DmdAnal.lhs 40.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
%
% (c) The GRASP/AQUA Project, Glasgow University, 1993-1998
%

			-----------------
			A demand analysis
			-----------------

\begin{code}
10
11
12
module DmdAnal ( dmdAnalPgm, dmdAnalTopRhs, 
		 both {- needed by WwLib -}
   ) where
13
14
15

#include "HsVersions.h"

16
17
import DynFlags		( DynFlags, DynFlag(..) )
import StaticFlags	( opt_MaxWorkerArgs )
18
19
import NewDemand	-- All of it
import CoreSyn
20
import PprCore	
21
import CoreUtils	( exprIsHNF, exprIsTrivial, exprArity )
22
23
import DataCon		( dataConTyCon )
import TyCon		( isProductTyCon, isRecursiveTyCon )
24
import Id		( Id, idType, idInlinePragma,
25
			  isDataConWorkId, isGlobalId, idArity,
26
#ifdef OLD_STRICTNESS
27
			  idDemandInfo,  idStrictness, idCprInfo, idName,
28
29
30
#endif
			  idNewStrictness, idNewStrictness_maybe,
			  setIdNewStrictness, idNewDemandInfo,
31
			  idNewDemandInfo_maybe,
32
			  setIdNewDemandInfo
33
			)
34
#ifdef OLD_STRICTNESS
35
36
import IdInfo 		( newStrictnessFromOld, newDemand )
#endif
37
38
import Var		( Var )
import VarEnv
39
40
import TysWiredIn	( unboxedPairDataCon )
import TysPrim		( realWorldStatePrimTy )
41
import UniqFM		( plusUFM_C, addToUFM_Directly, lookupUFM_Directly,
42
			  keysUFM, minusUFM, ufmToList, filterUFM )
43
44
import Type		( isUnLiftedType, coreEqType, splitTyConApp_maybe )
import Coercion         ( coercionKind )
45
import CoreLint		( showPass, endPass )
46
import Util		( mapAndUnzip, mapAccumL, mapAccumR, lengthIs )
47
48
import BasicTypes	( Arity, TopLevelFlag(..), isTopLevel, isNeverActive,
			  RecFlag(..), isRec )
49
import Maybes		( orElse, expectJust )
50
51
52
import Outputable
\end{code}

53
54
55
56
57
58
59
To think about

* set a noinline pragma on bottoming Ids

* Consider f x = x+1 `fatbar` error (show x)
  We'd like to unbox x, even if that means reboxing it in the error case.

60
61
62
63
64
65
66
67
68
69
70
71

%************************************************************************
%*									*
\subsection{Top level stuff}
%*									*
%************************************************************************

\begin{code}
dmdAnalPgm :: DynFlags -> [CoreBind] -> IO [CoreBind]
dmdAnalPgm dflags binds
  = do {
	showPass dflags "Demand analysis" ;
72
	let { binds_plus_dmds = do_prog binds } ;
73

74
75
	endPass dflags "Demand analysis" 
	 	Opt_D_dump_stranal binds_plus_dmds ;
76
77
#ifdef OLD_STRICTNESS
	-- Only if OLD_STRICTNESS is on, because only then is the old
78
	-- strictness analyser run
79
	let { dmd_changes = get_changes binds_plus_dmds } ;
80
	printDump (text "Changes in demands" $$ dmd_changes) ;
81
#endif
82
83
84
85
86
87
88
89
90
91
92
	return binds_plus_dmds
    }
  where
    do_prog :: [CoreBind] -> [CoreBind]
    do_prog binds = snd $ mapAccumL dmdAnalTopBind emptySigEnv binds

dmdAnalTopBind :: SigEnv
	       -> CoreBind 
	       -> (SigEnv, CoreBind)
dmdAnalTopBind sigs (NonRec id rhs)
  = let
93
94
	(    _, _, (_,   rhs1)) = dmdAnalRhs TopLevel NonRecursive sigs (id, rhs)
	(sigs2, _, (id2, rhs2)) = dmdAnalRhs TopLevel NonRecursive sigs (id, rhs1)
95
		-- Do two passes to improve CPR information
96
97
		-- See comments with ignore_cpr_info in mk_sig_ty
		-- and with extendSigsWithLam
98
    in
99
    (sigs2, NonRec id2 rhs2)    
100
101
102

dmdAnalTopBind sigs (Rec pairs)
  = let
103
	(sigs', _, pairs')  = dmdFix TopLevel sigs pairs
104
		-- We get two iterations automatically
105
		-- c.f. the NonRec case above
106
107
108
109
    in
    (sigs', Rec pairs')
\end{code}

110
111
112
113
114
115
\begin{code}
dmdAnalTopRhs :: CoreExpr -> (StrictSig, CoreExpr)
-- Analyse the RHS and return
--	a) appropriate strictness info
--	b) the unfolding (decorated with stricntess info)
dmdAnalTopRhs rhs
116
  = (sig, rhs2)
117
  where
118
119
120
    call_dmd	   = vanillaCall (exprArity rhs)
    (_,      rhs1) = dmdAnal emptySigEnv call_dmd rhs
    (rhs_ty, rhs2) = dmdAnal emptySigEnv call_dmd rhs1
121
    sig		   = mkTopSigTy rhs rhs_ty
122
123
124
125
126
127
	-- Do two passes; see notes with extendSigsWithLam
	-- Otherwise we get bogus CPR info for constructors like
	-- 	newtype T a = MkT a
	-- The constructor looks like (\x::T a -> x), modulo the coerce
	-- extendSigsWithLam will optimistically give x a CPR tag the 
	-- first time, which is wrong in the end.
128
\end{code}
129
130
131
132
133
134
135
136

%************************************************************************
%*									*
\subsection{The analyser itself}	
%*									*
%************************************************************************

\begin{code}
137
dmdAnal :: SigEnv -> Demand -> CoreExpr -> (DmdType, CoreExpr)
138

