Simplify.lhs 92.1 KB
Newer Older
1
%
2
% (c) The AQUA Project, Glasgow University, 1993-1998
3 4 5 6
%
\section[Simplify]{The main module of the simplifier}

\begin{code}
7
module Simplify ( simplTopBinds, simplExpr ) where
8

9
#include "HsVersions.h"
10

simonpj@microsoft.com's avatar
Wibble  
simonpj@microsoft.com committed
11
import DynFlags
12
import SimplMonad
13
import Type hiding      ( substTy, extendTvSubst, substTyVar )
Ian Lynagh's avatar
Ian Lynagh committed
14
import SimplEnv
15
import SimplUtils
16
import FamInstEnv	( FamInstEnv )
17
import Id
18 19
import MkId		( seqId, realWorldPrimId )
import MkCore		( mkImpossibleExpr )
20
import Var
21
import IdInfo
22
import Name		( mkSystemVarName, isExternalName )
23
import Coercion
24
import OptCoercion	( optCoercion )
Ian Lynagh's avatar
Ian Lynagh committed
25
import FamInstEnv       ( topNormaliseType )
26
import DataCon          ( DataCon, dataConWorkId, dataConRepStrictness )
27
import CoreMonad	( SimplifierSwitch(..), Tick(..) )
28
import CoreSyn
29
import Demand           ( isStrictDmd, splitStrictSig )
Ian Lynagh's avatar
Ian Lynagh committed
30
import PprCore          ( pprParendExpr, pprCoreExpr )
31 32
import CoreUnfold       ( mkUnfolding, mkCoreUnfolding, mkInlineRule, 
                          exprIsConApp_maybe, callSiteInline, CallCtxt(..) )
33
import CoreUtils
34
import qualified CoreSubst
35
import CoreArity	( exprArity )
36
import Rules            ( lookupRule, getRules )
37
import BasicTypes       ( isMarkedStrict, Arity )
38
import CostCentre       ( currentCCS, pushCCisNop )
Ian Lynagh's avatar
Ian Lynagh committed
39
import TysPrim          ( realWorldStatePrimTy )
40
import BasicTypes       ( TopLevelFlag(..), isTopLevel, RecFlag(..) )
41
import MonadUtils	( foldlM, mapAccumLM )
Ian Lynagh's avatar
Ian Lynagh committed
42 43
import Maybes           ( orElse )
import Data.List        ( mapAccumL )
44
import Outputable
45
import FastString
46 47 48
\end{code}


49 50
The guts of the simplifier is in this module, but the driver loop for
the simplifier is in SimplCore.lhs.
51 52


53
-----------------------------------------
Ian Lynagh's avatar
Ian Lynagh committed
54
        *** IMPORTANT NOTE ***
55 56 57 58 59 60
-----------------------------------------
The simplifier used to guarantee that the output had no shadowing, but
it does not do so any more.   (Actually, it never did!)  The reason is
documented with simplifyArgs.


61
-----------------------------------------
Ian Lynagh's avatar
Ian Lynagh committed
62
        *** IMPORTANT NOTE ***
63 64 65 66 67 68 69 70 71 72
-----------------------------------------
Many parts of the simplifier return a bunch of "floats" as well as an
expression. This is wrapped as a datatype SimplUtils.FloatsWith.

All "floats" are let-binds, not case-binds, but some non-rec lets may
be unlifted (with RHS ok-for-speculation).



-----------------------------------------
Ian Lynagh's avatar
Ian Lynagh committed
73
        ORGANISATION OF FUNCTIONS
74 75 76 77 78 79
-----------------------------------------
simplTopBinds
  - simplify all top-level binders
  - for NonRec, call simplRecOrTopPair
  - for Rec,    call simplRecBind

Ian Lynagh's avatar
Ian Lynagh committed
80 81 82

        ------------------------------
simplExpr (applied lambda)      ==> simplNonRecBind
83 84 85
simplExpr (Let (NonRec ...) ..) ==> simplNonRecBind
simplExpr (Let (Rec ...)    ..) ==> simplify binders; simplRecBind

Ian Lynagh's avatar
Ian Lynagh committed
86 87
        ------------------------------
simplRecBind    [binders already simplfied]
88 89 90 91
  - use simplRecOrTopPair on each pair in turn

simplRecOrTopPair [binder already simplified]
  Used for: recursive bindings (top level and nested)
Ian Lynagh's avatar
Ian Lynagh committed
92 93
            top-level non-recursive bindings
  Returns:
94 95 96 97 98
  - check for PreInlineUnconditionally
  - simplLazyBind

simplNonRecBind
  Used for: non-top-level non-recursive bindings
Ian Lynagh's avatar
Ian Lynagh committed
99 100 101
            beta reductions (which amount to the same thing)
  Because it can deal with strict arts, it takes a
        "thing-inside" and returns an expression
102 103 104 105

  - check for PreInlineUnconditionally
  - simplify binder, including its IdInfo
  - if strict binding
Ian Lynagh's avatar
Ian Lynagh committed
106 107 108
        simplStrictArg
        mkAtomicArgs
        completeNonRecX
109
    else
Ian Lynagh's avatar
Ian Lynagh committed
110 111
        simplLazyBind
        addFloats
112

Ian Lynagh's avatar
Ian Lynagh committed
113
simplNonRecX:   [given a *simplified* RHS, but an *unsimplified* binder]
114 115 116 117
  Used for: binding case-binder and constr args in a known-constructor case
  - check for PreInLineUnconditionally
  - simplify binder
  - completeNonRecX
Ian Lynagh's avatar
Ian Lynagh committed
118 119 120

        ------------------------------
simplLazyBind:  [binder already simplified, RHS not]
121
  Used for: recursive bindings (top level and nested)
Ian Lynagh's avatar
Ian Lynagh committed
122 123 124
            top-level non-recursive bindings
            non-top-level, but *lazy* non-recursive bindings
        [must not be strict or unboxed]
125
  Returns floats + an augmented environment, not an expression
Ian Lynagh's avatar
Ian Lynagh committed
126 127
  - substituteIdInfo and add result to in-scope
        [so that rules are available in rec rhs]
128 129 130
  - simplify rhs
  - mkAtomicArgs
  - float if exposes constructor or PAP
131
  - completeBind
132 133


