1. 22 Dec, 2011 1 commit
  2. 05 Dec, 2011 1 commit
    • Simon Peyton Jones's avatar
      Allow full constraint solving under a for-all (Trac #5595) · 2e6dcdf7
      Simon Peyton Jones authored
      The main idea is that when we unify
          forall a. t1  ~  forall a. t2
      we get constraints from unifying t1~t2 that mention a.
      We are producing a coercion witnessing the equivalence of
      the for-alls, and inside *that* coercion we need bindings
      for the solved constraints arising from t1~t2.
      We didn't have way to do this before.  The big change is
      that here's a new type TcEvidence.TcCoercion, which is
      much like Coercion.Coercion except that there's a slot
      for TcEvBinds in it.
      This has a wave of follow-on changes. Not deep but broad.
      * New module TcEvidence, which now contains the HsWrapper
        TcEvBinds, EvTerm etc types that used to be in HsBinds
      * The typechecker works exclusively in terms of TcCoercion.
      * The desugarer converts TcCoercion to Coercion
      * The main payload is in TcUnify.unifySigmaTy. This is the
        function that had a gross hack before, but is now beautiful.
      * LCoercion is gone!  Hooray.
      Many many fiddly changes in conssequence.  But it's nice.
  3. 29 Nov, 2011 1 commit
    • Simon Peyton Jones's avatar
      Refactor (again) the treatment of record-selector bindings · ac11b1f1
      Simon Peyton Jones authored
      We were generating them from the tcg_tcs field of the TcGblEnv,
      but that goes badly wrong when there are top-level Template
      Haskell splices, because the tcg_tcs field grows successively.
      If we generate record-selector binds for all the TyCons in the
      accumulated list, we generate them multiple times for TyCons
      earlier in the program.  This what was happening in Trac #5665:
        data T = T { x :: Int }
        $(f 4)  -- Top level splice
        ..more code..
      Here the record selector bindings for T were being generated
      Better instead to generate the record-selector bindings in
      TcTyClsDecls, right where the new TyCons are being declared (as indeed
      they were some time ago).  This pushed me into doing some refactoring:
      instead of returning the record bindings, tcTyAndClassDecls adds them
      to the tcg_binds field of the TcGblEnv.  I think the result is a bit
      nicer, and it has the additional merit of working.
  4. 28 Nov, 2011 1 commit
    • dimitris's avatar
      This patch includes: · f3183d9a
      dimitris authored
      0) Typo in panic message.
      1) prioritization of equalities over family equalities in the worklists.
      2) rewriting of inert substitutions and solveds on-the-spot instead of
         kicking them out in the inerts. This required a monadic map over
         substitutions hence the modifications in UniqFM.
      3) Just comments and removing stale commented code.
      4) Useful SCC for simplifyInfer.
      5) Making CoreStats outputable.
  5. 18 Nov, 2011 1 commit
    • Simon Marlow's avatar
      Track #included files for recompilation checking (#4900, #3589) · 3f34e091
      Simon Marlow authored
      This was pretty straightforward: collect the filenames in the lexer,
      and add them in to the tcg_dependent_files list that the typechecker
      Note that we still don't get #included files in the ghc -M output.
      Since we don't normally lex the whole file in ghc -M, this same
      mechanism can't be used directly.
  6. 16 Nov, 2011 1 commit
  7. 11 Nov, 2011 1 commit
    • dreixel's avatar
      New kind-polymorphic core · 09015be8
      dreixel authored
      This big patch implements a kind-polymorphic core for GHC. The current
      implementation focuses on making sure that all kind-monomorphic programs still
      work in the new core; it is not yet guaranteed that kind-polymorphic programs
      (using the new -XPolyKinds flag) will work.
      For more information, see http://haskell.org/haskellwiki/GHC/Kinds
  8. 05 Nov, 2011 1 commit
    • GregWeber's avatar
      addDependentFile #4900 · b994313a
      GregWeber authored
      Let GHC know about an external dependency that Template Haskell uses
      so that GHC can recompile when the dependency changes.
