Breitner's avatar
Joachim Breitner committed
875 876
ds_tc_coercion subst tc_co
  = go tc_co
877
  where
Joachim Breitner's avatar
Joachim Breitner committed
878 879 880
    go (TcRefl r ty)            = Refl r (Coercion.substTy subst ty)
    go (TcTyConAppCo r tc cos)  = mkTyConAppCo r tc (map go cos)
    go (TcAppCo co1 co2)        = let leftCo    = go co1
881
                                      rightRole = nextRole leftCo in
Joachim Breitner's avatar
Joachim Breitner committed
882 883
                                  mkAppCoFlexible leftCo rightRole (go co2)
    go (TcForAllCo tv co)       = mkForAllCo tv' (ds_tc_coercion subst' co)
884 885
                              where
                                (subst', tv') = Coercion.substTyVarBndr subst tv
Joachim Breitner's avatar
Joachim Breitner committed
886 887 888 889 890 891 892 893 894 895 896 897
    go (TcAxiomInstCo ax ind cos)
                                = AxiomInstCo ax ind (map go cos)
    go (TcPhantomCo ty1 ty2)    = UnivCo Phantom ty1 ty2
    go (TcSymCo co)             = mkSymCo (go co)
    go (TcTransCo co1 co2)      = mkTransCo (go co1) (go co2)
    go (TcNthCo n co)           = mkNthCo n (go co)
    go (TcLRCo lr co)           = mkLRCo lr (go co)
    go (TcSubCo co)             = mkSubCo (go co)
    go (TcLetCo bs co)          = ds_tc_coercion (ds_co_binds bs) co
    go (TcCastCo co1 co2)       = mkCoCast (go co1) (go co2)
    go (TcCoVarCo v)            = ds_ev_id subst v
    go (TcAxiomRuleCo co ts cs) = AxiomRuleCo co (map (Coercion.substTy subst) ts) (map go cs)
898

899 900 901 902 903 904
    ds_co_binds :: TcEvBinds -> CvSubst
    ds_co_binds (EvBinds bs)      = foldl ds_scc subst (sccEvBinds bs)
    ds_co_binds eb@(TcEvBinds {}) = pprPanic "ds_co_binds" (ppr eb)

    ds_scc :: CvSubst -> SCC EvBind -> CvSubst
    ds_scc subst (AcyclicSCC (EvBind v ev_term))
905
      = extendCvSubstAndInScope subst v (ds_co_term subst ev_term)
906 907
    ds_scc _ (CyclicSCC other) = pprPanic "ds_scc:cyclic" (ppr other $$ ppr tc_co)

908
    ds_co_term :: CvSubst -> EvTerm -> Coercion
Joachim Breitner's avatar
Joachim Breitner committed
909
    ds_co_term subst (EvCoercion tc_co) = ds_tc_coercion subst tc_co
910
    ds_co_term subst (EvId v)           = ds_ev_id subst v
Joachim Breitner's avatar
Joachim Breitner committed
911
    ds_co_term subst (EvCast tm co)     = mkCoCast (ds_co_term subst tm) (ds_tc_coercion subst co)
912
    ds_co_term _ other = pprPanic "ds_co_term" (ppr other $$ ppr tc_co)
913 914 915 916 917

    ds_ev_id :: CvSubst -> EqVar -> Coercion
    ds_ev_id subst v
     | Just co <- Coercion.lookupCoVar subst v = co
     | otherwise  = pprPanic "ds_tc_coercion" (ppr v $$ ppr tc_co)
918
\end{code}
919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945

Note [Simple coercions]
~~~~~~~~~~~~~~~~~~~~~~~
We have a special case for coercions that are simple variables.
Suppose   cv :: a ~ b   is in scope
Lacking the special case, if we see
	f a b cv
we'd desguar to
        f a b (case cv of EqBox (cv# :: a ~# b) -> EqBox cv#)
which is a bit stupid.  The special case does the obvious thing.

This turns out to be important when desugaring the LHS of a RULE
(see Trac #7837).  Suppose we have
    normalise        :: (a ~ Scalar a) => a -> a
    normalise_Double :: Double -> Double
    {-# RULES "normalise" normalise = normalise_Double #-}

Then the RULE we want looks like
     forall a, (cv:a~Scalar a). 
       normalise a cv = normalise_Double
But without the special case we generate the redundant box/unbox,
which simpleOpt (currently) doesn't remove. So the rule never matches.

Maybe simpleOpt should be smarter.  But it seems like a good plan
to simply never generate the redundant box/unbox in the first place.