Ian Lynagh's avatar
Ian Lynagh committed
134
completeNonRecX:        [binder and rhs both simplified]
135
  - if the the thing needs case binding (unlifted and not ok-for-spec)
Ian Lynagh's avatar
Ian Lynagh committed
136
        build a Case
137
   else
Ian Lynagh's avatar
Ian Lynagh committed
138 139
        completeBind
        addFloats
140

Ian Lynagh's avatar
Ian Lynagh committed
141 142
completeBind:   [given a simplified RHS]
        [used for both rec and non-rec bindings, top level and not]
143 144 145 146 147 148 149 150
  - try PostInlineUnconditionally
  - add unfolding [this is the only place we add an unfolding]
  - add arity



Right hand sides and arguments
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Ian Lynagh's avatar
Ian Lynagh committed
151 152 153
In many ways we want to treat
        (a) the right hand side of a let(rec), and
        (b) a function argument
154 155 156
in the same way.  But not always!  In particular, we would
like to leave these arguments exactly as they are, so they
will match a RULE more easily.
Ian Lynagh's avatar
Ian Lynagh committed
157 158 159

        f (g x, h x)
        g (+ x)
160 161 162 163

It's harder to make the rule match if we ANF-ise the constructor,
or eta-expand the PAP:

Ian Lynagh's avatar
Ian Lynagh committed
164 165
        f (let { a = g x; b = h x } in (a,b))
        g (\y. + x y)
166 167 168

On the other hand if we see the let-defns

Ian Lynagh's avatar
Ian Lynagh committed
169 170
        p = (g x, h x)
        q = + x
171 172

then we *do* want to ANF-ise and eta-expand, so that p and q
Ian Lynagh's avatar
Ian Lynagh committed
173
can be safely inlined.
174 175 176 177 178

Even floating lets out is a bit dubious.  For let RHS's we float lets
out if that exposes a value, so that the value can be inlined more vigorously.
For example

Ian Lynagh's avatar
Ian Lynagh committed
179
        r = let x = e in (x,x)
180 181 182 183 184 185 186 187 188 189 190 191 192 193

Here, if we float the let out we'll expose a nice constructor. We did experiments
that showed this to be a generally good thing.  But it was a bad thing to float
lets out unconditionally, because that meant they got allocated more often.

For function arguments, there's less reason to expose a constructor (it won't
get inlined).  Just possibly it might make a rule match, but I'm pretty skeptical.
So for the moment we don't float lets out of function arguments either.