      No support for ghc -M
      There is a corresponding addition to the template-haskell library
  9. 01 Nov, 2011 1 commit
  10. 26 Oct, 2011 1 commit
  11. 25 Oct, 2011 1 commit
  12. 29 Sep, 2011 1 commit
  13. 21 Sep, 2011 1 commit
    • Simon Marlow's avatar
      Add support for all top-level declarations to GHCi · 3db75724
      Simon Marlow authored
        This is work mostly done by Daniel Winograd-Cort during his
        internship at MSR Cambridge, with some further refactoring by me.
      This commit adds support to GHCi for most top-level declarations that
      can be used in Haskell source files.  Class, data, newtype, type,
      instance are all supported, as are Type Family-related declarations.
      The current set of declarations are shown by :show bindings.  As with
      variable bindings, entities bound by newer declarations shadow earlier
      Tests are in testsuite/tests/ghci/scripts/ghci039--ghci054.
      Documentation to follow.
  14. 06 Sep, 2011 1 commit
    • batterseapower's avatar
      Implement -XConstraintKind · 9729fe7c
      batterseapower authored
      Basically as documented in http://hackage.haskell.org/trac/ghc/wiki/KindFact,
      this patch adds a new kind Constraint such that:
        Show :: * -> Constraint
        (?x::Int) :: Constraint
        (Int ~ a) :: Constraint
      And you can write *any* type with kind Constraint to the left of (=>):
      even if that type is a type synonym, type variable, indexed type or so on.
      The following (somewhat related) changes are also made:
       1. We now box equality evidence. This is required because we want
          to give (Int ~ a) the *lifted* kind Constraint
       2. For similar reasons, implicit parameters can now only be of
          a lifted kind. (?x::Int#) => ty is now ruled out
       3. Implicit parameter constraints are now allowed in superclasses
          and instance contexts (this just falls out as OK with the new
          constraint solver)
      Internally the following major changes were made:
       1. There is now no PredTy in the Type data type. Instead
          GHC checks the kind of a type to figure out if it is a predicate
       2. There is now no AClass TyThing: we represent classes as TyThings
          just as a ATyCon (classes had TyCons anyway)
       3. What used to be (~) is now pretty-printed as (~#). The box
          constructor EqBox :: (a ~# b) -> (a ~ b)
       4. The type LCoercion is used internally in the constraint solver
          and type checker to represent coercions with free variables
          of type (a ~ b) rather than (a ~# b)
  15. 16 Aug, 2011 1 commit
    • Simon Peyton Jones's avatar
      Major improvement to pattern bindings · 49dbe605
      Simon Peyton Jones authored
      This patch makes a number of related improvements
      a) Implements the Haskell Prime semantics for pattern bindings
         (Trac #2357).  That is, a pattern binding p = e is typed
         just as if it had been written
              t = e
              f = case t of p -> f
              g = case t of p -> g
              ... etc ...
         where f,g are the variables bound by p. In paricular it's
         ok to say
            (f,g) = (\x -> x, \y -> True)
         and f and g will get propertly inferred types
            f :: a -> a
            g :: a -> Int
      b) Eliminates the MonoPatBinds flag altogether.  (For the moment
         it is deprecated and has no effect.)  Pattern bindings are now
         generalised as per (a).  Fixes Trac #2187 and #4940, in the
         way the users wanted!
      c) Improves the OutsideIn algorithm generalisation decision.
         Given a definition without a type signature (implying "infer
         the type"), the published algorithm rule is this:
            - generalise *top-level* functions, and
            - do not generalise *nested* functions
         The new rule is
            - generalise a binding whose free variables have
              Guaranteed Closed Types
            - do not generalise other bindings
         Generally, a top-level let-bound function has a Guaranteed
         Closed Type, and so does a nested function whose free vaiables
         are top-level functions, and so on. (However a top-level
         function that is bitten by the Monomorphism Restriction does
         not have a GCT.)
           f x = let { foo y = y } in ...
