TcBinds.lhs 43.8 KB
Newer Older
1
%
2
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
3 4 5 6
%
\section[TcBinds]{TcBinds}

\begin{code}
7 8
module TcBinds ( tcLocalBinds, tcTopBinds, 
		 tcHsBootSigs, tcMonoBinds, 
9 10
		 TcPragFun, tcSpecPrag, tcPrags, mkPragFun, 
		 TcSigInfo(..), TcSigFun, mkTcSigFun,
11
		 badBootDeclErr ) where
12

13
#include "HsVersions.h"
14

ross's avatar
ross committed
15
import {-# SOURCE #-} TcMatches ( tcGRHSsPat, tcMatchesFun )
16
import {-# SOURCE #-} TcExpr  ( tcMonoExpr )
17

18 19
import DynFlags		( dopt, DynFlags,
			  DynFlag(Opt_MonomorphismRestriction, Opt_MonoPatBinds, Opt_GlasgowExts) )
20 21 22 23 24
import HsSyn		( HsExpr(..), HsBind(..), LHsBinds, LHsBind, Sig(..),
			  HsLocalBinds(..), HsValBinds(..), HsIPBinds(..),
			  LSig, Match(..), IPBind(..), Prag(..),
			  HsType(..), LHsType, HsExplicitForAll(..), hsLTyVarNames, 
			  isVanillaLSig, sigName, placeHolderNames, isPragLSig,
25
			  LPat, GRHSs, MatchGroup(..), pprLHsBinds, mkHsCoerce,
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
26
			  collectHsBindBinders, collectPatBinders, pprPatBind, isBangHsBind
27
			)
28
import TcHsSyn		( zonkId )
29

30
import TcRnMonad
31
import Inst		( newDictBndrs, newIPDict, instToId )
32
import TcEnv		( tcExtendIdEnv, tcExtendIdEnv2, tcExtendTyVarEnv2, 
33
			  pprBinders, tcLookupId,
34
			  tcGetGlobalTyVars )
35
import TcUnify		( tcInfer, tcSubExp, unifyTheta, 
36
			  bleatEscapedTvs, sigCtxt )
37 38
import TcSimplify	( tcSimplifyInfer, tcSimplifyInferCheck, 
			  tcSimplifyRestricted, tcSimplifyIPs )
39
import TcHsType		( tcHsSigType, UserTypeCtxt(..) )
40
import TcPat		( tcLetPat )
41
import TcSimplify	( bindInstsOfLocalFuns )
42 43
import TcMType		( newFlexiTyVarTy, zonkQuantifiedTyVar, zonkSigTyVar,
			  tcInstSigTyVars, tcInstSkolTyVars, tcInstType, 
44
			  zonkTcType, zonkTcTypes, zonkTcTyVar )
45 46
import TcType		( TcType, TcTyVar, TcThetaType, 
			  SkolemInfo(SigSkol), UserTypeCtxt(FunSigCtxt), 
47
			  TcTauType, TcSigmaType, isUnboxedTupleType,
48
			  mkTyVarTy, mkForAllTys, mkFunTys, exactTyVarsOfType, 
49
			  mkForAllTy, isUnLiftedType, tcGetTyVar, 
50
			  mkTyVarTys, tidyOpenTyVar )
51
import {- Kind parts of -} Type		( argTypeKind )
52
import VarEnv		( TyVarEnv, emptyVarEnv, lookupVarEnv, extendVarEnv ) 
53
import TysPrim		( alphaTyVar )
54
import Id		( Id, mkLocalId, mkVanillaGlobal )
55
import IdInfo		( vanillaIdInfo )
56
import Var		( TyVar, idType, idName )
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
57
import Name		( Name )
58
import NameSet
59
import NameEnv
60
import VarSet
61
import SrcLoc		( Located(..), unLoc, getLoc )
62
import Bag
63
import ErrUtils		( Message )
64
import Digraph		( SCC(..), stronglyConnComp )
65
import Maybes		( expectJust, isJust, isNothing, orElse )
66 67
import Util		( singleton )
import BasicTypes	( TopLevelFlag(..), isTopLevel, isNotTopLevel,
68
			  RecFlag(..), isNonRec, InlineSpec, defaultInlineSpec )
69
import Outputable
70
\end{code}
71

72

73 74 75 76 77 78
%************************************************************************
%*									*
\subsection{Type-checking bindings}
%*									*
%************************************************************************

79
@tcBindsAndThen@ typechecks a @HsBinds@.  The "and then" part is because
80 81 82 83 84 85 86 87 88 89
it needs to know something about the {\em usage} of the things bound,
so that it can create specialisations of them.  So @tcBindsAndThen@
takes a function which, given an extended environment, E, typechecks
the scope of the bindings returning a typechecked thing and (most
important) an LIE.  It is this LIE which is then used as the basis for
specialising the things bound.

@tcBindsAndThen@ also takes a "combiner" which glues together the
bindings and the "thing" to make a new "thing".

90
The real work is done by @tcBindWithSigsAndThen@.
91 92 93 94 95 96 97 98 99 100

Recursive and non-recursive binds are handled in essentially the same
way: because of uniques there are no scoping issues left.  The only
difference is that non-recursive bindings can bind primitive values.

Even for non-recursive binding groups we add typings for each binder
to the LVE for the following reason.  When each individual binding is
checked the type of its LHS is unified with that of its RHS; and
type-checking the LHS of course requires that the binder is in scope.

101 102 103
At the top-level the LIE is sure to contain nothing but constant
dictionaries, which we resolve at the module level.