139
dmdAnal sigs Abs  e = (topDmdType, e)
140

141
142
143
144
145
146
dmdAnal sigs dmd e 
  | not (isStrictDmd dmd)
  = let 
	(res_ty, e') = dmdAnal sigs evalDmd e
    in
    (deferType res_ty, e')
147
148
149
	-- It's important not to analyse e with a lazy demand because
	-- a) When we encounter   case s of (a,b) -> 
	--	we demand s with U(d1d2)... but if the overall demand is lazy
150
151
	--	that is wrong, and we'd need to reduce the demand on s,
	--	which is inconvenient
152
153
154
155
156
	-- b) More important, consider
	--	f (let x = R in x+x), where f is lazy
	--    We still want to mark x as demanded, because it will be when we
	--    enter the let.  If we analyse f's arg with a Lazy demand, we'll
	--    just mark x as Lazy
157
158
159
	-- c) The application rule wouldn't be right either
	--    Evaluating (f x) in a L demand does *not* cause
	--    evaluation of f in a C(L) demand!
160
161
162


dmdAnal sigs dmd (Lit lit)
163
164
165
166
  = (topDmdType, Lit lit)

dmdAnal sigs dmd (Var var)
  = (dmdTransform sigs var dmd, Var var)
167

168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
dmdAnal sigs dmd (Cast e co)
  = (dmd_ty, Cast e' co)
  where
    (dmd_ty, e') = dmdAnal sigs dmd' e
    to_co        = snd (coercionKind co)
    dmd'
      | Just (tc, args) <- splitTyConApp_maybe to_co
      , isRecursiveTyCon tc = evalDmd
      | otherwise           = dmd
	-- This coerce usually arises from a recursive
        -- newtype, and we don't want to look inside them
	-- for exactly the same reason that we don't look
	-- inside recursive products -- we might not reach
	-- a fixpoint.  So revert to a vanilla Eval demand

183
dmdAnal sigs dmd (Note n e)
184
  = (dmd_ty, Note n e')
185
  where
186
    (dmd_ty, e') = dmdAnal sigs dmd e	
187
188

dmdAnal sigs dmd (App fun (Type ty))
189
  = (fun_ty, App fun' (Type ty))
190
  where
191
    (fun_ty, fun') = dmdAnal sigs dmd fun
192

193
194
-- Lots of the other code is there to make this
-- beautiful, compositional, application rule :-)
195
dmdAnal sigs dmd e@(App fun arg)	-- Non-type arguments
196
  = let				-- [Type arg handled above]
197
198
199
	(fun_ty, fun') 	  = dmdAnal sigs (Call dmd) fun
	(arg_ty, arg') 	  = dmdAnal sigs arg_dmd arg
	(arg_dmd, res_ty) = splitDmdTy fun_ty
200
    in
201
    (res_ty `bothType` arg_ty, App fun' arg')
202
203
204
205

dmdAnal sigs dmd (Lam var body)
  | isTyVar var
  = let   
206
	(body_ty, body') = dmdAnal sigs dmd body
207
    in
208
    (body_ty, Lam var body')
209

210
211
  | Call body_dmd <- dmd	-- A call demand: good!
  = let	
212
213
	sigs'		 = extendSigsWithLam sigs var
	(body_ty, body') = dmdAnal sigs' body_dmd body
214
	(lam_ty, var')   = annotateLamIdBndr body_ty var
215
    in
216
    (lam_ty, Lam var' body')
217

218
219
  | otherwise	-- Not enough demand on the lambda; but do the body
  = let		-- anyway to annotate it and gather free var info
220
	(body_ty, body') = dmdAnal sigs evalDmd body
221
222
223
224
	(lam_ty, var')   = annotateLamIdBndr body_ty var
    in
    (deferType lam_ty, Lam var' body')

225
dmdAnal sigs dmd (Case scrut case_bndr ty [alt@(DataAlt dc,bndrs,rhs)])
226
227
228
229
  | let tycon = dataConTyCon dc,
    isProductTyCon tycon,
    not (isRecursiveTyCon tycon)
  = let
230
231
232
233
	sigs_alt	      = extendSigEnv NotTopLevel sigs case_bndr case_bndr_sig
	(alt_ty, alt')	      = dmdAnalAlt sigs_alt dmd alt
	(alt_ty1, case_bndr') = annotateBndr alt_ty case_bndr
	(_, bndrs', _)	      = alt'
234
	case_bndr_sig	      = cprSig
235
236
237
238
239
240
241
242
243
244
		-- Inside the alternative, the case binder has the CPR property.
		-- Meaning that a case on it will successfully cancel.
		-- Example:
		--	f True  x = case x of y { I# x' -> if x' ==# 3 then y else I# 8 }
		--	f False x = I# 3
		--	
		-- We want f to have the CPR property:
		--	f b x = case fw b x of { r -> I# r }
		--	fw True  x = case x of y { I# x' -> if x' ==# 3 then x' else 8 }
		--	fw False x = 3
245

246
247
	-- Figure out whether the demand on the case binder is used, and use
	-- that to set the scrut_dmd.  This is utterly essential.
248
249
250
251
252
	-- Consider	f x = case x of y { (a,b) -> k y a }
	-- If we just take scrut_demand = U(L,A), then we won't pass x to the
	-- worker, so the worker will rebuild 
	--	x = (a, absent-error)
	-- and that'll crash.
253
254
255
256
257
258
259
260
261
262
263
264
	-- So at one stage I had:
	--	dead_case_bndr		 = isAbsentDmd (idNewDemandInfo case_bndr')
	--	keepity | dead_case_bndr = Drop
	--		| otherwise	 = Keep		
	--
	-- But then consider
	--	case x of y { (a,b) -> h y + a }
	-- where h : U(LL) -> T
	-- The above code would compute a Keep for x, since y is not Abs, which is silly
	-- The insight is, of course, that a demand on y is a demand on the
	-- scrutinee, so we need to `both` it with the scrut demand

265
        scrut_dmd 	   = Eval (Prod [idNewDemandInfo b | b <- bndrs', isId b])
266
				   `both`
267
			     idNewDemandInfo case_bndr'
268

269
	(scrut_ty, scrut') = dmdAnal sigs scrut_dmd scrut
270
    in
271
    (alt_ty1 `bothType` scrut_ty, Case scrut' case_bndr' ty [alt'])
272

273
dmdAnal sigs dmd (Case scrut case_bndr ty alts)
274
  = let
275
	(alt_tys, alts')        = mapAndUnzip (dmdAnalAlt sigs dmd) alts
276
	(scrut_ty, scrut')      = dmdAnal sigs evalDmd scrut
277
	(alt_ty, case_bndr')	= annotateBndr (foldr1 lubType alt_tys) case_bndr
278
    in
279
--    pprTrace "dmdAnal:Case" (ppr alts $$ ppr alt_tys)
280
    (alt_ty `bothType` scrut_ty, Case scrut' case_bndr' ty alts')
281
282
283

dmdAnal sigs dmd (Let (NonRec id rhs) body) 
  = let
284
	(sigs', lazy_fv, (id1, rhs')) = dmdAnalRhs NotTopLevel NonRecursive sigs (id, rhs)
285
286
287
	(body_ty, body') 	      = dmdAnal sigs' dmd body
	(body_ty1, id2)    	      = annotateBndr body_ty id1
	body_ty2		      = addLazyFVs body_ty1 lazy_fv
288
    in
289
290
291
292
293
294
295
296
297
298
299
300
	-- If the actual demand is better than the vanilla call
	-- demand, you might think that we might do better to re-analyse 
	-- the RHS with the stronger demand.
	-- But (a) That seldom happens, because it means that *every* path in 
	-- 	   the body of the let has to use that stronger demand
	-- (b) It often happens temporarily in when fixpointing, because
	--     the recursive function at first seems to place a massive demand.
	--     But we don't want to go to extra work when the function will
	--     probably iterate to something less demanding.  
	-- In practice, all the times the actual demand on id2 is more than
	-- the vanilla call demand seem to be due to (b).  So we don't
	-- bother to re-analyse the RHS.
301
    (body_ty2, Let (NonRec id2 rhs') body')    
302
303
304