Eta expansion
~~~~~~~~~~~~~~
For eta expansion, we want to catch things like

Ian Lynagh's avatar
Ian Lynagh committed
194
        case e of (a,b) -> \x -> case a of (p,q) -> \y -> r
195 196 197 198 199

If the \x was on the RHS of a let, we'd eta expand to bring the two
lambdas together.  And in general that's a good thing to do.  Perhaps
we should eta expand wherever we find a (value) lambda?  Then the eta
expansion at a let RHS can concentrate solely on the PAP case.
200 201


202
%************************************************************************
Ian Lynagh's avatar
Ian Lynagh committed
203
%*                                                                      *
204
\subsection{Bindings}
Ian Lynagh's avatar
Ian Lynagh committed
205
%*                                                                      *
206 207 208
%************************************************************************

\begin{code}
209
simplTopBinds :: SimplEnv -> [InBind] -> SimplM SimplEnv
210

Ian Lynagh's avatar
Ian Lynagh committed
211
simplTopBinds env0 binds0
Ian Lynagh's avatar
Ian Lynagh committed
212 213 214 215
  = do  {       -- Put all the top-level binders into scope at the start
                -- so that if a transformation rule has unexpectedly brought
                -- anything into scope, then we don't get a complaint about that.
                -- It's rather as if the top-level binders were imported.
Ian Lynagh's avatar
Ian Lynagh committed
216
        ; env1 <- simplRecBndrs env0 (bindersOfBinds binds0)
Ian Lynagh's avatar
Ian Lynagh committed
217
        ; dflags <- getDOptsSmpl
218
        ; let dump_flag = dopt Opt_D_verbose_core2core dflags
Ian Lynagh's avatar
Ian Lynagh committed
219
        ; env2 <- simpl_binds dump_flag env1 binds0
Ian Lynagh's avatar
Ian Lynagh committed
220
        ; freeTick SimplifierDone
221
        ; return env2 }
222
  where
Ian Lynagh's avatar
Ian Lynagh committed
223 224 225 226 227 228
        -- We need to track the zapped top-level binders, because
        -- they should have their fragile IdInfo zapped (notably occurrence info)
        -- That's why we run down binds and bndrs' simultaneously.
        --
        -- The dump-flag emits a trace for each top-level binding, which
        -- helps to locate the tracing for inlining and rule firing
229
    simpl_binds :: Bool -> SimplEnv -> [InBind] -> SimplM SimplEnv
Ian Lynagh's avatar
Ian Lynagh committed
230 231
    simpl_binds _    env []           = return env
    simpl_binds dump env (bind:binds) = do { env' <- trace_bind dump bind $
Ian Lynagh's avatar
Ian Lynagh committed
232 233
                                                     simpl_bind env bind
                                           ; simpl_binds dump env' binds }
234

Ian Lynagh's avatar
Ian Lynagh committed
235 236
    trace_bind True  bind = pprTrace "SimplBind" (ppr (bindersOf bind))
    trace_bind False _    = \x -> x
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
237

238 239
    simpl_bind env (Rec pairs)  = simplRecBind      env  TopLevel pairs
    simpl_bind env (NonRec b r) = simplRecOrTopPair env' TopLevel b b' r
Ian Lynagh's avatar
Ian Lynagh committed
240 241
        where
          (env', b') = addBndrRules env b (lookupRecBndr env b)
242 243 244 245
\end{code}


%************************************************************************
Ian Lynagh's avatar
Ian Lynagh committed
246
%*                                                                      *
247
\subsection{Lazy bindings}
Ian Lynagh's avatar
Ian Lynagh committed
248
%*                                                                      *
249 250 251
%************************************************************************

simplRecBind is used for
Ian Lynagh's avatar
Ian Lynagh committed
252
        * recursive bindings only
253 254 255

\begin{code}
simplRecBind :: SimplEnv -> TopLevelFlag
Ian Lynagh's avatar
Ian Lynagh committed
256 257
             -> [(InId, InExpr)]
             -> SimplM SimplEnv
Ian Lynagh's avatar
Ian Lynagh committed
258 259 260 261 262
simplRecBind env0 top_lvl pairs0
  = do  { let (env_with_info, triples) = mapAccumL add_rules env0 pairs0
        ; env1 <- go (zapFloats env_with_info) triples
        ; return (env0 `addRecFloats` env1) }
        -- addFloats adds the floats from env1,
Thomas Schilling's avatar
Thomas Schilling committed
263
        -- _and_ updates env0 with the in-scope set from env1
264
  where
265
    add_rules :: SimplEnv -> (InBndr,InExpr) -> (SimplEnv, (InBndr, OutBndr, InExpr))
Ian Lynagh's avatar
Ian Lynagh committed
266
        -- Add the (substituted) rules to the binder
267
    add_rules env (bndr, rhs) = (env', (bndr, bndr', rhs))
Ian Lynagh's avatar
Ian Lynagh committed
268 269
        where
          (env', bndr') = addBndrRules env bndr (lookupRecBndr env bndr)
270

271
    go env [] = return env
Ian Lynagh's avatar
Ian Lynagh committed
272

273
    go env ((old_bndr, new_bndr, rhs) : pairs)
Ian Lynagh's avatar
Ian Lynagh committed
274 275
        = do { env' <- simplRecOrTopPair env top_lvl old_bndr new_bndr rhs
             ; go env' pairs }
276 277
\end{code}

278
simplOrTopPair is used for
Ian Lynagh's avatar
Ian Lynagh committed
279 280
        * recursive bindings (whether top level or not)
        * top-level non-recursive bindings
281 282 283 284 285

It assumes the binder has already been simplified, but not its IdInfo.

\begin{code}
simplRecOrTopPair :: SimplEnv
Ian Lynagh's avatar
Ian Lynagh committed
286 287 288
                  -> TopLevelFlag
                  -> InId -> OutBndr -> InExpr  -- Binder and rhs
                  -> SimplM SimplEnv    -- Returns an env that includes the binding
289

290
simplRecOrTopPair env top_lvl old_bndr new_bndr rhs
Ian Lynagh's avatar
Ian Lynagh committed
291 292 293
  | preInlineUnconditionally env top_lvl old_bndr rhs   -- Check for unconditional inline
  = do  { tick (PreInlineUnconditionally old_bndr)
        ; return (extendIdSubst env old_bndr (mkContEx env rhs)) }
294 295

  | otherwise
Ian Lynagh's avatar
Ian Lynagh committed
296 297
  = simplLazyBind env top_lvl Recursive old_bndr new_bndr rhs env
        -- May not actually be recursive, but it doesn't matter
298 299 300 301
\end{code}


simplLazyBind is used for
302 303
  * [simplRecOrTopPair] recursive bindings (whether top level or not)
  * [simplRecOrTopPair] top-level non-recursive bindings
Ian Lynagh's avatar
Ian Lynagh committed
304
  * [simplNonRecE]      non-top-level *lazy* non-recursive bindings
305 306

Nota bene:
Ian Lynagh's avatar
Ian Lynagh committed
307
    1. It assumes that the binder is *already* simplified,
308
       and is in scope, and its IdInfo too, except unfolding
309 310 311 312 313 314 315 316

    2. It assumes that the binder type is lifted.

    3. It does not check for pre-inline-unconditionallly;
       that should have been done already.

\begin{code}
simplLazyBind :: SimplEnv
Ian Lynagh's avatar
Ian Lynagh committed
317 318 319 320 321
              -> TopLevelFlag -> RecFlag
              -> InId -> OutId          -- Binder, both pre-and post simpl
                                        -- The OutId has IdInfo, except arity, unfolding
              -> InExpr -> SimplEnv     -- The RHS and its environment
              -> SimplM SimplEnv
322

323
simplLazyBind env top_lvl is_rec bndr bndr1 rhs rhs_se
Ian Lynagh's avatar
Ian Lynagh committed
324
  = do  { let   rhs_env     = rhs_se `setInScope` env
325 326 327 328 329 330 331 332 333 334
		(tvs, body) = case collectTyBinders rhs of
			        (tvs, body) | not_lam body -> (tvs,body)
					    | otherwise	   -> ([], rhs)
		not_lam (Lam _ _) = False
		not_lam _	  = True
			-- Do not do the "abstract tyyvar" thing if there's
			-- a lambda inside, becuase it defeats eta-reduction
			--    f = /\a. \x. g a x  
			-- should eta-reduce

Ian Lynagh's avatar
Ian Lynagh committed
335
        ; (body_env, tvs') <- simplBinders rhs_env tvs
336
                -- See Note [Floating and type abstraction] in SimplUtils
Ian Lynagh's avatar
Ian Lynagh committed
337

338
        -- Simplify the RHS
339
        ; (body_env1, body1) <- simplExprF body_env body mkRhsStop
Ian Lynagh's avatar
Ian Lynagh committed
340
        -- ANF-ise a constructor or PAP rhs
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
341
        ; (body_env2, body2) <- prepareRhs top_lvl body_env1 bndr1 body1
Ian Lynagh's avatar
Ian Lynagh committed
342 343 344

        ; (env', rhs')
            <-  if not (doFloatFromRhs top_lvl is_rec False body2 body_env2)