104
\begin{code}
105
tcTopBinds :: HsValBinds Name -> TcM (LHsBinds TcId, TcLclEnv)
106 107 108
	-- Note: returning the TcLclEnv is more than we really
	--       want.  The bit we care about is the local bindings
	--	 and the free type variables thereof
109
tcTopBinds binds
110
  = do	{ (ValBindsOut prs _, env) <- tcValBinds TopLevel binds getLclEnv
111
	; return (foldr (unionBags . snd) emptyBag prs, env) }
112
	-- The top level bindings are flattened into a giant 
113
	-- implicitly-mutually-recursive LHsBinds
114

115
tcHsBootSigs :: HsValBinds Name -> TcM [Id]
116 117
-- A hs-boot file has only one BindGroup, and it only has type
-- signatures in it.  The renamer checked all this
118 119
tcHsBootSigs (ValBindsOut binds sigs)
  = do	{ checkTc (null binds) badBootDeclErr
120
	; mapM (addLocM tc_boot_sig) (filter isVanillaLSig sigs) }
121
  where
122
    tc_boot_sig (TypeSig (L _ name) ty)
123
      = do { sigma_ty <- tcHsSigType (FunSigCtxt name) ty
124 125
	   ; return (mkVanillaGlobal name sigma_ty vanillaIdInfo) }
	-- Notice that we make GlobalIds, not LocalIds
126
tcHsBootSigs groups = pprPanic "tcHsBootSigs" (ppr groups)
127

128 129 130
badBootDeclErr :: Message
badBootDeclErr = ptext SLIT("Illegal declarations in an hs-boot file")

131 132 133
------------------------
tcLocalBinds :: HsLocalBinds Name -> TcM thing
	     -> TcM (HsLocalBinds TcId, thing)
sof's avatar
sof committed
134

135 136 137
tcLocalBinds EmptyLocalBinds thing_inside 
  = do	{ thing <- thing_inside
	; return (EmptyLocalBinds, thing) }
sof's avatar
sof committed
138

139 140 141
tcLocalBinds (HsValBinds binds) thing_inside
  = do	{ (binds', thing) <- tcValBinds NotTopLevel binds thing_inside
	; return (HsValBinds binds', thing) }
142

143 144 145
tcLocalBinds (HsIPBinds (IPBinds ip_binds _)) thing_inside
  = do	{ (thing, lie) <- getLIE thing_inside
	; (avail_ips, ip_binds') <- mapAndUnzipM (wrapLocSndM tc_ip_bind) ip_binds
146 147 148

	-- If the binding binds ?x = E, we  must now 
	-- discharge any ?x constraints in expr_lie
149 150
	; dict_binds <- tcSimplifyIPs avail_ips lie
	; return (HsIPBinds (IPBinds ip_binds' dict_binds), thing) }
151 152 153 154
  where
	-- I wonder if we should do these one at at time
	-- Consider	?x = 4
	--		?y = ?x + 1
155
    tc_ip_bind (IPBind ip expr)
156
      = newFlexiTyVarTy argTypeKind		`thenM` \ ty ->
157
  	newIPDict (IPBindOrigin ip) ip ty	`thenM` \ (ip', ip_inst) ->
158
  	tcMonoExpr expr ty			`thenM` \ expr' ->
159 160
  	returnM (ip_inst, (IPBind ip' expr'))

161 162 163 164 165
------------------------
tcValBinds :: TopLevelFlag 
	   -> HsValBinds Name -> TcM thing
	   -> TcM (HsValBinds TcId, thing) 

166 167 168
tcValBinds top_lvl (ValBindsIn binds sigs) thing_inside
  = pprPanic "tcValBinds" (ppr binds)

169
tcValBinds top_lvl (ValBindsOut binds sigs) thing_inside
170
  = do 	{   	-- Typecheck the signature
171
	; let { prag_fn = mkPragFun sigs
172
	      ; ty_sigs = filter isVanillaLSig sigs
173
	      ; sig_fn  = mkTcSigFun ty_sigs }
174 175

	; poly_ids <- mapM tcTySig ty_sigs
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
176 177 178 179 180
		-- No recovery from bad signatures, because the type sigs
		-- may bind type variables, so proceeding without them
		-- can lead to a cascade of errors
		-- ToDo: this means we fall over immediately if any type sig
		-- is wrong, which is over-conservative, see Trac bug #745
181

182 183
		-- Extend the envt right away with all 
		-- the Ids declared with type signatures
184
	; gla_exts     <- doptM Opt_GlasgowExts
185
  	; (binds', thing) <- tcExtendIdEnv poly_ids $
186
			     tc_val_binds gla_exts top_lvl sig_fn prag_fn 
187
					  binds thing_inside
188

189
	; return (ValBindsOut binds' sigs, thing) }
190

191
------------------------
192
tc_val_binds :: Bool -> TopLevelFlag -> TcSigFun -> TcPragFun
193
	     -> [(RecFlag, LHsBinds Name)] -> TcM thing
194 195 196 197
	     -> TcM ([(RecFlag, LHsBinds TcId)], thing)
-- Typecheck a whole lot of value bindings,
-- one strongly-connected component at a time

198
tc_val_binds gla_exts top_lvl sig_fn prag_fn [] thing_inside
199 200 201
  = do	{ thing <- thing_inside
	; return ([], thing) }

202
tc_val_binds gla_exts top_lvl sig_fn prag_fn (group : groups) thing_inside
203
  = do	{ (group', (groups', thing))
204 205
		<- tc_group gla_exts top_lvl sig_fn prag_fn group $ 
		   tc_val_binds gla_exts top_lvl sig_fn prag_fn groups thing_inside
206
	; return (group' ++ groups', thing) }
sof's avatar
sof committed
207

208
------------------------
209
tc_group :: Bool -> TopLevelFlag -> TcSigFun -> TcPragFun
210
	 -> (RecFlag, LHsBinds Name) -> TcM thing
211 212 213 214 215 216
 	 -> TcM ([(RecFlag, LHsBinds TcId)], thing)

-- Typecheck one strongly-connected component of the original program.
-- We get a list of groups back, because there may 
-- be specialisations etc as well

217 218
tc_group gla_exts top_lvl sig_fn prag_fn (NonRecursive, binds) thing_inside
    	-- A single non-recursive binding
219 220
     	-- We want to keep non-recursive things non-recursive
        -- so that we desugar unlifted bindings correctly
221
 =  do	{ (binds, thing) <- tc_haskell98 top_lvl sig_fn prag_fn NonRecursive binds thing_inside
222 223
	; return ([(NonRecursive, b) | b <- binds], thing) }