dmdAnal sigs dmd (Let (Rec pairs) body) 
  = let
305
306
307
308
309
310
311
312
	bndrs			 = map fst pairs
	(sigs', lazy_fv, pairs') = dmdFix NotTopLevel sigs pairs
	(body_ty, body')         = dmdAnal sigs' dmd body
	body_ty1		 = addLazyFVs body_ty lazy_fv
    in
    sigs' `seq` body_ty `seq`
    let
	(body_ty2, _) = annotateBndrs body_ty1 bndrs
313
314
315
316
317
		-- Don't bother to add demand info to recursive
		-- binders as annotateBndr does; 
		-- being recursive, we can't treat them strictly.
		-- But we do need to remove the binders from the result demand env
    in
318
    (body_ty2,  Let (Rec pairs') body')
319

320
321
322

dmdAnalAlt sigs dmd (con,bndrs,rhs) 
  = let 
323
324
	(rhs_ty, rhs')   = dmdAnal sigs dmd rhs
	(alt_ty, bndrs') = annotateBndrs rhs_ty bndrs
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
	final_alt_ty | io_hack_reqd = alt_ty `lubType` topDmdType
		     | otherwise    = alt_ty

	-- There's a hack here for I/O operations.  Consider
	-- 	case foo x s of { (# s, r #) -> y }
	-- Is this strict in 'y'.  Normally yes, but what if 'foo' is an I/O
	-- operation that simply terminates the program (not in an erroneous way)?
	-- In that case we should not evaluate y before the call to 'foo'.
	-- Hackish solution: spot the IO-like situation and add a virtual branch,
	-- as if we had
	-- 	case foo x s of 
	--	   (# s, r #) -> y 
	--	   other      -> return ()
	-- So the 'y' isn't necessarily going to be evaluated
	--
	-- A more complete example where this shows up is:
	--	do { let len = <expensive> ;
	--	   ; when (...) (exitWith ExitSuccess)
	--	   ; print len }

	io_hack_reqd = con == DataAlt unboxedPairDataCon &&
346
		       idType (head bndrs) `coreEqType` realWorldStatePrimTy
347
348
    in	
    (final_alt_ty, (con, bndrs', rhs'))
349
350
351
352
353
354
355
356
357
\end{code}

%************************************************************************
%*									*
\subsection{Bindings}
%*									*
%************************************************************************

\begin{code}
358
359
dmdFix :: TopLevelFlag
       -> SigEnv 		-- Does not include bindings for this binding
360
       -> [(Id,CoreExpr)]
361
       -> (SigEnv, DmdEnv,
362
363
	   [(Id,CoreExpr)])	-- Binders annotated with stricness info

364
365
dmdFix top_lvl sigs orig_pairs
  = loop 1 initial_sigs orig_pairs
366
  where
367
    bndrs        = map fst orig_pairs
368
    initial_sigs = extendSigEnvList sigs [(id, (initialSig id, top_lvl)) | id <- bndrs]
369
370
371
372
    
    loop :: Int
	 -> SigEnv			-- Already contains the current sigs
	 -> [(Id,CoreExpr)] 		
373
	 -> (SigEnv, DmdEnv, [(Id,CoreExpr)])
374
    loop n sigs pairs
375
      | found_fixpoint
376
      = (sigs', lazy_fv, pairs')
377
378
379
380
		-- Note: use pairs', not pairs.   pairs' is the result of 
		-- processing the RHSs with sigs (= sigs'), whereas pairs 
		-- is the result of processing the RHSs with the *previous* 
		-- iteration of sigs.
381
382

      | n >= 10  = pprTrace "dmdFix loop" (ppr n <+> (vcat 
383
384
				[ text "Sigs:" <+> ppr [(id,lookup sigs id, lookup sigs' id) | (id,_) <- pairs],
				  text "env:" <+> ppr (ufmToList sigs),
385
				  text "binds:" <+> pprCoreBinding (Rec pairs)]))
386
387
388
389
390
391
392
			      (emptySigEnv, lazy_fv, orig_pairs)	-- Safe output
			-- The lazy_fv part is really important!  orig_pairs has no strictness
			-- info, including nothing about free vars.  But if we have
			--	letrec f = ....y..... in ...f...
			-- where 'y' is free in f, we must record that y is mentioned, 
			-- otherwise y will get recorded as absent altogether

393
      | otherwise    = loop (n+1) sigs' pairs'
394
      where
395
	found_fixpoint = all (same_sig sigs sigs') bndrs 
396
397
398
		-- Use the new signature to do the next pair
		-- The occurrence analyser has arranged them in a good order
		-- so this can significantly reduce the number of iterations needed
399
400
401
402
403
404
405
406
407
	((sigs',lazy_fv), pairs') = mapAccumL (my_downRhs top_lvl) (sigs, emptyDmdEnv) pairs
	
    my_downRhs top_lvl (sigs,lazy_fv) (id,rhs)
	= -- pprTrace "downRhs {" (ppr id <+> (ppr old_sig))
	  -- (new_sig `seq` 
	  --    pprTrace "downRhsEnd" (ppr id <+> ppr new_sig <+> char '}' ) 
	  ((sigs', lazy_fv'), pair')
	  --	 )
 	where
408
	  (sigs', lazy_fv1, pair') = dmdAnalRhs top_lvl Recursive sigs (id,rhs)
409
	  lazy_fv'		   = plusUFM_C both lazy_fv lazy_fv1   
410
411
	  -- old_sig   		   = lookup sigs id
	  -- new_sig  	   	   = lookup sigs' id
412
	   
413
414
415
416
    same_sig sigs sigs' var = lookup sigs var == lookup sigs' var
    lookup sigs var = case lookupVarEnv sigs var of
			Just (sig,_) -> sig

417
418
419
	-- Get an initial strictness signature from the Id
	-- itself.  That way we make use of earlier iterations
	-- of the fixpoint algorithm.  (Cunning plan.)
420
421
	-- Note that the cunning plan extends to the DmdEnv too,
	-- since it is part of the strictness signature
422
initialSig id = idNewStrictness_maybe id `orElse` botSig
423