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
345 346
                then                            -- No floating, revert to body1
                     do { rhs' <- mkLam env tvs' (wrapFloats body_env1 body1)
Ian Lynagh's avatar
Ian Lynagh committed
347 348 349 350 351 352 353 354 355
                        ; return (env, rhs') }

                else if null tvs then           -- Simple floating
                     do { tick LetFloatFromLet
                        ; return (addFloats env body_env2, body2) }

                else                            -- Do type-abstraction first
                     do { tick LetFloatFromLet
                        ; (poly_binds, body3) <- abstractFloats tvs' body_env2 body2
356
                        ; rhs' <- mkLam env tvs' body3
357
                        ; env' <- foldlM (addPolyBind top_lvl) env poly_binds
358
                        ; return (env', rhs') }
Ian Lynagh's avatar
Ian Lynagh committed
359 360

        ; completeBind env' top_lvl bndr bndr1 rhs' }
361
\end{code}
362

Ian Lynagh's avatar
Ian Lynagh committed
363
A specialised variant of simplNonRec used when the RHS is already simplified,
364 365 366 367
notably in knownCon.  It uses case-binding where necessary.

\begin{code}
simplNonRecX :: SimplEnv
Ian Lynagh's avatar
Ian Lynagh committed
368 369 370
             -> InId            -- Old binder
             -> OutExpr         -- Simplified RHS
             -> SimplM SimplEnv
371 372

simplNonRecX env bndr new_rhs
373 374 375
  | isDeadBinder bndr	-- Not uncommon; e.g. case (a,b) of b { (p,q) -> p }
  = return env		-- 		 Here b is dead, and we avoid creating
  | otherwise		--		 the binding b = (a,b)
Ian Lynagh's avatar
Ian Lynagh committed
376
  = do  { (env', bndr') <- simplBinder env bndr
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
377 378
        ; completeNonRecX NotTopLevel env' (isStrictId bndr) bndr bndr' new_rhs }
		-- simplNonRecX is only used for NotTopLevel things
379

simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
380
completeNonRecX :: TopLevelFlag -> SimplEnv
381
                -> Bool
Ian Lynagh's avatar
Ian Lynagh committed
382 383 384 385
                -> InId                 -- Old binder
                -> OutId                -- New binder
                -> OutExpr              -- Simplified RHS
                -> SimplM SimplEnv
386

simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
387 388
completeNonRecX top_lvl env is_strict old_bndr new_bndr new_rhs
  = do  { (env1, rhs1) <- prepareRhs top_lvl (zapFloats env) new_bndr new_rhs
Ian Lynagh's avatar
Ian Lynagh committed
389
        ; (env2, rhs2) <-
390
                if doFloatFromRhs NotTopLevel NonRecursive is_strict rhs1 env1
Ian Lynagh's avatar
Ian Lynagh committed
391 392 393 394
                then do { tick LetFloatFromLet
                        ; return (addFloats env env1, rhs1) }   -- Add the floats to the main env
                else return (env, wrapFloats env1 rhs1)         -- Wrap the floats around the RHS
        ; completeBind env2 NotTopLevel old_bndr new_bndr rhs2 }
395 396 397 398
\end{code}

{- No, no, no!  Do not try preInlineUnconditionally in completeNonRecX
   Doing so risks exponential behaviour, because new_rhs has been simplified once already
Ian Lynagh's avatar
Ian Lynagh committed
399
   In the cases described by the folowing commment, postInlineUnconditionally will
400
   catch many of the relevant cases.
Ian Lynagh's avatar
Ian Lynagh committed
401 402 403 404 405 406 407 408
        -- This happens; for example, the case_bndr during case of
        -- known constructor:  case (a,b) of x { (p,q) -> ... }
        -- Here x isn't mentioned in the RHS, so we don't want to
        -- create the (dead) let-binding  let x = (a,b) in ...
        --
        -- Similarly, single occurrences can be inlined vigourously
        -- e.g.  case (f x, g y) of (a,b) -> ....
        -- If a,b occur once we can avoid constructing the let binding for them.
409

410
   Furthermore in the case-binding case preInlineUnconditionally risks extra thunks
Ian Lynagh's avatar
Ian Lynagh committed
411 412 413 414 415 416
        -- Consider     case I# (quotInt# x y) of
        --                I# v -> let w = J# v in ...
        -- If we gaily inline (quotInt# x y) for v, we end up building an
        -- extra thunk:
        --                let w = J# (quotInt# x y) in ...
        -- because quotInt# can fail.
417

418 419 420 421
  | preInlineUnconditionally env NotTopLevel bndr new_rhs
  = thing_inside (extendIdSubst env bndr (DoneEx new_rhs))
-}

422
----------------------------------
423
prepareRhs takes a putative RHS, checks whether it's a PAP or
Ian Lynagh's avatar
Ian Lynagh committed
424
constructor application and, if so, converts it to ANF, so that the
425
resulting thing can be inlined more easily.  Thus
Ian Lynagh's avatar
Ian Lynagh committed
426
        x = (f a, g b)
427
becomes
Ian Lynagh's avatar
Ian Lynagh committed
428 429 430
        t1 = f a
        t2 = g b
        x = (t1,t2)
431

432
We also want to deal well cases like this
Ian Lynagh's avatar
Ian Lynagh committed
433
        v = (f e1 `cast` co) e2
434
Here we want to make e1,e2 trivial and get
Ian Lynagh's avatar
Ian Lynagh committed
435
        x1 = e1; x2 = e2; v = (f x1 `cast` co) v2
436 437
That's what the 'go' loop in prepareRhs does

438
\begin{code}
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
439
prepareRhs :: TopLevelFlag -> SimplEnv -> OutId -> OutExpr -> SimplM (SimplEnv, OutExpr)
440
-- Adds new floats to the env iff that allows us to return a good RHS
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
441
prepareRhs top_lvl env id (Cast rhs co)    -- Note [Float coercions]
Ian Lynagh's avatar
Ian Lynagh committed
442
  | (ty1, _ty2) <- coercionKind co       -- Do *not* do this if rhs has an unlifted type
Ian Lynagh's avatar
Ian Lynagh committed
443
  , not (isUnLiftedType ty1)            -- see Note [Float coercions (unlifted)]
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
444
  = do  { (env', rhs') <- makeTrivialWithInfo top_lvl env sanitised_info rhs
Ian Lynagh's avatar
Ian Lynagh committed
445
        ; return (env', Cast rhs' co) }
446
  where
447 448
    sanitised_info = vanillaIdInfo `setStrictnessInfo` strictnessInfo info
                                   `setDemandInfo`     demandInfo info
449
    info = idInfo id
450

simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
451
prepareRhs top_lvl env0 _ rhs0
452
  = do  { (_is_exp, env1, rhs1) <- go 0 env0 rhs0
Ian Lynagh's avatar
Ian Lynagh committed
453
        ; return (env1, rhs1) }
454
  where
455
    go n_val_args env (Cast rhs co)
456 457
        = do { (is_exp, env', rhs') <- go n_val_args env rhs
             ; return (is_exp, env', Cast rhs' co) }
458
    go n_val_args env (App fun (Type ty))
459 460
        = do { (is_exp, env', rhs') <- go n_val_args env fun
             ; return (is_exp, env', App rhs' (Type ty)) }
461
    go n_val_args env (App fun arg)
462 463
        = do { (is_exp, env', fun') <- go (n_val_args+1) env fun
             ; case is_exp of
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
464
                True -> do { (env'', arg') <- makeTrivial top_lvl env' arg
Ian Lynagh's avatar
Ian Lynagh committed
465 466
                           ; return (True, env'', App fun' arg') }
                False -> return (False, env, App fun arg) }
467
    go n_val_args env (Var fun)
468
        = return (is_exp, env, Var fun)
Ian Lynagh's avatar
Ian Lynagh committed
469
        where
470 471 472 473 474
          is_exp = isExpandableApp fun n_val_args   -- The fun a constructor or PAP
		        -- See Note [CONLIKE pragma] in BasicTypes
			-- The definition of is_exp should match that in
	                -- OccurAnal.occAnalApp

Ian Lynagh's avatar
Ian Lynagh committed
475
    go _ env other
Ian Lynagh's avatar
Ian Lynagh committed
476
        = return (False, env, other)
477 478
\end{code}

479

480 481 482
Note [Float coercions]
~~~~~~~~~~~~~~~~~~~~~~
When we find the binding
Ian Lynagh's avatar
Ian Lynagh committed
483
        x = e `cast` co
484
we'd like to transform it to
Ian Lynagh's avatar
Ian Lynagh committed
485 486
        x' = e
        x = x `cast` co         -- A trivial binding
487 488 489 490 491 492 493 494 495 496 497 498 499
There's a chance that e will be a constructor application or function, or something
like that, so moving the coerion to the usage site may well cancel the coersions
and lead to further optimisation.  Example:

     data family T a :: *
     data instance T Int = T Int

     foo :: Int -> Int -> Int
     foo m n = ...
        where
          x = T m
          go 0 = 0
          go n = case x of { T m -> go (n-m) }
Ian Lynagh's avatar
Ian Lynagh committed
500
                -- This case should optimise
501

502 503 504 505 506 507 508 509 510 511 512
Note [Preserve strictness when floating coercions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In the Note [Float coercions] transformation, keep the strictness info.
Eg
	f = e `cast` co	   -- f has strictness SSL
When we transform to
        f' = e		   -- f' also has strictness SSL
        f = f' `cast` co   -- f still has strictness SSL

Its not wrong to drop it on the floor, but better to keep it.

513 514
Note [Float coercions (unlifted)]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Ian Lynagh's avatar
Ian Lynagh committed
515
BUT don't do [Float coercions] if 'e' has an unlifted type.
516 517
This *can* happen:

Ian Lynagh's avatar
Ian Lynagh committed
518 519
     foo :: Int = (error (# Int,Int #) "urk")
                  `cast` CoUnsafe (# Int,Int #) Int
520 521 522

If do the makeTrivial thing to the error call, we'll get
    foo = case error (# Int,Int #) "urk" of v -> v `cast` ...
Ian Lynagh's avatar
Ian Lynagh committed
523
But 'v' isn't in scope!
524 525

These strange casts can happen as a result of case-of-case
Ian Lynagh's avatar
Ian Lynagh committed
526 527
        bar = case (case x of { T -> (# 2,3 #); F -> error "urk" }) of
                (# p,q #) -> p+q
528

529 530

\begin{code}
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
531
makeTrivial :: TopLevelFlag -> SimplEnv -> OutExpr -> SimplM (SimplEnv, OutExpr)
532
-- Binds the expression to a variable, if it's not trivial, returning the variable
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
533
makeTrivial top_lvl env expr = makeTrivialWithInfo top_lvl env vanillaIdInfo expr
534

simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
535 536
makeTrivialWithInfo :: TopLevelFlag -> SimplEnv -> IdInfo 
                    -> OutExpr -> SimplM (SimplEnv, OutExpr)
537 538
-- Propagate strictness and demand info to the new binder
-- Note [Preserve strictness when floating coercions]
539
-- Returned SimplEnv has same substitution as incoming one
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
540 541 542 543
makeTrivialWithInfo top_lvl env info expr
  | exprIsTrivial expr 				-- Already trivial
  || not (bindingOk top_lvl expr expr_ty)	-- Cannot trivialise
						--   See Note [Cannot trivialise]
544
  = return (env, expr)
Ian Lynagh's avatar
Ian Lynagh committed
545
  | otherwise           -- See Note [Take care] below
546 547
  = do  { uniq <- getUniqueM
        ; let name = mkSystemVarName uniq (fsLit "a")
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
548 549
              var = mkLocalIdWithInfo name expr_ty info
        ; env' <- completeNonRecX top_lvl env False var var expr
550 551 552
	; expr' <- simplVar env' var
        ; return (env', expr') }
	-- The simplVar is needed becase we're constructing a new binding
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
553 554 555 556 557 558
	--     a = rhs
	-- And if rhs is of form (rhs1 |> co), then we might get
	--     a1 = rhs1
	--     a = a1 |> co
	-- and now a's RHS is trivial and can be substituted out, and that
	-- is what completeNonRecX will do
559 560
	-- To put it another way, it's as if we'd simplified
	--    let var = e in var
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
561 562 563 564
  where
    expr_ty = exprType expr

bindingOk :: TopLevelFlag -> CoreExpr -> Type -> Bool
565
-- True iff we can have a binding of this expression at this level
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
566 567 568 569
-- Precondition: the type is the type of the expression
bindingOk top_lvl _ expr_ty
  | isTopLevel top_lvl = not (isUnLiftedType expr_ty) 
  | otherwise          = True
570
\end{code}
571

simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
Note [Cannot trivialise]
~~~~~~~~~~~~~~~~~~~~~~~~
Consider tih
   f :: Int -> Addr#
   
   foo :: Bar
   foo = Bar (f 3)

Then we can't ANF-ise foo, even though we'd like to, because
we can't make a top-level binding for the Addr# (f 3). And if
so we don't want to turn it into
   foo = let x = f 3 in Bar x
because we'll just end up inlining x back, and that makes the
simplifier loop.  Better not to ANF-ise it at all.

A case in point is literal strings (a MachStr is not regarded as
trivial):

   foo = Ptr "blob"#

We don't want to ANF-ise this.
593

594
%************************************************************************
Ian Lynagh's avatar
Ian Lynagh committed
595
%*                                                                      *
596
\subsection{Completing a lazy binding}
Ian Lynagh's avatar
Ian Lynagh committed
597
%*                                                                      *
598 599
%************************************************************************

600 601 602 603 604
completeBind
  * deals only with Ids, not TyVars
  * takes an already-simplified binder and RHS
  * is used for both recursive and non-recursive bindings
  * is used for both top-level and non-top-level bindings
605 606 607 608 609 610 611 612

It does the following:
  - tries discarding a dead binding
  - tries PostInlineUnconditionally
  - add unfolding [this is the only place we add an unfolding]
  - add arity

It does *not* attempt to do let-to-case.  Why?  Because it is used for
Ian Lynagh's avatar
Ian Lynagh committed
613
  - top-level bindings (when let-to-case is impossible)
614
  - many situations where the "rhs" is known to be a WHNF
Ian Lynagh's avatar
Ian Lynagh committed
615
                (so let-to-case is inappropriate).
616

617 618
Nor does it do the atomic-argument thing

619
\begin{code}
620
completeBind :: SimplEnv
Ian Lynagh's avatar
Ian Lynagh committed
621 622 623 624 625 626 627
             -> TopLevelFlag            -- Flag stuck into unfolding
             -> InId                    -- Old binder
             -> OutId -> OutExpr        -- New binder and RHS
             -> SimplM SimplEnv
-- completeBind may choose to do its work
--      * by extending the substitution (e.g. let x = y in ...)
--      * or by adding to the floats in the envt
628 629

completeBind env top_lvl old_bndr new_bndr new_rhs
630 631 632
  = do	{ let old_info = idInfo old_bndr
	      old_unf  = unfoldingInfo old_info
	      occ_info = occInfo old_info
633

634 635 636 637 638
	; new_unfolding <- simplUnfolding env top_lvl old_bndr occ_info new_rhs old_unf

	; if postInlineUnconditionally env top_lvl new_bndr occ_info new_rhs new_unfolding
	                -- Inline and discard the binding
	  then do  { tick (PostInlineUnconditionally old_bndr)
639 640
	           ; -- pprTrace "postInlineUnconditionally" (ppr old_bndr <+> equals <+> ppr new_rhs) $
                     return (extendIdSubst env old_bndr (DoneEx new_rhs)) }
641 642 643 644 645 646 647
	        -- Use the substitution to make quite, quite sure that the
	        -- substitution will happen, since we are going to discard the binding

	  else return (addNonRecWithUnf env new_bndr new_rhs new_unfolding) }

------------------------------
addPolyBind :: TopLevelFlag -> SimplEnv -> OutBind -> SimplM SimplEnv
648 649 650 651 652 653 654 655 656 657 658 659
-- Add a new binding to the environment, complete with its unfolding
-- but *do not* do postInlineUnconditionally, because we have already
-- processed some of the scope of the binding
-- We still want the unfolding though.  Consider
--	let 
--	      x = /\a. let y = ... in Just y
--	in body
-- Then we float the y-binding out (via abstractFloats and addPolyBind)
-- but 'x' may well then be inlined in 'body' in which case we'd like the 
-- opportunity to inline 'y' too.

addPolyBind top_lvl env (NonRec poly_id rhs)
660 661 662 663
  = do	{ unfolding <- simplUnfolding env top_lvl poly_id NoOccInfo rhs noUnfolding
    	  		-- Assumes that poly_id did not have an INLINE prag
			-- which is perhaps wrong.  ToDo: think about this
        ; return (addNonRecWithUnf env poly_id rhs unfolding) }
664

665
addPolyBind _ env bind@(Rec _) = return (extendFloats env bind)
666 667 668 669
		-- Hack: letrecs are more awkward, so we extend "by steam"
		-- without adding unfoldings etc.  At worst this leads to
		-- more simplifier iterations

670
------------------------------
671
addNonRecWithUnf :: SimplEnv
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
             	 -> OutId -> OutExpr    -- New binder and RHS
	     	 -> Unfolding		-- New unfolding
             	 -> SimplEnv
addNonRecWithUnf env new_bndr new_rhs new_unfolding
  = let new_arity = exprArity new_rhs
	old_arity = idArity new_bndr
        info1 = idInfo new_bndr `setArityInfo` new_arity
	
              -- Unfolding info: Note [Setting the new unfolding]
	info2 = info1 `setUnfoldingInfo` new_unfolding

        -- Demand info: Note [Setting the demand info]
        info3 | isEvaldUnfolding new_unfolding = zapDemandInfo info2 `orElse` info2
              | otherwise                      = info2

        final_id = new_bndr `setIdInfo` info3
688
	dmd_arity = length $ fst $ splitStrictSig $ idStrictness new_bndr
689 690
    in
    ASSERT( isId new_bndr )
691
    WARN( new_arity < old_arity || new_arity < dmd_arity, 
692 693
          (ptext (sLit "Arity decrease:") <+> (ppr final_id <+> ppr old_arity
		<+> ppr new_arity <+> ppr dmd_arity) $$ ppr new_rhs) )
694
	-- Note [Arity decrease]
Simon Marlow's avatar
Simon Marlow committed
695

696 697 698 699 700 701 702 703
    final_id `seq`   -- This seq forces the Id, and hence its IdInfo,
	             -- and hence any inner substitutions
	    -- pprTrace "Binding" (ppr final_id <+> ppr unfolding) $
    addNonRec env final_id new_rhs
		-- The addNonRec adds it to the in-scope set too

------------------------------
simplUnfolding :: SimplEnv-> TopLevelFlag
704
	       -> Id
705 706 707
	       -> OccInfo -> OutExpr
	       -> Unfolding -> SimplM Unfolding
-- Note [Setting the new unfolding]
708 709
simplUnfolding env _ _ _ _ (DFunUnfolding ar con ops)
  = return (DFunUnfolding ar con ops')
710
  where
711
    ops' = map (substExpr (text "simplUnfolding") env) ops
712

713
simplUnfolding env top_lvl id _ _ 
714
    (CoreUnfolding { uf_tmpl = expr, uf_arity = arity
715 716
                   , uf_src = src, uf_guidance = guide })
  | isInlineRuleSource src
717 718
  = do { expr' <- simplExpr rule_env expr
       ; let src' = CoreSubst.substUnfoldingSource (mkCoreSubst (text "inline-unf") env) src
719
       ; return (mkCoreUnfolding (isTopLevel top_lvl) src' expr' arity guide) }
720
		-- See Note [Top-level flag on inline rules] in CoreUnfold
721
  where
722 723
    act      = idInlineActivation id
    rule_env = updMode (updModeForInlineRules act) env
724
       	       -- See Note [Simplifying gently inside InlineRules] in SimplUtils
725

726 727
simplUnfolding _ top_lvl id _occ_info new_rhs _
  = return (mkUnfolding (isTopLevel top_lvl) (isBottomingId id) new_rhs)
728 729 730 731 732 733
  -- We make an  unfolding *even for loop-breakers*.
  -- Reason: (a) It might be useful to know that they are WHNF
  -- 	     (b) In TidyPgm we currently assume that, if we want to
  --	         expose the unfolding then indeed we *have* an unfolding
  --		 to expose.  (We could instead use the RHS, but currently
  --		 we don't.)  The simple thing is always to have one.
SamB's avatar
SamB committed
734
\end{code}
735

736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
Note [Arity decrease]
~~~~~~~~~~~~~~~~~~~~~
Generally speaking the arity of a binding should not decrease.  But it *can* 
legitimately happen becuase of RULES.  Eg
	f = g Int
where g has arity 2, will have arity 2.  But if there's a rewrite rule
	g Int --> h
where h has arity 1, then f's arity will decrease.  Here's a real-life example,
which is in the output of Specialise:

     Rec {
	$dm {Arity 2} = \d.\x. op d
	{-# RULES forall d. $dm Int d = $s$dm #-}
	
	dInt = MkD .... opInt ...
	opInt {Arity 1} = $dm dInt

	$s$dm {Arity 0} = \x. op dInt }

Here opInt has arity 1; but when we apply the rule its arity drops to 0.
That's why Specialise goes to a little trouble to pin the right arity
on specialised functions too.
758

759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
Note [Setting the new unfolding]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* If there's an INLINE pragma, we simplify the RHS gently.  Maybe we
  should do nothing at all, but simplifying gently might get rid of 
  more crap.

* If not, we make an unfolding from the new RHS.  But *only* for
  non-loop-breakers. Making loop breakers not have an unfolding at all
  means that we can avoid tests in exprIsConApp, for example.  This is
  important: if exprIsConApp says 'yes' for a recursive thing, then we
  can get into an infinite loop

If there's an InlineRule on a loop breaker, we hang on to the inlining.
It's pretty dodgy, but the user did say 'INLINE'.  May need to revisit
this choice.

Note [Setting the demand info]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If the unfolding is a value, the demand info may
go pear-shaped, so we nuke it.  Example:
     let x = (a,b) in
     case x of (p,q) -> h p q x
Here x is certainly demanded. But after we've nuked
the case, we'll get just
     let x = (a,b) in h a b x
and now x is not demanded (I'm assuming h is lazy)
This really happens.  Similarly
     let f = \x -> e in ...f..f...
After inlining f at some of its call sites the original binding may
(for example) be no longer strictly demanded.
The solution here is a bit ad hoc...

791

792
%************************************************************************
Ian Lynagh's avatar
Ian Lynagh committed
793
%*                                                                      *
794
\subsection[Simplify-simplExpr]{The main function: simplExpr}
Ian Lynagh's avatar
Ian Lynagh committed
795
%*                                                                      *
796 797
%************************************************************************

798 799 800 801 802 803
The reason for this OutExprStuff stuff is that we want to float *after*
simplifying a RHS, not before.  If we do so naively we get quadratic
behaviour as things float out.

To see why it's important to do it after, consider this (real) example:

Ian Lynagh's avatar
Ian Lynagh committed
804 805
        let t = f x
        in fst t
806
==>
Ian Lynagh's avatar
Ian Lynagh committed
807 808 809 810
        let t = let a = e1
                    b = e2
                in (a,b)
        in fst t
811
==>
Ian Lynagh's avatar
Ian Lynagh committed
812 813 814 815 816
        let a = e1
            b = e2
            t = (a,b)
        in
        a       -- Can't inline a this round, cos it appears twice
817
==>
Ian Lynagh's avatar
Ian Lynagh committed
818
        e1
819 820 821 822

Each of the ==> steps is a round of simplification.  We'd save a
whole round if we float first.  This can cascade.  Consider

Ian Lynagh's avatar
Ian Lynagh committed
823 824
        let f = g d
        in \x -> ...f...
825
==>
Ian Lynagh's avatar
Ian Lynagh committed
826 827
        let f = let d1 = ..d.. in \y -> e
        in \x -> ...f...
828
==>
Ian Lynagh's avatar
Ian Lynagh committed
829 830
        let d1 = ..d..
        in \x -> ...(\y ->e)...
831

Ian Lynagh's avatar
Ian Lynagh committed
832
Only in this second round can the \y be applied, and it
833 834 835
might do the same again.


836
\begin{code}
837
simplExpr :: SimplEnv -> CoreExpr -> SimplM CoreExpr
838
simplExpr env expr = simplExprC env expr mkBoringStop
839

840
simplExprC :: SimplEnv -> CoreExpr -> SimplCont -> SimplM CoreExpr
Ian Lynagh's avatar
Ian Lynagh committed
841 842
        -- Simplify an expression, given a continuation
simplExprC env expr cont
843
  = -- pprTrace "simplExprC" (ppr expr $$ ppr cont {- $$ ppr (seIdSubst env) -} $$ ppr (seFloats env) ) $
Ian Lynagh's avatar
Ian Lynagh committed
844 845 846 847
    do  { (env', expr') <- simplExprF (zapFloats env) expr cont
        ; -- pprTrace "simplExprC ret" (ppr expr $$ ppr expr') $
          -- pprTrace "simplExprC ret3" (ppr (seInScope env')) $
          -- pprTrace "simplExprC ret4" (ppr (seFloats env')) $
848 849 850 851
          return (wrapFloats env' expr') }

--------------------------------------------------
simplExprF :: SimplEnv -> InExpr -> SimplCont
Ian Lynagh's avatar
Ian Lynagh committed
852
           -> SimplM (SimplEnv, OutExpr)
853