224 225 226 227 228 229 230
tc_group gla_exts top_lvl sig_fn prag_fn (Recursive, binds) thing_inside
  | not gla_exts	-- Recursive group, normal Haskell 98 route
  = do	{ (binds1, thing) <- tc_haskell98 top_lvl sig_fn prag_fn Recursive binds thing_inside
	; return ([(Recursive, unionManyBags binds1)], thing) }

  | otherwise		-- Recursive group, with gla-exts
  =	-- To maximise polymorphism (with -fglasgow-exts), we do a new 
231
	-- strongly-connected-component analysis, this time omitting 
232
	-- any references to variables with type signatures.
233
	--
234 235
	-- Notice that the bindInsts thing covers *all* the bindings in the original
	-- group at once; an earlier one may use a later one!
236
    do	{ traceTc (text "tc_group rec" <+> pprLHsBinds binds)
237 238 239
	; (binds1,thing) <- bindLocalInsts top_lvl $
			    go (stronglyConnComp (mkEdges sig_fn binds))
	; return ([(Recursive, unionManyBags binds1)], thing) }
240 241
		-- Rec them all together
  where
242 243 244 245 246
--  go :: SCC (LHsBind Name) -> TcM ([LHsBind TcId], [TcId], thing)
    go (scc:sccs) = do	{ (binds1, ids1) <- tc_scc scc
			; (binds2, ids2, thing) <- tcExtendIdEnv ids1 $ go sccs
			; return (binds1 ++ binds2, ids1 ++ ids2, thing) }
    go [] 	  = do	{ thing <- thing_inside; return ([], [], thing) }
247

248 249
    tc_scc (AcyclicSCC bind) = tc_sub_group NonRecursive (unitBag bind)
    tc_scc (CyclicSCC binds) = tc_sub_group Recursive    (listToBag binds)
sof's avatar
sof committed
250

251
    tc_sub_group = tcPolyBinds top_lvl sig_fn prag_fn Recursive
sof's avatar
sof committed
252

253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
tc_haskell98 top_lvl sig_fn prag_fn rec_flag binds thing_inside
  = bindLocalInsts top_lvl $ do
    { (binds1, ids) <- tcPolyBinds top_lvl sig_fn prag_fn rec_flag rec_flag binds
    ; thing <- tcExtendIdEnv ids thing_inside
    ; return (binds1, ids, thing) }

------------------------
bindLocalInsts :: TopLevelFlag -> TcM ([LHsBinds TcId], [TcId], a) -> TcM ([LHsBinds TcId], a)
bindLocalInsts top_lvl thing_inside
  | isTopLevel top_lvl = do { (binds, ids, thing) <- thing_inside; return (binds, thing) }
  	-- For the top level don't bother will all this bindInstsOfLocalFuns stuff. 
	-- All the top level things are rec'd together anyway, so it's fine to
	-- leave them to the tcSimplifyTop, and quite a bit faster too

  | otherwise	-- Nested case
  = do	{ ((binds, ids, thing), lie) <- getLIE thing_inside
	; lie_binds <- bindInstsOfLocalFuns lie ids
	; return (binds ++ [lie_binds], thing) }
271 272 273 274 275 276 277 278

------------------------
mkEdges :: TcSigFun -> LHsBinds Name
	-> [(LHsBind Name, BKey, [BKey])]

type BKey  = Int -- Just number off the bindings

mkEdges sig_fn binds
279 280
  = [ (bind, key, [key | n <- nameSetToList (bind_fvs (unLoc bind)),
			 Just key <- [lookupNameEnv key_map n], no_sig n ])
281 282 283 284 285 286 287 288 289 290 291 292 293
    | (bind, key) <- keyd_binds
    ]
  where
    no_sig :: Name -> Bool
    no_sig n = isNothing (sig_fn n)

    keyd_binds = bagToList binds `zip` [0::BKey ..]

    key_map :: NameEnv BKey	-- Which binding it comes from
    key_map = mkNameEnv [(bndr, key) | (L _ bind, key) <- keyd_binds
				     , bndr <- bindersOfHsBind bind ]

bindersOfHsBind :: HsBind Name -> [Name]
294 295
bindersOfHsBind (PatBind { pat_lhs = pat })  = collectPatBinders pat
bindersOfHsBind (FunBind { fun_id = L _ f }) = [f]
296

297
------------------------
298
tcPolyBinds :: TopLevelFlag -> TcSigFun -> TcPragFun
299
	    -> RecFlag			-- Whether the group is really recursive
300 301
	    -> RecFlag			-- Whether it's recursive after breaking
					-- dependencies based on type signatures
302
	    -> LHsBinds Name
303
	    -> TcM ([LHsBinds TcId], [TcId])
304 305 306 307 308

-- Typechecks a single bunch of bindings all together, 
-- and generalises them.  The bunch may be only part of a recursive
-- group, because we use type signatures to maximise polymorphism
--
309 310 311
-- Returns a list because the input may be a single non-recursive binding,
-- in which case the dependency order of the resulting bindings is
-- important.  
312
-- 
313 314
-- Knows nothing about the scope of the bindings

315
tcPolyBinds top_lvl sig_fn prag_fn rec_group rec_tc binds
316
  = let 
317
	bind_list    = bagToList binds
318 319
        binder_names = collectHsBindBinders binds
	loc          = getLoc (head bind_list)
320 321 322
		-- TODO: location a bit awkward, but the mbinds have been
		--	 dependency analysed and may no longer be adjacent
    in
323
	-- SET UP THE MAIN RECOVERY; take advantage of any type sigs
324
    setSrcSpan loc				$
325
    recoverM (recoveryCode binder_names sig_fn)	$ do 
326

327 328
  { traceTc (ptext SLIT("------------------------------------------------"))
  ; traceTc (ptext SLIT("Bindings for") <+> ppr binder_names)
329 330

   	-- TYPECHECK THE BINDINGS
331
  ; ((binds', mono_bind_infos), lie_req) 
332
	<- getLIE (tcMonoBinds bind_list sig_fn rec_tc)
333

334 335 336 337
	-- CHECK FOR UNLIFTED BINDINGS
	-- These must be non-recursive etc, and are not generalised
	-- They desugar to a case expression in the end
  ; zonked_mono_tys <- zonkTcTypes (map getMonoType mono_bind_infos)
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
338 339 340 341 342
  ; is_strict <- checkStrictBinds top_lvl rec_group binds' 
				  zonked_mono_tys mono_bind_infos
  ; if is_strict then
    do	{ extendLIEs lie_req
	; let exports = zipWith mk_export mono_bind_infos zonked_mono_tys
343 344
	      mk_export (name, Nothing,  mono_id) mono_ty = ([], mkLocalId name mono_ty, mono_id, [])
	      mk_export (name, Just sig, mono_id) mono_ty = ([], sig_id sig,             mono_id, [])
345
			-- ToDo: prags for unlifted bindings
346