424
dmdAnalRhs :: TopLevelFlag -> RecFlag
425
	-> SigEnv -> (Id, CoreExpr)
426
427
428
	-> (SigEnv,  DmdEnv, (Id, CoreExpr))
-- Process the RHS of the binding, add the strictness signature
-- to the Id, and augment the environment with the signature as well.
429

430
dmdAnalRhs top_lvl rec_flag sigs (id, rhs)
431
 = (sigs', lazy_fv, (id', rhs'))
432
 where
433
434
435
  arity		     = idArity id   -- The idArity should be up to date
				    -- The simplifier was run just beforehand
  (rhs_dmd_ty, rhs') = dmdAnal sigs (vanillaCall arity) rhs
436
437
438
  (lazy_fv, sig_ty)  = WARN( arity /= dmdTypeDepth rhs_dmd_ty && not (exprIsTrivial rhs), ppr id )
				-- The RHS can be eta-reduced to just a variable, 
				-- in which case we should not complain. 
439
		       mkSigTy top_lvl rec_flag id rhs rhs_dmd_ty
440
441
  id'		     = id `setIdNewStrictness` sig_ty
  sigs'		     = extendSigEnv top_lvl sigs id sig_ty
442
\end{code}
443

444
445
446
447
448
449
450
%************************************************************************
%*									*
\subsection{Strictness signatures and types}
%*									*
%************************************************************************

\begin{code}
451
452
453
454
455
mkTopSigTy :: CoreExpr -> DmdType -> StrictSig
	-- Take a DmdType and turn it into a StrictSig
	-- NB: not used for never-inline things; hence False
mkTopSigTy rhs dmd_ty = snd (mk_sig_ty False False rhs dmd_ty)

456
457
mkSigTy :: TopLevelFlag -> RecFlag -> Id -> CoreExpr -> DmdType -> (DmdEnv, StrictSig)
mkSigTy top_lvl rec_flag id rhs dmd_ty 
458
  = mk_sig_ty never_inline thunk_cpr_ok rhs dmd_ty
459
  where
460
461
462
463
464
465
466
    never_inline = isNeverActive (idInlinePragma id)
    maybe_id_dmd = idNewDemandInfo_maybe id
	-- Is Nothing the first time round

    thunk_cpr_ok
	| isTopLevel top_lvl       = False	-- Top level things don't get
						-- their demandInfo set at all
467
	| isRec rec_flag	   = False	-- Ditto recursive things
468
469
470
	| Just dmd <- maybe_id_dmd = isStrictDmd dmd
	| otherwise 		   = True	-- Optimistic, first time round
						-- See notes below
471
472
\end{code}

473
The thunk_cpr_ok stuff [CPR-AND-STRICTNESS]
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If the rhs is a thunk, we usually forget the CPR info, because
it is presumably shared (else it would have been inlined, and 
so we'd lose sharing if w/w'd it into a function.

However, if the strictness analyser has figured out (in a previous 
iteration) that it's strict, then we DON'T need to forget the CPR info.
Instead we can retain the CPR info and do the thunk-splitting transform 
(see WorkWrap.splitThunk).

This made a big difference to PrelBase.modInt, which had something like
	modInt = \ x -> let r = ... -> I# v in
			...body strict in r...
r's RHS isn't a value yet; but modInt returns r in various branches, so
if r doesn't have the CPR property then neither does modInt
Another case I found in practice (in Complex.magnitude), looks like this:
		let k = if ... then I# a else I# b
		in ... body strict in k ....
(For this example, it doesn't matter whether k is returned as part of
the overall result; but it does matter that k's RHS has the CPR property.)  
Left to itself, the simplifier will make a join point thus:
		let $j k = ...body strict in k...
		if ... then $j (I# a) else $j (I# b)
With thunk-splitting, we get instead
		let $j x = let k = I#x in ...body strict in k...
		in if ... then $j a else $j b
This is much better; there's a good chance the I# won't get allocated.

The difficulty with this is that we need the strictness type to
look at the body... but we now need the body to calculate the demand
on the variable, so we can decide whether its strictness type should
have a CPR in it or not.  Simple solution: 
	a) use strictness info from the previous iteration
	b) make sure we do at least 2 iterations, by doing a second
	   round for top-level non-recs.  Top level recs will get at
	   least 2 iterations except for totally-bottom functions
	   which aren't very interesting anyway.

NB: strictly_demanded is never true of a top-level Id, or of a recursive Id.

514
The Nothing case in thunk_cpr_ok [CPR-AND-STRICTNESS]
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Demand info now has a 'Nothing' state, just like strictness info.
The analysis works from 'dangerous' towards a 'safe' state; so we 
start with botSig for 'Nothing' strictness infos, and we start with
"yes, it's demanded" for 'Nothing' in the demand info.  The
fixpoint iteration will sort it all out.

We can't start with 'not-demanded' because then consider
	f x = let 
		  t = ... I# x
	      in
	      if ... then t else I# y else f x'

In the first iteration we'd have no demand info for x, so assume
not-demanded; then we'd get TopRes for f's CPR info.  Next iteration
530
531
532
533
we'd see that t was demanded, and so give it the CPR property, but by
now f has TopRes, so it will stay TopRes.  Instead, with the Nothing
setting the first time round, we say 'yes t is demanded' the first
time.
534
535
536
537
538
539

However, this does mean that for non-recursive bindings we must
iterate twice to be sure of not getting over-optimistic CPR info,
in the case where t turns out to be not-demanded.  This is handled
by dmdAnalTopBind.

540

541
\begin{code}
542
mk_sig_ty never_inline thunk_cpr_ok rhs (DmdType fv dmds res) 
543
  = (lazy_fv, mkStrictSig dmd_ty)
544
  where
545
    dmd_ty = DmdType strict_fv final_dmds res'
546

547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
    lazy_fv   = filterUFM (not . isStrictDmd) fv
    strict_fv = filterUFM isStrictDmd         fv
	-- We put the strict FVs in the DmdType of the Id, so 
	-- that at its call sites we unleash demands on its strict fvs.
	-- An example is 'roll' in imaginary/wheel-sieve2
	-- Something like this:
	--	roll x = letrec 
	--		     go y = if ... then roll (x-1) else x+1
	--		 in 
	--		 go ms
	-- We want to see that roll is strict in x, which is because
	-- go is called.   So we put the DmdEnv for x in go's DmdType.
	--
	-- Another example:
	--	f :: Int -> Int -> Int
	--	f x y = let t = x+1
	--	    h z = if z==0 then t else 
	--		  if z==1 then x+1 else
	--		  x + h (z-1)
	--	in
	--	h y
	-- Calling h does indeed evaluate x, but we can only see
	-- that if we unleash a demand on x at the call site for t.
	--
	-- Incidentally, here's a place where lambda-lifting h would
	-- lose the cigar --- we couldn't see the joint strictness in t/x
	--
	--	ON THE OTHER HAND
	-- We don't want to put *all* the fv's from the RHS into the
	-- DmdType, because that makes fixpointing very slow --- the 
	-- DmdType gets full of lazy demands that are slow to converge.