         Here 'foo' has no free variables, so it is generalised despite
         being nested.
      d) When inferring a type f :: ty for a definition f = e, check that
         the compiler would accept f :: ty as a type signature for that
         same definition.  The type is rejected precisely when the type
         is ambiguous.
            class Wob a b where
              to :: a -> b
              from :: b -> a
            foo x = [x, to (from x)]
         GHC 7.0 would infer the ambiguous type
            foo :: forall a b. Wob a b => b -> [b]
         but that type would give an error whenever it is called; and
         GHC 7.0 would reject that signature if given by the
         programmer.  The new type checker rejects it up front.
         Similarly, with the advent of type families, ambiguous types are
         easy to write by mistake.  See Trac #1897 and linked tickets for
         many examples.  Eg
            type family F a :: *
            f ::: F a -> Int
            f x = 3
         This is rejected because (F a ~ F b) does not imply a~b.  Previously
         GHC would *infer* the above type for f, but was unable to check it.
         Now even the inferred type is rejected -- correctly.
      The main implemenation mechanism is to generalise the abe_wrap
      field of ABExport (in HsBinds), from [TyVar] to HsWrapper. This
      beautiful generalisation turned out to make everything work nicely
      with minimal programming effort.  All the work was fiddling around
      the edges; the core change was easy!
  16. 29 Jul, 2011 1 commit
  17. 20 Jul, 2011 1 commit
    • Simon Marlow's avatar
      Fix #481: use a safe recompilation check when Template Haskell is · 48bc81ad
      Simon Marlow authored
      being used.
      We now track whether a module used any TH splices in the ModIface (and
      at compile time in the TcGblEnv and ModGuts).  If a module used TH
      splices last time it was compiled, then we ignore the results of the
      normal recompilation check and recompile anyway, *unless* the module
      is "stable" - that is, none of its dependencies (direct or indirect)
      have changed.  The stability test is pretty important - otherwise ghc
      --make would always recompile TH modules even if nothing at all had
      changed, but it does require some extra plumbing to get this
      information from GhcMake into HscMain.
      test in driver/recomp009
  18. 14 Jul, 2011 2 commits
  19. 18 Jun, 2011 1 commit
  20. 10 Jun, 2011 1 commit
  21. 09 Jun, 2011 1 commit
    • Ian Lynagh's avatar
      Refactor SrcLoc and SrcSpan · b2bd63f9
      Ian Lynagh authored
      The "Unhelpful" cases are now in a separate type. This allows us to
      improve various things, e.g.:
      * Most of the panic's in SrcLoc are now gone
      * The Lexer now works with RealSrcSpans rather than SrcSpans, i.e. it
        knows that it has real locations and thus can assume that the line
        number etc really exists
      * Some of the more suspicious cases are no longer necessary, e.g.
        we no longer need this case in advanceSrcLoc:
            advanceSrcLoc loc _ = loc -- Better than nothing
      More improvements can probably be made, e.g. tick locations can
      probably use RealSrcSpans too.
  22. 04 May, 2011 1 commit
    • Simon Peyton Jones's avatar
      Final batch of monad-comprehension stuff · 3bb700d5
      Simon Peyton Jones authored
      * Do-notation in arrows is marked with HsStmtContext = ArrowExpr
      * tcMDoStmt (which was only used for arrows) is moved
        to TcArrows, and renamed tcArrDoStmt
      * Improved documentation in the user manual
      * Lots of other minor changes
  23. 19 Apr, 2011 1 commit
    • Simon Peyton Jones's avatar
      This BIG PATCH contains most of the work for the New Coercion Representation · fdf86568
      Simon Peyton Jones authored
      See the paper "Practical aspects of evidence based compilation in System FC"
      * Coercion becomes a data type, distinct from Type
      * Coercions become value-level things, rather than type-level things,
        (although the value is zero bits wide, like the State token)
        A consequence is that a coerion abstraction increases the arity by 1
        (just like a dictionary abstraction)
      * There is a new constructor in CoreExpr, namely Coercion, to inject
        coercions into terms
  24. 07 Apr, 2011 1 commit
    • Thomas Schilling's avatar
      Start support for coloured SDoc output. · 4e6bac1e
      Thomas Schilling authored
      The SDoc type now passes around an abstract SDocContext rather than
      just a PprStyle which required touching a few more files.  This should
      also make it easier to integrate DynFlags passing, so that we can get
      rid of global variables.