347 348
	; return ( [unitBag $ L loc $ AbsBinds [] [] exports binds'],
		   [poly_id | (_, poly_id, _, _) <- exports]) }	-- Guaranteed zonked
349 350

    else do	-- The normal lifted case: GENERALISE
351
  { dflags <- getDOpts 
352
  ; (tyvars_to_gen, dict_binds, dict_ids)
353
	<- addErrCtxt (genCtxt (bndrNames mono_bind_infos)) $
354
	   generalise dflags top_lvl bind_list sig_fn mono_bind_infos lie_req
355 356 357 358 359 360

	-- FINALISE THE QUANTIFIED TYPE VARIABLES
	-- The quantified type variables often include meta type variables
	-- we want to freeze them into ordinary type variables, and
	-- default their kind (e.g. from OpenTypeKind to TypeKind)
  ; tyvars_to_gen' <- mappM zonkQuantifiedTyVar tyvars_to_gen
361 362

	-- BUILD THE POLYMORPHIC RESULT IDs
363 364
  ; exports <- mapM (mkExport prag_fn tyvars_to_gen' (map idType dict_ids))
		    mono_bind_infos
sof's avatar
sof committed
365

366
  ; let	poly_ids = [poly_id | (_, poly_id, _, _) <- exports]
367
  ; traceTc (text "binding:" <+> ppr (poly_ids `zip` map idType poly_ids))
368 369 370 371 372

  ; let abs_bind = L loc $ AbsBinds tyvars_to_gen'
	 		            dict_ids exports
	 		    	    (dict_binds `unionBags` binds')

373
  ; return ([unitBag abs_bind], poly_ids)	-- poly_ids are guaranteed zonked by mkExport
374 375 376 377 378 379
  } }


--------------
mkExport :: TcPragFun -> [TyVar] -> [TcType] -> MonoBindInfo
	 -> TcM ([TyVar], Id, Id, [Prag])
380 381 382 383 384 385 386 387 388 389 390
-- mkExport generates exports with 
--	zonked type variables, 
--	zonked poly_ids
-- The former is just because no further unifications will change
-- the quantified type variables, so we can fix their final form
-- right now.
-- The latter is needed because the poly_ids are used to extend the
-- type environment; see the invariant on TcEnv.tcExtendIdEnv 

-- Pre-condition: the inferred_tvs are already zonked

391
mkExport prag_fn inferred_tvs dict_tys (poly_name, mb_sig, mono_id)
392 393 394 395 396 397 398 399 400 401 402 403 404
  = do	{ (tvs, poly_id) <- mk_poly_id mb_sig

	; poly_id' <- zonkId poly_id
	; prags <- tcPrags poly_id' (prag_fn poly_name)
		-- tcPrags requires a zonked poly_id

	; return (tvs, poly_id', mono_id, prags) }
  where
    poly_ty = mkForAllTys inferred_tvs (mkFunTys dict_tys (idType mono_id))

    mk_poly_id Nothing    = return (inferred_tvs, mkLocalId poly_name poly_ty)
    mk_poly_id (Just sig) = do { tvs <- mapM zonk_tv (sig_tvs sig)
			       ; return (tvs,  sig_id sig) }
405

406
    zonk_tv tv = do { ty <- zonkTcTyVar tv; return (tcGetTyVar "mkExport" ty) }
407 408 409 410 411 412 413

------------------------
type TcPragFun = Name -> [LSig Name]

mkPragFun :: [LSig Name] -> TcPragFun
mkPragFun sigs = \n -> lookupNameEnv env n `orElse` []
	where
414 415
	  prs = [(expectJust "mkPragFun" (sigName sig), sig) 
		| sig <- sigs, isPragLSig sig]
416 417 418 419 420 421 422 423 424 425 426 427 428
	  env = foldl add emptyNameEnv prs
	  add env (n,p) = extendNameEnv_Acc (:) singleton env n p

tcPrags :: Id -> [LSig Name] -> TcM [Prag]
tcPrags poly_id prags = mapM tc_prag prags
  where
    tc_prag (L loc prag) = setSrcSpan loc $ 
			   addErrCtxt (pragSigCtxt prag) $ 
			   tcPrag poly_id prag

pragSigCtxt prag = hang (ptext SLIT("In the pragma")) 2 (ppr prag)

tcPrag :: TcId -> Sig Name -> TcM Prag
429 430
-- Pre-condition: the poly_id is zonked
-- Reason: required by tcSubExp
431 432 433
tcPrag poly_id (SpecSig orig_name hs_ty inl) = tcSpecPrag poly_id hs_ty inl
tcPrag poly_id (SpecInstSig hs_ty)	     = tcSpecPrag poly_id hs_ty defaultInlineSpec
tcPrag poly_id (InlineSig v inl)             = return (InlinePrag inl)
434

435

436 437
tcSpecPrag :: TcId -> LHsType Name -> InlineSpec -> TcM Prag
tcSpecPrag poly_id hs_ty inl
438
  = do	{ spec_ty <- tcHsSigType (FunSigCtxt (idName poly_id)) hs_ty
439
	; (co_fn, lie) <- getLIE (tcSubExp (idType poly_id) spec_ty)
440 441
	; extendLIEs lie
	; let const_dicts = map instToId lie
442
	; return (SpecPrag (mkHsCoerce co_fn (HsVar poly_id)) spec_ty const_dicts inl) }
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
443 444
	-- Most of the work of specialisation is done by 
	-- the desugarer, guided by the SpecPrag
445 446
  
--------------
447 448 449
-- If typechecking the binds fails, then return with each
-- signature-less binder given type (forall a.a), to minimise 
-- subsequent error messages
450
recoveryCode binder_names sig_fn
451
  = do	{ traceTc (text "tcBindsWithSigs: error recovery" <+> ppr binder_names)
452
	; poly_ids <- mapM mk_dummy binder_names
453
	; return ([], poly_ids) }
454
  where
455 456 457
    mk_dummy name 
	| isJust (sig_fn name) = tcLookupId name	-- Had signature; look it up
	| otherwise	       = return (mkLocalId name forall_a_a)    -- No signature
458 459 460 461

forall_a_a :: TcType
forall_a_a = mkForAllTy alphaTyVar (mkTyVarTy alphaTyVar)