579
    final_dmds = setUnpackStrategy dmds
580
581
	-- Set the unpacking strategy
	
582
    res' = case res of
583
584
		RetCPR | ignore_cpr_info -> TopRes
		other	 		 -> res
585
    ignore_cpr_info = not (exprIsHNF rhs || thunk_cpr_ok)
586
587
\end{code}

588
589
590
591
592
593
594
595
596
597
598
599
600
The unpack strategy determines whether we'll *really* unpack the argument,
or whether we'll just remember its strictness.  If unpacking would give
rise to a *lot* of worker args, we may decide not to unpack after all.

\begin{code}
setUnpackStrategy :: [Demand] -> [Demand]
setUnpackStrategy ds
  = snd (go (opt_MaxWorkerArgs - nonAbsentArgs ds) ds)
  where
    go :: Int 			-- Max number of args available for sub-components of [Demand]
       -> [Demand]
       -> (Int, [Demand])	-- Args remaining after subcomponents of [Demand] are unpacked

601
602
603
    go n (Eval (Prod cs) : ds) 
	| n' >= 0   = Eval (Prod cs') `cons` go n'' ds
        | otherwise = Box (Eval (Prod cs)) `cons` go n ds
604
605
	where
	  (n'',cs') = go n' cs
606
607
	  n' = n + 1 - non_abs_args
		-- Add one to the budget 'cos we drop the top-level arg
608
609
610
611
612
613
614
615
616
617
618
619
620
621
	  non_abs_args = nonAbsentArgs cs
		-- Delete # of non-absent args to which we'll now be committed
				
    go n (d:ds) = d `cons` go n ds
    go n []     = (n,[])

    cons d (n,ds) = (n, d:ds)

nonAbsentArgs :: [Demand] -> Int
nonAbsentArgs []	 = 0
nonAbsentArgs (Abs : ds) = nonAbsentArgs ds
nonAbsentArgs (d   : ds) = 1 + nonAbsentArgs ds
\end{code}

622
623
624
625
626
627
628

%************************************************************************
%*									*
\subsection{Strictness signatures and types}
%*									*
%************************************************************************

629
630
631
\begin{code}
splitDmdTy :: DmdType -> (Demand, DmdType)
-- Split off one function argument
632
633
-- We already have a suitable demand on all
-- free vars, so no need to add more!
634
splitDmdTy (DmdType fv (dmd:dmds) res_ty) = (dmd, DmdType fv dmds res_ty)
635
splitDmdTy ty@(DmdType fv [] res_ty)      = (resTypeArgDmd res_ty, ty)
636
637
\end{code}

638
\begin{code}
639
unitVarDmd var dmd = DmdType (unitVarEnv var dmd) [] TopRes
640

641
642
643
addVarDmd top_lvl dmd_ty@(DmdType fv ds res) var dmd
  | isTopLevel top_lvl = dmd_ty		-- Don't record top level things
  | otherwise	       = DmdType (extendVarEnv fv var dmd) ds res
644

645
addLazyFVs (DmdType fv ds res) lazy_fvs
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
  = DmdType both_fv1 ds res
  where
    both_fv = (plusUFM_C both fv lazy_fvs)
    both_fv1 = modifyEnv (isBotRes res) (`both` Bot) lazy_fvs fv both_fv
	-- This modifyEnv is vital.  Consider
	--	let f = \x -> (x,y)
	--	in  error (f 3)
	-- Here, y is treated as a lazy-fv of f, but we must `both` that L
	-- demand with the bottom coming up from 'error'
	-- 
	-- I got a loop in the fixpointer without this, due to an interaction
	-- with the lazy_fv filtering in mkSigTy.  Roughly, it was
	--	letrec f n x 
	--	    = letrec g y = x `fatbar` 
	--			   letrec h z = z + ...g...
	--			   in h (f (n-1) x)
	-- 	in ...
	-- In the initial iteration for f, f=Bot
	-- Suppose h is found to be strict in z, but the occurrence of g in its RHS
	-- is lazy.  Now consider the fixpoint iteration for g, esp the demands it
	-- places on its free variables.  Suppose it places none.  Then the
	-- 	x `fatbar` ...call to h...
	-- will give a x->V demand for x.  That turns into a L demand for x,
	-- which floats out of the defn for h.  Without the modifyEnv, that
	-- L demand doesn't get both'd with the Bot coming up from the inner
	-- call to f.  So we just get an L demand for x for g.
	--
	-- A better way to say this is that the lazy-fv filtering should give the
	-- same answer as putting the lazy fv demands in the function's type.
675

676
annotateBndr :: DmdType -> Var -> (DmdType, Var)
677
678
-- The returned env has the var deleted
-- The returned var is annotated with demand info
679
680
681
-- No effect on the argument demands
annotateBndr dmd_ty@(DmdType fv ds res) var
  | isTyVar var = (dmd_ty, var)
682
  | otherwise   = (DmdType fv' ds res, setIdNewDemandInfo var dmd)
683
684
  where
    (fv', dmd) = removeFV fv var res
685
686
687

annotateBndrs = mapAccumR annotateBndr

688
689
690
691
annotateLamIdBndr dmd_ty@(DmdType fv ds res) id
-- For lambdas we add the demand to the argument demands
-- Only called for Ids
  = ASSERT( isId id )
692
    (DmdType fv' (hacked_dmd:ds) res, setIdNewDemandInfo id hacked_dmd)
693
  where
694
    (fv', dmd) = removeFV fv id res
695
    hacked_dmd = argDemand dmd
696
	-- This call to argDemand is vital, because otherwise we label
697
698
699
700
701
702
	-- a lambda binder with demand 'B'.  But in terms of calling
	-- conventions that's Abs, because we don't pass it.  But
	-- when we do a w/w split we get
	--	fw x = (\x y:B -> ...) x (error "oops")
	-- And then the simplifier things the 'B' is a strict demand
	-- and evaluates the (error "oops").  Sigh
703

704
removeFV fv id res = (fv', zapUnlifted id dmd)
705
		where
706
707
		  fv' = fv `delVarEnv` id
		  dmd = lookupVarEnv fv id `orElse` deflt
708
709
	 	  deflt | isBotRes res = Bot
		        | otherwise    = Abs
710
711
712
713
714
715
716

-- For unlifted-type variables, we are only 
-- interested in Bot/Abs/Box Abs
zapUnlifted is Bot = Bot
zapUnlifted id Abs = Abs
zapUnlifted id dmd | isUnLiftedType (idType id) = lazyDmd
		   | otherwise			= dmd
717
718
719
720
721
722
723
724
725
\end{code}