Ian Lynagh's avatar
Ian Lynagh committed
854
simplExprF env e cont
855 856
  = -- pprTrace "simplExprF" (ppr e $$ ppr cont $$ ppr (seTvSubst env) $$ ppr (seIdSubst env) {- $$ ppr (seFloats env) -} ) $
    simplExprF' env e cont
Ian Lynagh's avatar
Ian Lynagh committed
857

Ian Lynagh's avatar
Ian Lynagh committed
858 859
simplExprF' :: SimplEnv -> InExpr -> SimplCont
            -> SimplM (SimplEnv, OutExpr)
860
simplExprF' env (Var v)        cont = simplVarF env v cont
861 862 863 864
simplExprF' env (Lit lit)      cont = rebuild env (Lit lit) cont
simplExprF' env (Note n expr)  cont = simplNote env n expr cont
simplExprF' env (Cast body co) cont = simplCast env body co cont
simplExprF' env (App fun arg)  cont = simplExprF env fun $
Ian Lynagh's avatar
Ian Lynagh committed
865
                                      ApplyTo NoDup arg env cont
866

Ian Lynagh's avatar
Ian Lynagh committed
867
simplExprF' env expr@(Lam _ _) cont
868
  = simplLam env (map zap bndrs) body cont
Ian Lynagh's avatar
Ian Lynagh committed
869 870 871 872 873 874
        -- The main issue here is under-saturated lambdas
        --   (\x1. \x2. e) arg1
        -- Here x1 might have "occurs-once" occ-info, because occ-info
        -- is computed assuming that a group of lambdas is applied
        -- all at once.  If there are too few args, we must zap the
        -- occ-info.
875 876 877 878
  where
    n_args   = countArgs cont
    n_params = length bndrs
    (bndrs, body) = collectBinders expr
Ian Lynagh's avatar
Ian Lynagh committed
879
    zap | n_args >= n_params = \b -> b
880
        | otherwise          = \b -> if isTyCoVar b then b
Ian Lynagh's avatar
Ian Lynagh committed
881 882 883
                                     else zapLamIdInfo b
        -- NB: we count all the args incl type args
        -- so we must count all the binders (incl type lambdas)
884

885
simplExprF' env (Type ty) cont
886
  = ASSERT( contIsRhsOrArg cont )
887
    do  { ty' <- simplCoercion env ty
Ian Lynagh's avatar
Ian Lynagh committed
888
        ; rebuild env (Type ty') cont }
889

890
simplExprF' env (Case scrut bndr _ alts) cont
891
  | not (switchIsOn (getSwitchChecker env) NoCaseOfCase)
Ian Lynagh's avatar
Ian Lynagh committed
892
  =     -- Simplify the scrutinee with a Select continuation
893
    simplExprF env scrut (Select NoDup bndr alts env cont)
894

895
  | otherwise
Ian Lynagh's avatar
Ian Lynagh committed
896 897 898 899
  =     -- If case-of-case is off, simply simplify the case expression
        -- in a vanilla Stop context, and rebuild the result around it
    do  { case_expr' <- simplExprC env scrut case_cont
        ; rebuild env case_expr' cont }
900
  where
901
    case_cont = Select NoDup bndr alts env mkBoringStop
902

903
simplExprF' env (Let (Rec pairs) body) cont
Ian Lynagh's avatar
Ian Lynagh committed
904
  = do  { env' <- simplRecBndrs env (map fst pairs)
Ian Lynagh's avatar
Ian Lynagh committed
905 906
                -- NB: bndrs' don't have unfoldings or rules
                -- We add them as we go down
907

Ian Lynagh's avatar
Ian Lynagh committed
908 909
        ; env'' <- simplRecBind env' NotTopLevel pairs
        ; simplExprF env'' body cont }
910

911 912
simplExprF' env (Let (NonRec bndr rhs) body) cont
  = simplNonRecE env bndr (rhs, env) ([], body) cont
913 914

---------------------------------
915
simplType :: SimplEnv -> InType -> SimplM OutType
Ian Lynagh's avatar
Ian Lynagh committed
916
        -- Kept monadic just so we can do the seqType
917
simplType env ty
918
  = -- pprTrace "simplType" (ppr ty $$ ppr (seTvSubst env)) $
919
    seqType new_ty `seq` return new_ty
920
  where
921
    new_ty = substTy env ty
922 923 924

---------------------------------
simplCoercion :: SimplEnv -> InType -> SimplM OutType
925 926
-- The InType isn't *necessarily* a coercion, but it might be
-- (in a type application, say) and optCoercion is a no-op on types
927
simplCoercion env co
928 929 930
  = seqType new_co `seq` return new_co
  where 
    new_co = optCoercion (getTvSubst env) co
931 932 933
\end{code}


934
%************************************************************************
Ian Lynagh's avatar
Ian Lynagh committed
935
%*                                                                      *
936
\subsection{The main rebuilder}
Ian Lynagh's avatar
Ian Lynagh committed
937
%*                                                                      *
938 939 940 941 942 943
%************************************************************************

\begin{code}
rebuild :: SimplEnv -> OutExpr -> SimplCont -> SimplM (SimplEnv, OutExpr)
-- At this point the substitution in the SimplEnv should be irrelevant
-- only the in-scope set and floats should matter
Ian Lynagh's avatar
Ian Lynagh committed
944 945 946
rebuild env expr cont0
  = -- pprTrace "rebuild" (ppr expr $$ ppr cont0 $$ ppr (seFloats env)) $
    case cont0 of
Ian Lynagh's avatar
Ian Lynagh committed
947 948
      Stop {}                      -> return (env, expr)
      CoerceIt co cont             -> rebuild env (mkCoerce co expr) cont
949
      Select _ bndr alts se cont   -> rebuildCase (se `setFloats` env) expr bndr alts cont
950
      StrictArg info _ cont        -> rebuildCall env (info `addArgTo` expr) cont
951
      StrictBind b bs body se cont -> do { env' <- simplNonRecX (se `setFloats` env) b expr
Ian Lynagh's avatar
Ian Lynagh committed
952 953 954
                                         ; simplLam env' bs body cont }
      ApplyTo _ arg se cont        -> do { arg' <- simplExpr (se `setInScope` env) arg
                                         ; rebuild env (App expr arg') cont }
955 956 957
\end{code}