462

463 464 465
-- Check that non-overloaded unlifted bindings are
-- 	a) non-recursive,
--	b) not top level, 
466 467
--	c) not a multiple-binding group (more or less implied by (a))

simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
468 469 470 471 472
checkStrictBinds :: TopLevelFlag -> RecFlag
		 -> LHsBinds TcId -> [TcType] -> [MonoBindInfo]
		 -> TcM Bool
checkStrictBinds top_lvl rec_group mbind mono_tys infos
  | unlifted || bang_pat
473
  = do 	{ checkTc (isNotTopLevel top_lvl)
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
474
	  	  (strictBindErr "Top-level" unlifted mbind)
475
	; checkTc (isNonRec rec_group)
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
476
	  	  (strictBindErr "Recursive" unlifted mbind)
477
	; checkTc (isSingletonBag mbind)
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
478 479 480 481 482
	    	  (strictBindErr "Multiple" unlifted mbind) 
	; mapM_ check_sig infos
	; return True }
  | otherwise
  = return False
483
  where
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
484 485
    unlifted = any isUnLiftedType mono_tys
    bang_pat = anyBag (isBangHsBind . unLoc) mbind
486
    check_sig (_, Just sig, _) = checkTc (null (sig_tvs sig) && null (sig_theta sig))
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
487
					 (badStrictSig unlifted sig)
488
    check_sig other	       = return ()
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
489 490

strictBindErr flavour unlifted mbind
491 492
  = hang (text flavour <+> msg <+> ptext SLIT("aren't allowed:")) 
	 4 (pprLHsBinds mbind)
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
493 494 495 496 497 498 499 500 501 502
  where
    msg | unlifted  = ptext SLIT("bindings for unlifted types")
	| otherwise = ptext SLIT("bang-pattern bindings")

badStrictSig unlifted sig
  = hang (ptext SLIT("Illegal polymorphic signature in") <+> msg)
	 4 (ppr sig)
  where
    msg | unlifted  = ptext SLIT("an unlifted binding")
	| otherwise = ptext SLIT("a bang-pattern binding")
503 504
\end{code}

505

506 507
%************************************************************************
%*									*
508
\subsection{tcMonoBind}
509 510 511
%*									*
%************************************************************************

512
@tcMonoBinds@ deals with a perhaps-recursive group of HsBinds.
513 514
The signatures have been dealt with already.

515
\begin{code}
516 517
tcMonoBinds :: [LHsBind Name]
	    -> TcSigFun
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
518 519 520
	    -> RecFlag	-- Whether the binding is recursive for typechecking purposes
			-- i.e. the binders are mentioned in their RHSs, and
			--	we are not resuced by a type signature
521 522
	    -> TcM (LHsBinds TcId, [MonoBindInfo])

523 524
tcMonoBinds [L b_loc (FunBind { fun_id = L nm_loc name, fun_infix = inf, 
				fun_matches = matches, bind_fvs = fvs })]
525
	    sig_fn 		-- Single function binding,
526
	    NonRecursive	-- binder isn't mentioned in RHS,
527
  | Nothing <- sig_fn name	-- ...with no type signature
528 529 530 531 532 533
  = 	-- In this very special case we infer the type of the
	-- right hand side first (it may have a higher-rank type)
	-- and *then* make the monomorphic Id for the LHS
	-- e.g.		f = \(x::forall a. a->a) -> <body>
	-- 	We want to infer a higher-rank type for f
    setSrcSpan b_loc  	$
534
    do	{ ((co_fn, matches'), rhs_ty) <- tcInfer (tcMatchesFun name matches)
535

536 537 538 539 540 541 542 543
		-- Check for an unboxed tuple type
		--	f = (# True, False #)
		-- Zonk first just in case it's hidden inside a meta type variable
		-- (This shows up as a (more obscure) kind error 
		--  in the 'otherwise' case of tcMonoBinds.)
	; zonked_rhs_ty <- zonkTcType rhs_ty
	; checkTc (not (isUnboxedTupleType zonked_rhs_ty))
		  (unboxedTupleErr name zonked_rhs_ty)
544

545
	; mono_name <- newLocalName name
546
	; let mono_id = mkLocalId mono_name zonked_rhs_ty
547 548 549
	; return (unitBag (L b_loc (FunBind { fun_id = L nm_loc mono_id, fun_infix = inf,
					      fun_matches = matches', bind_fvs = fvs,
					      fun_co_fn = co_fn })),
550 551
		  [(name, Nothing, mono_id)]) }

552 553 554 555
tcMonoBinds [L b_loc (FunBind { fun_id = L nm_loc name, fun_infix = inf, 
				fun_matches = matches, bind_fvs = fvs })]
	    sig_fn 		-- Single function binding
	    non_rec	
556
  | Just scoped_tvs <- sig_fn name	-- ...with a type signature
557 558 559 560
  = 	-- When we have a single function binding, with a type signature
	-- we can (a) use genuine, rigid skolem constants for the type variables
	--	  (b) bring (rigid) scoped type variables into scope
    setSrcSpan b_loc  	$
561
    do	{ tc_sig <- tcInstSig True name scoped_tvs
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
	; mono_name <- newLocalName name
	; let mono_ty = sig_tau tc_sig
	      mono_id = mkLocalId mono_name mono_ty
	      rhs_tvs = [ (name, mkTyVarTy tv)
			| (name, tv) <- sig_scoped tc_sig `zip` sig_tvs tc_sig ]

	; (co_fn, matches') <- tcExtendTyVarEnv2 rhs_tvs    $
		    	       tcMatchesFun mono_name matches mono_ty

	; let fun_bind' = FunBind { fun_id = L nm_loc mono_id, 
				    fun_infix = inf, fun_matches = matches',
			            bind_fvs = placeHolderNames, fun_co_fn = co_fn }
	; return (unitBag (L b_loc fun_bind'),
		  [(name, Just tc_sig, mono_id)]) }

577 578
tcMonoBinds binds sig_fn non_rec
  = do	{ tc_binds <- mapM (wrapLocM (tcLhs sig_fn)) binds
579

580
	-- Bring the monomorphic Ids, into scope for the RHSs
581
	; let mono_info  = getMonoBindInfo tc_binds
582 583 584
	      rhs_id_env = [(name,mono_id) | (name, Nothing, mono_id) <- mono_info]
			 	-- A monomorphic binding for each term variable that lacks 
				-- a type sig.  (Ones with a sig are already in scope.)
585

586
	; binds' <- tcExtendIdEnv2    rhs_id_env $
587 588 589 590
		    traceTc (text "tcMonoBinds" <+> vcat [ ppr n <+> ppr id <+> ppr (idType id) 
							 | (n,id) <- rhs_id_env]) `thenM_`
		    mapM (wrapLocM tcRhs) tc_binds
	; return (listToBag binds', mono_info) }
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611