%************************************************************************
%*									*
\subsection{Strictness signatures}
%*									*
%************************************************************************

\begin{code}
726
727
728
729
730
731
732
733
type SigEnv  = VarEnv (StrictSig, TopLevelFlag)
	-- We use the SigEnv to tell us whether to
	-- record info about a variable in the DmdEnv
	-- We do so if it's a LocalId, but not top-level
	--
	-- The DmdEnv gives the demand on the free vars of the function
	-- when it is given enough args to satisfy the strictness signature

734
emptySigEnv  = emptyVarEnv
735
736
737
738

extendSigEnv :: TopLevelFlag -> SigEnv -> Id -> StrictSig -> SigEnv
extendSigEnv top_lvl env var sig = extendVarEnv env var (sig, top_lvl)

739
740
extendSigEnvList = extendVarEnvList

741
742
extendSigsWithLam :: SigEnv -> Id -> SigEnv
-- Extend the SigEnv when we meet a lambda binder
743
-- If the binder is marked demanded with a product demand, then give it a CPR 
744
745
-- signature, because in the likely event that this is a lambda on a fn defn 
-- [we only use this when the lambda is being consumed with a call demand],
746
747
748
749
750
751
-- it'll be w/w'd and so it will be CPR-ish.  E.g.
--	f = \x::(Int,Int).  if ...strict in x... then
--				x
--			    else
--				(a,b)
-- We want f to have the CPR property because x does, by the time f has been w/w'd
752
753
754
755
756
--
-- Also note that we only want to do this for something that
-- definitely has product type, else we may get over-optimistic 
-- CPR results (e.g. from \x -> x!).

757
758
extendSigsWithLam sigs id
  = case idNewDemandInfo_maybe id of
759
	Nothing	              -> extendVarEnv sigs id (cprSig, NotTopLevel)
760
761
		-- Optimistic in the Nothing case;
		-- See notes [CPR-AND-STRICTNESS]
762
763
	Just (Eval (Prod ds)) -> extendVarEnv sigs id (cprSig, NotTopLevel)
	other                 -> sigs
764
765


766
767
768
769
dmdTransform :: SigEnv		-- The strictness environment
	     -> Id		-- The function
	     -> Demand		-- The demand on the function
	     -> DmdType		-- The demand type of the function in this context
770
771
	-- Returned DmdEnv includes the demand on 
	-- this function plus demand on its free variables
772
773
774

dmdTransform sigs var dmd

775
------ 	DATA CONSTRUCTOR
776
  | isDataConWorkId var		-- Data constructor
777
778
779
780
781
782
  = let 
	StrictSig dmd_ty    = idNewStrictness var	-- It must have a strictness sig
	DmdType _ _ con_res = dmd_ty
	arity		    = idArity var
    in
    if arity == call_depth then		-- Saturated, so unleash the demand
783
784
	let 
		-- Important!  If we Keep the constructor application, then
785
		-- we need the demands the constructor places (always lazy)
786
787
788
789
		-- If not, we don't need to.  For example:
		--	f p@(x,y) = (p,y)	-- S(AL)
		--	g a b     = f (a,b)
		-- It's vital that we don't calculate Absent for a!
790
791
792
793
794
795
796
797
798
799
800
	   dmd_ds = case res_dmd of
			Box (Eval ds) -> mapDmds box ds
			Eval ds	      -> ds
			other	      -> Poly Top

		-- ds can be empty, when we are just seq'ing the thing
		-- If so we must make up a suitable bunch of demands
	   arg_ds = case dmd_ds of
		      Poly d  -> replicate arity d
		      Prod ds -> ASSERT( ds `lengthIs` arity ) ds

801
802
803
	in
	mkDmdType emptyDmdEnv arg_ds con_res
		-- Must remember whether it's a product, hence con_res, not TopRes
804
805
806
807
808
    else
	topDmdType

------ 	IMPORTED FUNCTION
  | isGlobalId var,		-- Imported function
809
    let StrictSig dmd_ty = idNewStrictness var
810
  = if dmdTypeDepth dmd_ty <= call_depth then	-- Saturated, so unleash the demand
811
812
813
814
815
	dmd_ty
    else
	topDmdType

------ 	LOCAL LET/REC BOUND THING
816
  | Just (StrictSig dmd_ty, top_lvl) <- lookupVarEnv sigs var
817
  = let
818
819
	fn_ty | dmdTypeDepth dmd_ty <= call_depth = dmd_ty 
	      | otherwise   		          = deferType dmd_ty
820
821
822
823
	-- NB: it's important to use deferType, and not just return topDmdType
	-- Consider	let { f x y = p + x } in f 1
	-- The application isn't saturated, but we must nevertheless propagate 
	--	a lazy demand for p!  
824
825
    in
    addVarDmd top_lvl fn_ty var dmd
826

827
------ 	LOCAL NON-LET/REC BOUND THING
828
  | otherwise	 		-- Default case
829
  = unitVarDmd var dmd
830
831

  where
832
    (call_depth, res_dmd) = splitCallDmd dmd
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
\end{code}


%************************************************************************
%*									*
\subsection{Demands}
%*									*
%************************************************************************

\begin{code}
splitCallDmd :: Demand -> (Int, Demand)
splitCallDmd (Call d) = case splitCallDmd d of
			  (n, r) -> (n+1, r)
splitCallDmd d	      = (0, d)

vanillaCall :: Arity -> Demand
849
vanillaCall 0 = evalDmd
850
851
vanillaCall n = Call (vanillaCall (n-1))

852
deferType :: DmdType -> DmdType
853
deferType (DmdType fv _ _) = DmdType (deferEnv fv) [] TopRes
854
855
856
	-- Notice that we throw away info about both arguments and results
	-- For example,   f = let ... in \x -> x
	-- We don't want to get a stricness type V->T for f.
857
	-- Peter??
858

859
860
861
deferEnv :: DmdEnv -> DmdEnv
deferEnv fv = mapVarEnv defer fv

862
863

----------------
864
argDemand :: Demand -> Demand
865
-- The 'Defer' demands are just Lazy at function boundaries
866
-- Ugly!  Ask John how to improve it.
867
868
869
870
871
argDemand Top 	    = lazyDmd
argDemand (Defer d) = lazyDmd
argDemand (Eval ds) = Eval (mapDmds argDemand ds)
argDemand (Box Bot) = evalDmd
argDemand (Box d)   = box (argDemand d)
872
argDemand Bot	    = Abs	-- Don't pass args that are consumed (only) by bottom
873
argDemand d	    = d
874
875
\end{code}