  25. 06 Apr, 2011 1 commit
  26. 05 Apr, 2011 1 commit
  27. 20 Feb, 2011 1 commit
    • chak@cse.unsw.edu.au.'s avatar
      Added a VECTORISE pragma · f2aaae97
      chak@cse.unsw.edu.au. authored
      - Added a pragma {-# VECTORISE var = exp #-} that prevents
        the vectoriser from vectorising the definition of 'var'.
        Instead it uses the binding '$v_var = exp' to vectorise
        'var'.  The vectoriser checks that the Core type of 'exp'
        matches the vectorised Core type of 'var'.  (It would be
        quite complicated to perform that check in the type checker
        as the vectorisation of a type needs the state of the VM
      - Added parts of a related VECTORISE SCALAR pragma
      - Documented -ddump-vect
      - Added -ddump-vt-trace
      - Some clean up
  28. 12 Jan, 2011 1 commit
    • simonpj@microsoft.com's avatar
      Major refactoring of the type inference engine · 27310213
      simonpj@microsoft.com authored
      This patch embodies many, many changes to the contraint solver, which
      make it simpler, more robust, and more beautiful.  But it has taken
      me ages to get right. The forcing issue was some obscure programs
      involving recursive dictionaries, but these eventually led to a
      massive refactoring sweep.
      Main changes are:
       * No more "frozen errors" in the monad.  Instead "insoluble
         constraints" are now part of the WantedConstraints type.
       * The WantedConstraint type is a product of bags, instead of (as
         before) a bag of sums.  This eliminates a good deal of tagging and
       * This same WantedConstraints data type is used
           - As the way that constraints are gathered
           - As a field of an implication constraint
           - As both argument and result of solveWanted
           - As the argument to reportUnsolved
       * We do not generate any evidence for Derived constraints. They are
         purely there to allow "impovement" by unifying unification
       * In consequence, nothing is ever *rewritten* by a Derived
         constraint.  This removes, by construction, all the horrible
         potential recursive-dictionary loops that were making us tear our
         hair out.  No more isGoodRecEv search either. Hurrah!
       * We add the superclass Derived constraints during canonicalisation,
         after checking for duplicates.  So fewer superclass constraints
         are generated than before.
       * Skolem tc-tyvars no longer carry SkolemInfo.  Instead, the
         SkolemInfo lives in the GivenLoc of the Implication, where it
         can be tidied, zonked, and substituted nicely.  This alone is
         a major improvement.
       * Tidying is improved, so that we tend to get t1, t2, t3, rather
         than t1, t11, t111, etc
         Moreover, unification variables are always printed with a digit
         (thus a0, a1, etc), so that plain 'a' is available for a skolem
         arising from a type signature etc. In this way,
           (a) We quietly say which variables are unification variables,
               for those who know and care
           (b) Types tend to get printed as the user expects.  If he writes
                   f :: a -> a
                   f = ...blah...
               then types involving 'a' get printed with 'a', rather than
               some tidied variant.
       * There are significant improvements in error messages, notably
         in the "Cannot deduce X from Y" messages.
  29. 22 Dec, 2010 1 commit
  30. 15 Dec, 2010 1 commit
  31. 02 Dec, 2010 1 commit
  32. 27 Oct, 2010 1 commit
    • Simon Marlow's avatar
      Refactoring and tidyup of HscMain and related things (also fix #1666) · 94bf0d36
      Simon Marlow authored
      While trying to fix #1666 (-Werror aborts too early) I decided to some
      tidyup in GHC/DriverPipeline/HscMain.
       - The GhcMonad overloading is gone from DriverPipeline and HscMain
         now.  GhcMonad is now defined in a module of its own, and only
         used in the top-level GHC layer.  DriverPipeline and HscMain
         use the plain IO monad and take HscEnv as an argument.
       - WarnLogMonad is gone.  printExceptionAndWarnings is now called
         printException (the old name is deprecated).  Session no longer
         contains warnings.