------------------------
-- tcLhs typechecks the LHS of the bindings, to construct the environment in which
-- we typecheck the RHSs.  Basically what we are doing is this: for each binder:
--	if there's a signature for it, use the instantiated signature type
--	otherwise invent a type variable
-- You see that quite directly in the FunBind case.
-- 
-- But there's a complication for pattern bindings:
--	data T = MkT (forall a. a->a)
--	MkT f = e
-- Here we can guess a type variable for the entire LHS (which will be refined to T)
-- but we want to get (f::forall a. a->a) as the RHS environment.
-- The simplest way to do this is to typecheck the pattern, and then look up the
-- bound mono-ids.  Then we want to retain the typechecked pattern to avoid re-doing
-- it; hence the TcMonoBind data type in which the LHS is done but the RHS isn't

data TcMonoBind		-- Half completed; LHS done, RHS not done
  = TcFunBind  MonoBindInfo  (Located TcId) Bool (MatchGroup Name) 
  | TcPatBind [MonoBindInfo] (LPat TcId) (GRHSs Name) TcSigmaType

612 613 614 615 616 617 618 619 620 621
type MonoBindInfo = (Name, Maybe TcSigInfo, TcId)
	-- Type signature (if any), and
	-- the monomorphic bound things

bndrNames :: [MonoBindInfo] -> [Name]
bndrNames mbi = [n | (n,_,_) <- mbi]

getMonoType :: MonoBindInfo -> TcTauType
getMonoType (_,_,mono_id) = idType mono_id

622
tcLhs :: TcSigFun -> HsBind Name -> TcM TcMonoBind
623
tcLhs sig_fn (FunBind { fun_id = L nm_loc name, fun_infix = inf, fun_matches = matches })
624
  = do	{ mb_sig <- tcInstSig_maybe sig_fn name
625 626 627 628 629 630
	; mono_name <- newLocalName name
	; mono_ty   <- mk_mono_ty mb_sig
	; let mono_id = mkLocalId mono_name mono_ty
	; return (TcFunBind (name, mb_sig, mono_id) (L nm_loc mono_id) inf matches) }
  where
    mk_mono_ty (Just sig) = return (sig_tau sig)
631 632 633
    mk_mono_ty Nothing    = newFlexiTyVarTy argTypeKind

tcLhs sig_fn bind@(PatBind { pat_lhs = pat, pat_rhs = grhss })
634
  = do	{ mb_sigs <- mapM (tcInstSig_maybe sig_fn) names
635 636 637 638 639 640 641 642 643
	; mono_pat_binds <- doptM Opt_MonoPatBinds
		-- With -fmono-pat-binds, we do no generalisation of pattern bindings
		-- But the signature can still be polymoprhic!
		--	data T = MkT (forall a. a->a)
		--	x :: forall a. a->a
		--	MkT x = <rhs>
		-- The function get_sig_ty decides whether the pattern-bound variables
		-- should have exactly the type in the type signature (-fmono-pat-binds), 
		-- or the instantiated version (-fmono-pat-binds)
644

645
	; let nm_sig_prs  = names `zip` mb_sigs
646 647 648 649
	      get_sig_ty | mono_pat_binds = idType . sig_id
			 | otherwise	  = sig_tau
	      tau_sig_env = mkNameEnv [ (name, get_sig_ty sig) 
				      | (name, Just sig) <- nm_sig_prs]
650
	      sig_tau_fn  = lookupNameEnv tau_sig_env
651

652
	      tc_pat exp_ty = tcLetPat sig_tau_fn pat exp_ty $
653 654 655 656 657 658 659 660 661 662
			      mapM lookup_info nm_sig_prs

		-- After typechecking the pattern, look up the binder
		-- names, which the pattern has brought into scope.
	      lookup_info :: (Name, Maybe TcSigInfo) -> TcM MonoBindInfo
	      lookup_info (name, mb_sig) = do { mono_id <- tcLookupId name
					      ; return (name, mb_sig, mono_id) }

	; ((pat', infos), pat_ty) <- addErrCtxt (patMonoBindsCtxt pat grhss) $
				     tcInfer tc_pat
663

664 665 666 667 668
	; return (TcPatBind infos pat' grhss pat_ty) }
  where
    names = collectPatBinders pat


669
tcLhs sig_fn other_bind = pprPanic "tcLhs" (ppr other_bind)
670 671
	-- AbsBind, VarBind impossible

672 673
-------------------
tcRhs :: TcMonoBind -> TcM (HsBind TcId)
674
tcRhs (TcFunBind info fun'@(L _ mono_id) inf matches)
675 676 677 678
  = do	{ (co_fn, matches') <- tcMatchesFun (idName mono_id) matches 
				    	    (idType mono_id)
	; return (FunBind { fun_id = fun', fun_infix = inf, fun_matches = matches',
			    bind_fvs = placeHolderNames, fun_co_fn = co_fn }) }
679 680 681

tcRhs bind@(TcPatBind _ pat' grhss pat_ty)
  = do	{ grhss' <- addErrCtxt (patMonoBindsCtxt pat' grhss) $
682 683 684
		    tcGRHSsPat grhss pat_ty
	; return (PatBind { pat_lhs = pat', pat_rhs = grhss', pat_rhs_ty = pat_ty, 
			    bind_fvs = placeHolderNames }) }
685 686 687


---------------------
688
getMonoBindInfo :: [Located TcMonoBind] -> [MonoBindInfo]
689
getMonoBindInfo tc_binds
690
  = foldr (get_info . unLoc) [] tc_binds
691 692 693 694 695 696 697 698
  where
    get_info (TcFunBind info _ _ _)  rest = info : rest
    get_info (TcPatBind infos _ _ _) rest = infos ++ rest
\end{code}


%************************************************************************
%*									*
699
		Generalisation
700 701 702 703
%*									*
%************************************************************************

\begin{code}
704 705
generalise :: DynFlags -> TopLevelFlag 
	   -> [LHsBind Name] -> TcSigFun 
706
	   -> [MonoBindInfo] -> [Inst]
707
	   -> TcM ([TcTyVar], TcDictBinds, [TcId])
708 709 710 711 712
generalise dflags top_lvl bind_list sig_fn mono_infos lie_req
  | isMonoGroup dflags bind_list
  = do { extendLIEs lie_req; return ([], emptyBag, []) }

  | isRestrictedGroup dflags bind_list sig_fn 	-- RESTRICTED CASE
713 714
  = 	-- Check signature contexts are empty 
    do	{ checkTc (all is_mono_sig sigs)
715
	  	  (restrictedBindCtxtErr bndrs)
716