876
877
878
879
\begin{code}
-------------------------
-- Consider (if x then y else []) with demand V
-- Then the first branch gives {y->V} and the second
880
--  *implicitly* has {y->A}.  So we must put {y->(V `lub` A)}
881
882
-- in the result env.
lubType (DmdType fv1 ds1 r1) (DmdType fv2 ds2 r2)
883
  = DmdType lub_fv2 (lub_ds ds1 ds2) (r1 `lubRes` r2)
884
885
  where
    lub_fv  = plusUFM_C lub fv1 fv2
886
887
    lub_fv1 = modifyEnv (not (isBotRes r1)) absLub fv2 fv1 lub_fv
    lub_fv2 = modifyEnv (not (isBotRes r2)) absLub fv1 fv2 lub_fv1
888
889
	-- lub is the identity for Bot

890
891
892
893
894
895
	-- Extend the shorter argument list to match the longer
    lub_ds (d1:ds1) (d2:ds2) = lub d1 d2 : lub_ds ds1 ds2
    lub_ds []	    []	     = []
    lub_ds ds1	    []	     = map (`lub` resTypeArgDmd r2) ds1
    lub_ds []	    ds2	     = map (resTypeArgDmd r1 `lub`) ds2

896
897
898
-----------------------------------
-- (t1 `bothType` t2) takes the argument/result info from t1,
-- using t2 just for its free-var info
899
900
901
-- NB: Don't forget about r2!  It might be BotRes, which is
--     a bottom demand on all the in-scope variables.
-- Peter: can this be done more neatly?
902
903
904
905
906
907
908
909
910
911
912
bothType (DmdType fv1 ds1 r1) (DmdType fv2 ds2 r2)
  = DmdType both_fv2 ds1 (r1 `bothRes` r2)
  where
    both_fv  = plusUFM_C both fv1 fv2
    both_fv1 = modifyEnv (isBotRes r1) (`both` Bot) fv2 fv1 both_fv
    both_fv2 = modifyEnv (isBotRes r2) (`both` Bot) fv1 fv2 both_fv1
	-- both is the identity for Abs
\end{code}


\begin{code}
913
914
915
916
lubRes BotRes r      = r
lubRes r      BotRes = r
lubRes RetCPR RetCPR = RetCPR
lubRes r1     r2     = TopRes
917

918
919
-- If either diverges, the whole thing does
-- Otherwise take CPR info from the first
920
921
bothRes r1 BotRes = BotRes
bothRes r1 r2     = r1
922
\end{code}
923

924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
\begin{code}
modifyEnv :: Bool			-- No-op if False
	  -> (Demand -> Demand)		-- The zapper
	  -> DmdEnv -> DmdEnv		-- Env1 and Env2
	  -> DmdEnv -> DmdEnv		-- Transform this env
	-- Zap anything in Env1 but not in Env2
	-- Assume: dom(env) includes dom(Env1) and dom(Env2)

modifyEnv need_to_modify zapper env1 env2 env
  | need_to_modify = foldr zap env (keysUFM (env1 `minusUFM` env2))
  | otherwise	   = env
  where
    zap uniq env = addToUFM_Directly env uniq (zapper current_val)
		 where
		   current_val = expectJust "modifyEnv" (lookupUFM_Directly env uniq)
939
940
941
\end{code}


942
943
944
945
946
947
948
949
950
%************************************************************************
%*									*
\subsection{LUB and BOTH}
%*									*
%************************************************************************

\begin{code}
lub :: Demand -> Demand -> Demand

951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
lub Bot  	d2 = d2
lub Abs  	d2 = absLub d2
lub Top 	d2 = Top
lub (Defer ds1) d2 = defer (Eval ds1 `lub` d2)

lub (Call d1)   (Call d2)    = Call (d1 `lub` d2)
lub d1@(Call _) (Box d2)     = d1 `lub` d2	-- Just strip the box
lub d1@(Call _) d2@(Eval _)  = d2		-- Presumably seq or vanilla eval
lub d1@(Call _) d2	     = d2 `lub` d1	-- Bot, Abs, Top

-- For the Eval case, we use these approximation rules
-- Box Bot	 <= Eval (Box Bot ...)
-- Box Top	 <= Defer (Box Bot ...)
-- Box (Eval ds) <= Eval (map Box ds)
lub (Eval ds1)  (Eval ds2)  	  = Eval (ds1 `lubs` ds2)
lub (Eval ds1)  (Box Bot)   	  = Eval (mapDmds (`lub` Box Bot) ds1)
lub (Eval ds1)  (Box (Eval ds2)) = Eval (ds1 `lubs` mapDmds box ds2)
lub (Eval ds1)  (Box Abs)        = deferEval (mapDmds (`lub` Box Bot) ds1)
lub d1@(Eval _) d2	          = d2 `lub` d1	-- Bot,Abs,Top,Call,Defer

lub (Box d1)   (Box d2) = box (d1 `lub` d2)
lub d1@(Box _)  d2	= d2 `lub` d1

lubs = zipWithDmds lub

---------------------
-- box is the smart constructor for Box
-- It computes <B,bot> & d
-- INVARIANT: (Box d) => d = Bot, Abs, Eval
-- Seems to be no point in allowing (Box (Call d))
box (Call d)  = Call d	-- The odd man out.  Why?
box (Box d)   = Box d
box (Defer _) = lazyDmd
984
box Top       = lazyDmd	-- Box Abs and Box Top
985
986
box Abs       = lazyDmd	-- are the same <B,L>
box d 	      = Box d	-- Bot, Eval
987

988
---------------
989
defer :: Demand -> Demand
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013

-- defer is the smart constructor for Defer
-- The idea is that (Defer ds) = <U(ds), L>
--
-- It specifies what happens at a lazy function argument
-- or a lambda; the L* operator
-- Set the strictness part to L, but leave
-- the boxity side unaffected
-- It also ensures that Defer (Eval [LLLL]) = L

defer Bot	 = Abs
defer Abs	 = Abs
defer Top	 = Top
defer (Call _)	 = lazyDmd	-- Approximation here?
defer (Box _)	 = lazyDmd
defer (Defer ds) = Defer ds
defer (Eval ds)  = deferEval ds

-- deferEval ds = defer (Eval ds)
deferEval ds | allTop ds = Top
	     | otherwise  = Defer ds

---------------------
absLub :: Demand -> Demand
1014
1015
1016
1017
1018
-- Computes (Abs `lub` d)
-- For the Bot case consider
--	f x y = if ... then x else error x
--   Then for y we get Abs `lub` Bot, and we really
--   want Abs overall
1019
1020
1021
1022
1023
1024
1025
1026
1027
absLub Bot  	  = Abs
absLub Abs  	  = Abs
absLub Top 	  = Top
absLub (Call _)   = Top
absLub (Box _)    = Top
absLub (Eval ds)  = Defer (absLubs ds)	-- Or (Defer ds)?
absLub (Defer ds) = Defer (absLubs ds)	-- Or (Defer ds)?