       - HscMain has its own little monad that collects warnings, and also
         plumbs HscEnv around.  The idea here is that warnings are collected
         while we're in HscMain, but on exit from HscMain (any function) we
         check for warnings and either print them (via log_action, so IDEs
         can still override the printing), or turn them into an error if
         -Werror is on.
       - GhcApiCallbacks is gone, along with GHC.loadWithLogger.  Thomas
         Schilling told me he wasn't using these, and I don't see a good
         reason to have them.
       - there's a new pure API to the parser (suggestion from Neil Mitchell):
            parser :: String
                   -> DynFlags
                   -> FilePath
                   -> Either ErrorMessages (WarningMessages, 
                                            Located (HsModule RdrName))
  33. 23 Oct, 2010 1 commit
  34. 21 Oct, 2010 2 commits
  35. 13 Oct, 2010 1 commit
    • simonpj@microsoft.com's avatar
      Remove GHC.extendGlobalRdrScope, GHC.extendGlobalTypeScope · 762c2432
      simonpj@microsoft.com authored
      These functions were added by
         Tue Apr 18 03:36:06 BST 2006  Lemmih <lemmih@gmail.com>
         * Make the initial rdr and type scope available in the ghc-api
      The are extremely dubious, because they extend the Rdr and Type
      env for every compilation.  The right thing to do is to use
      the InteractiveContext for temporary extensions.
      So far as we know, no one uses them.  And if they are being used
      it's probably a mistake.  So we're backing them out.
  36. 08 Oct, 2010 1 commit
    • simonpj@microsoft.com's avatar
      Beautiful new approach to the skolem-escape check and untouchable · debb7b80
      simonpj@microsoft.com authored
      Instead of keeping a *set* of untouchable variables in each
      implication contraints, we keep a *range* of uniques for the
      *touchable* variables of an implication.  This are precisely
      the ones we would call the "existentials" if we were French.
      It turns out that the code is more efficient, and vastly easier
      to get right, than the set-based approach.
      Fixes Trac #4355 among others
  37. 07 Oct, 2010 1 commit
    • simonpj@microsoft.com's avatar
      Implement auto-specialisation of imported Ids · 92267aa2
      simonpj@microsoft.com authored
      This big-ish patch arranges that if an Id 'f' is 
        * Type-class overloaded 
             f :: Ord a => [a] -> [a]
        * Defined with an INLINABLE pragma
             {-# INLINABLE f #-}
        * Exported from its defining module 'D'
      then in any module 'U' that imports D
      1. Any call of 'f' at a fixed type will generate 
         (a) a specialised version of f in U
         (b) a RULE that rewrites unspecialised calls to the
             specialised on
        e.g. if the call is (f Int dOrdInt xs) then the 
        specialiser will generate
           $sfInt :: [Int] -> [Int]
           $sfInt = <code for f, imported from D, specialised>
           {-# RULE forall d.  f Int d = $sfInt #-}
      2. In addition, you can give an explicit {-# SPECIALISE -#}
         pragma for the imported Id
           {-# SPECIALISE f :: [Bool] -> [Bool] #-}
         This too generates a local specialised definition, 
         and the corresponding RULE 
      The new RULES are exported from module 'U', so that any module
      importing U will see the specialised versions of 'f', and will
      not re-specialise them.
      There's a flag -fwarn-auto-orphan that warns you if the auto-generated
      RULES are orphan rules. It's not in -Wall, mainly to avoid lots of
      error messages with existing packages.
      Main implementation changes
       - A new flag on a CoreRule to say if it was auto-generated.
         This is persisted across interface files, so there's a small
         change in interface file format.
       - Quite a bit of fiddling with plumbing, to get the 
         {-# SPECIALISE #-} pragmas for imported Ids.  In particular, a
         new field tgc_imp_specs in TcGblEnv, to keep the specialise
         pragmas for imported Ids between the typechecker and the desugarer.
       - Some new code (although surprisingly little) in Specialise,
         to deal with calls of imported Ids
  38. 06 Oct, 2010 1 commit