717 718
	-- Now simplify with exactly that set of tyvars
	-- We have to squash those Methods
719
	; (qtvs, binds) <- tcSimplifyRestricted doc top_lvl bndrs 
720
						tau_tvs lie_req
721

722
   	-- Check that signature type variables are OK
723
	; final_qtvs <- checkSigsTyVars qtvs sigs
724

725
	; return (final_qtvs, binds, []) }
726

727 728 729 730
  | null sigs	-- UNRESTRICTED CASE, NO TYPE SIGS
  = tcSimplifyInfer doc tau_tvs lie_req

  | otherwise	-- UNRESTRICTED CASE, WITH TYPE SIGS
731
  = do	{ sig_lie <- unifyCtxts sigs	-- sigs is non-empty
732 733
	; let	-- The "sig_avails" is the stuff available.  We get that from
		-- the context of the type signature, BUT ALSO the lie_avail
734
		-- so that polymorphic recursion works right (see Note [Polymorphic recursion])
735 736
		local_meths = [mkMethInst sig mono_id | (_, Just sig, mono_id) <- mono_infos]
		sig_avails = sig_lie ++ local_meths
737

738 739
	-- Check that the needed dicts can be
	-- expressed in terms of the signature ones
740
	; (forall_tvs, dict_binds) <- tcSimplifyInferCheck doc tau_tvs sig_avails lie_req
741 742
	
   	-- Check that signature type variables are OK
743
	; final_qtvs <- checkSigsTyVars forall_tvs sigs
744

745
	; returnM (final_qtvs, dict_binds, map instToId sig_lie) }
746
  where
747 748
    bndrs   = bndrNames mono_infos
    sigs    = [sig | (_, Just sig, _) <- mono_infos]
749 750 751
    tau_tvs = foldr (unionVarSet . exactTyVarsOfType . getMonoType) emptyVarSet mono_infos
		-- NB: exactTyVarsOfType; see Note [Silly type synonym] 
		--     near defn of TcType.exactTyVarsOfType
752
    is_mono_sig sig = null (sig_theta sig)
753
    doc = ptext SLIT("type signature(s) for") <+> pprBinders bndrs
754

755
    mkMethInst (TcSigInfo { sig_id = poly_id, sig_tvs = tvs, 
756 757 758
		            sig_theta = theta, sig_loc = loc }) mono_id
      = Method mono_id poly_id (mkTyVarTys tvs) theta loc
\end{code}
759

760 761 762
unifyCtxts checks that all the signature contexts are the same
The type signatures on a mutually-recursive group of definitions
must all have the same context (or none).
763

764 765 766 767 768 769 770 771 772
The trick here is that all the signatures should have the same
context, and we want to share type variables for that context, so that
all the right hand sides agree a common vocabulary for their type
constraints

We unify them because, with polymorphic recursion, their types
might not otherwise be related.  This is a rather subtle issue.

\begin{code}
773 774 775
unifyCtxts :: [TcSigInfo] -> TcM [Inst]
unifyCtxts (sig1 : sigs) 	-- Argument is always non-empty
  = do	{ mapM unify_ctxt sigs
776
	; newDictBndrs (sig_loc sig1) (sig_theta sig1) }
777 778 779 780 781 782 783 784
  where
    theta1 = sig_theta sig1
    unify_ctxt :: TcSigInfo -> TcM ()
    unify_ctxt sig@(TcSigInfo { sig_theta = theta })
	= setSrcSpan (instLocSrcSpan (sig_loc sig)) 	$
	  addErrCtxt (sigContextsCtxt sig1 sig)		$
	  unifyTheta theta1 theta

785 786
checkSigsTyVars :: [TcTyVar] -> [TcSigInfo] -> TcM [TcTyVar]
checkSigsTyVars qtvs sigs 
787 788 789 790 791 792 793 794 795 796 797 798 799 800
  = do	{ gbl_tvs <- tcGetGlobalTyVars
	; sig_tvs_s <- mappM (check_sig gbl_tvs) sigs

	; let	-- Sigh.  Make sure that all the tyvars in the type sigs
		-- appear in the returned ty var list, which is what we are
		-- going to generalise over.  Reason: we occasionally get
		-- silly types like
		--	type T a = () -> ()
		--	f :: T a
		--	f () = ()
		-- Here, 'a' won't appear in qtvs, so we have to add it
	 	sig_tvs = foldl extendVarSetList emptyVarSet sig_tvs_s
		all_tvs = varSetElems (extendVarSetList sig_tvs qtvs)
	; returnM all_tvs }
801
  where
802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
    check_sig gbl_tvs (TcSigInfo {sig_id = id, sig_tvs = tvs, 
				  sig_theta = theta, sig_tau = tau})
      = addErrCtxt (ptext SLIT("In the type signature for") <+> quotes (ppr id))	$
	addErrCtxtM (sigCtxt id tvs theta tau)						$
	do { tvs' <- checkDistinctTyVars tvs
	   ; ifM (any (`elemVarSet` gbl_tvs) tvs')
		 (bleatEscapedTvs gbl_tvs tvs tvs') 
	   ; return tvs' }

checkDistinctTyVars :: [TcTyVar] -> TcM [TcTyVar]
-- (checkDistinctTyVars tvs) checks that the tvs from one type signature
-- are still all type variables, and all distinct from each other.  
-- It returns a zonked set of type variables.
-- For example, if the type sig is
--	f :: forall a b. a -> b -> b
-- we want to check that 'a' and 'b' haven't 
--	(a) been unified with a non-tyvar type
--	(b) been unified with each other (all distinct)

checkDistinctTyVars sig_tvs
822
  = do	{ zonked_tvs <- mapM zonkSigTyVar sig_tvs
823 824 825 826 827 828 829 830
	; foldlM check_dup emptyVarEnv (sig_tvs `zip` zonked_tvs)
	; return zonked_tvs }
  where
    check_dup :: TyVarEnv TcTyVar -> (TcTyVar, TcTyVar) -> TcM (TyVarEnv TcTyVar)
	-- The TyVarEnv maps each zonked type variable back to its
	-- corresponding user-written signature type variable
    check_dup acc (sig_tv, zonked_tv)
	= case lookupVarEnv acc zonked_tv of
831
		Just sig_tv' -> bomb_out sig_tv sig_tv'
832 833 834