absLubs = mapDmds absLub
1028

1029
1030
1031
---------------
both :: Demand -> Demand -> Demand

1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
both Abs d2 = d2

both Bot Bot 	   = Bot
both Bot Abs 	   = Bot 
both Bot (Eval ds) = Eval (mapDmds (`both` Bot) ds)
	-- Consider
	--	f x = error x
	-- From 'error' itself we get demand Bot on x
	-- From the arg demand on x we get 
	--	x :-> evalDmd = Box (Eval (Poly Abs))
	-- So we get  Bot `both` Box (Eval (Poly Abs))
	--	    = Seq Keep (Poly Bot)
	--
	-- Consider also
	--	f x = if ... then error (fst x) else fst x
	-- Then we get (Eval (Box Bot, Bot) `lub` Eval (SA))
	--	= Eval (SA)
	-- which is what we want.
both Bot d = errDmd

both Top Bot 	     = errDmd
both Top Abs 	     = Top
both Top Top 	     = Top
both Top (Box d)    = Box d
both Top (Call d)   = Call d
both Top (Eval ds)  = Eval (mapDmds (`both` Top) ds)
both Top (Defer ds) 	-- = defer (Top `both` Eval ds)
			-- = defer (Eval (mapDmds (`both` Top) ds))
		     = deferEval (mapDmds (`both` Top) ds)


both (Box d1) 	(Box d2)    = box (d1 `both` d2)
both (Box d1) 	d2@(Call _) = box (d1 `both` d2)
both (Box d1) 	d2@(Eval _) = box (d1 `both` d2)
both (Box d1) 	(Defer d2)  = Box d1
both d1@(Box _) d2	    = d2 `both` d1

both (Call d1) 	 (Call d2)   = Call (d1 `both` d2)
both (Call d1) 	 (Eval ds2)  = Call d1	-- Could do better for (Poly Bot)?
both (Call d1) 	 (Defer ds2) = Call d1	-- Ditto
both d1@(Call _) d2	     = d1 `both` d1

both (Eval ds1)    (Eval  ds2) = Eval (ds1 `boths` ds2)
both (Eval ds1)    (Defer ds2) = Eval (ds1 `boths` mapDmds defer ds2)
both d1@(Eval ds1) d2	       = d2 `both` d1

both (Defer ds1) (Defer ds2) = deferEval (ds1 `boths` ds2)
both d1@(Defer ds1) d2	     = d2 `both` d1
 
boths = zipWithDmds both
1082
1083
1084
\end{code}


1085

1086
1087
1088
1089
1090
1091
1092
1093
%************************************************************************
%*									*
\subsection{Miscellaneous
%*									*
%************************************************************************


\begin{code}
1094
#ifdef OLD_STRICTNESS
1095
1096
1097
1098
1099
get_changes binds = vcat (map get_changes_bind binds)

get_changes_bind (Rec pairs) = vcat (map get_changes_pr pairs)
get_changes_bind (NonRec id rhs) = get_changes_pr (id,rhs)

1100
get_changes_pr (id,rhs) 
1101
  = get_changes_var id $$ get_changes_expr rhs
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111

get_changes_var var
  | isId var  = get_changes_str var $$ get_changes_dmd var
  | otherwise = empty

get_changes_expr (Type t)     = empty
get_changes_expr (Var v)      = empty
get_changes_expr (Lit l)      = empty
get_changes_expr (Note n e)   = get_changes_expr e
get_changes_expr (App e1 e2)  = get_changes_expr e1 $$ get_changes_expr e2
1112
get_changes_expr (Lam b e)    = {- get_changes_var b $$ -} get_changes_expr e
1113
get_changes_expr (Let b e)    = get_changes_bind b $$ get_changes_expr e
1114
get_changes_expr (Case e b a) = get_changes_expr e $$ {- get_changes_var b $$ -} vcat (map get_changes_alt a)
1115

1116
get_changes_alt (con,bs,rhs) = {- vcat (map get_changes_var bs) $$ -} get_changes_expr rhs
1117
1118
1119
1120
1121
1122
1123
1124
1125

get_changes_str id
  | new_better && old_better = empty
  | new_better	       	     = message "BETTER"
  | old_better	       	     = message "WORSE"
  | otherwise	       	     = message "INCOMPARABLE" 
  where
    message word = text word <+> text "strictness for" <+> ppr id <+> info
    info = (text "Old" <+> ppr old) $$ (text "New" <+> ppr new)
1126
1127
1128
    new = squashSig (idNewStrictness id)	-- Don't report spurious diffs that the old
						-- strictness analyser can't track
    old = newStrictnessFromOld (idName id) (idArity id) (idStrictness id) (idCprInfo id)
1129
1130
    old_better = old `betterStrictness` new
    new_better = new `betterStrictness` old
1131
1132

get_changes_dmd id
1133
  | isUnLiftedType (idType id) = empty	-- Not useful
1134
1135
1136
1137
1138
1139
1140
  | new_better && old_better = empty
  | new_better	       	     = message "BETTER"
  | old_better	       	     = message "WORSE"
  | otherwise	       	     = message "INCOMPARABLE" 
  where
    message word = text word <+> text "demand for" <+> ppr id <+> info
    info = (text "Old" <+> ppr old) $$ (text "New" <+> ppr new)
1141
1142
    new = squashDmd (argDemand (idNewDemandInfo id))	-- To avoid spurious improvements
							-- A bit of a hack
1143
1144
1145
    old = newDemand (idDemandInfo id)
    new_better = new `betterDemand` old 
    old_better = old `betterDemand` new
1146
1147
1148
1149
1150
1151
1152
1153
1154

betterStrictness :: StrictSig -> StrictSig -> Bool
betterStrictness (StrictSig t1) (StrictSig t2) = betterDmdType t1 t2

betterDmdType t1 t2 = (t1 `lubType` t2) == t2

betterDemand :: Demand -> Demand -> Bool
-- If d1 `better` d2, and d2 `better` d2, then d1==d2
betterDemand d1 d2 = (d1 `lub` d2) == d2
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165

squashSig (StrictSig (DmdType fv ds res))
  = StrictSig (DmdType emptyDmdEnv (map squashDmd ds) res)
  where
	-- squash just gets rid of call demands
	-- which the old analyser doesn't track
squashDmd (Call d)   = evalDmd
squashDmd (Box d)    = Box (squashDmd d)
squashDmd (Eval ds)  = Eval (mapDmds squashDmd ds)
squashDmd (Defer ds) = Defer (mapDmds squashDmd ds)
squashDmd d          = d
1166
#endif
1167
\end{code}