		Nothing -> return (extendVarEnv acc zonked_tv sig_tv)

835
    bomb_out sig_tv1 sig_tv2
836 837 838 839 840 841 842
       = do { env0 <- tcInitTidyEnv
	    ; let (env1, tidy_tv1) = tidyOpenTyVar env0 sig_tv1
		  (env2, tidy_tv2) = tidyOpenTyVar env1 sig_tv2
	          msg = ptext SLIT("Quantified type variable") <+> quotes (ppr tidy_tv1) 
		         <+> ptext SLIT("is unified with another quantified type variable") 
		         <+> quotes (ppr tidy_tv2)
	    ; failWithTcM (env2, msg) }
843 844 845
       where
\end{code}    

846

847
@getTyVarsToGen@ decides what type variables to generalise over.
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862

For a "restricted group" -- see the monomorphism restriction
for a definition -- we bind no dictionaries, and
remove from tyvars_to_gen any constrained type variables

*Don't* simplify dicts at this point, because we aren't going
to generalise over these dicts.  By the time we do simplify them
we may well know more.  For example (this actually came up)
	f :: Array Int Int
	f x = array ... xs where xs = [1,2,3,4,5]
We don't want to generate lots of (fromInt Int 1), (fromInt Int 2)
stuff.  If we simplify only at the f-binding (not the xs-binding)
we'll know that the literals are all Ints, and we can just produce
Int literals!

863 864 865 866
Find all the type variables involved in overloading, the
"constrained_tyvars".  These are the ones we *aren't* going to
generalise.  We must be careful about doing this:

867 868 869 870 871 872 873 874
 (a) If we fail to generalise a tyvar which is not actually
	constrained, then it will never, ever get bound, and lands
	up printed out in interface files!  Notorious example:
		instance Eq a => Eq (Foo a b) where ..
	Here, b is not constrained, even though it looks as if it is.
	Another, more common, example is when there's a Method inst in
	the LIE, whose type might very well involve non-overloaded
	type variables.
875 876
  [NOTE: Jan 2001: I don't understand the problem here so I'm doing 
	the simple thing instead]
877

878 879 880 881 882 883 884 885
 (b) On the other hand, we mustn't generalise tyvars which are constrained,
	because we are going to pass on out the unmodified LIE, with those
	tyvars in it.  They won't be in scope if we've generalised them.

So we are careful, and do a complete simplification just to find the
constrained tyvars. We don't use any of the results, except to
find which tyvars are constrained.

886 887 888
Note [Polymorphic recursion]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The game plan for polymorphic recursion in the code above is 
889

890 891 892
	* Bind any variable for which we have a type signature
	  to an Id with a polymorphic type.  Then when type-checking 
	  the RHSs we'll make a full polymorphic call.
893

894 895
This fine, but if you aren't a bit careful you end up with a horrendous
amount of partial application and (worse) a huge space leak. For example:
896

897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
	f :: Eq a => [a] -> [a]
	f xs = ...f...

If we don't take care, after typechecking we get

	f = /\a -> \d::Eq a -> let f' = f a d
			       in
			       \ys:[a] -> ...f'...

Notice the the stupid construction of (f a d), which is of course
identical to the function we're executing.  In this case, the
polymorphic recursion isn't being used (but that's a very common case).
This can lead to a massive space leak, from the following top-level defn
(post-typechecking)

	ff :: [Int] -> [Int]
	ff = f Int dEqInt

Now (f dEqInt) evaluates to a lambda that has f' as a free variable; but
f' is another thunk which evaluates to the same thing... and you end
up with a chain of identical values all hung onto by the CAF ff.

	ff = f Int dEqInt

	   = let f' = f Int dEqInt in \ys. ...f'...

	   = let f' = let f' = f Int dEqInt in \ys. ...f'...
		      in \ys. ...f'...

Etc.
927 928 929 930

NOTE: a bit of arity anaysis would push the (f a d) inside the (\ys...),
which would make the space leak go away in this case

931 932 933 934 935 936
Solution: when typechecking the RHSs we always have in hand the
*monomorphic* Ids for each binding.  So we just need to make sure that
if (Method f a d) shows up in the constraints emerging from (...f...)
we just use the monomorphic Id.  We achieve this by adding monomorphic Ids
to the "givens" when simplifying constraints.  That's what the "lies_avail"
is doing.
937

938 939 940 941 942 943 944 945
Then we get

	f = /\a -> \d::Eq a -> letrec
				 fm = \ys:[a] -> ...fm...
			       in
			       fm


946 947 948

%************************************************************************
%*									*
949
		Signatures
950 951 952
%*									*
%************************************************************************

953
Type signatures are tricky.  See Note [Signature skolems] in TcType
954

955 956 957 958 959 960 961 962 963
@tcSigs@ checks the signatures for validity, and returns a list of
{\em freshly-instantiated} signatures.  That is, the types are already
split up, and have fresh type variables installed.  All non-type-signature
"RenamedSigs" are ignored.

The @TcSigInfo@ contains @TcTypes@ because they are unified with
the variable's type, and after that checked to see whether they've
been instantiated.

964
\begin{code}
965 966 967 968
type TcSigFun = Name -> Maybe [Name]	-- Maps a let-binder to the list of
					-- type variables brought into scope
					-- by its type signature.
					-- Nothing => no type signature
969

970
mkTcSigFun :: [LSig Name] -> TcSigFun
971 972 973
-- Search for a particular type signature
-- Precondition: the sigs are all type sigs
-- Precondition: no duplicates
974
mkTcSigFun sigs = lookupNameEnv env
975
  where
976 977 978 979 980 981 982
    env = mkNameEnv [(name, scoped_tyvars hs_ty)
		    | L span (TypeSig (L _ name) (L _ hs_ty)) <- sigs]
    scoped_tyvars (HsForAllTy Explicit tvs _ _) = hsLTyVarNames tvs
    scoped_tyvars other				= []
	-- The scoped names are the ones explicitly mentioned
	-- in the HsForAll.  (There may be more in sigma_ty, because
	-- of nested type synonyms.  See Note [Scoped] with TcSigInfo.)
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014