1. 11 Jan, 2013 2 commits
  2. 22 Dec, 2012 1 commit
    • eir@cis.upenn.edu's avatar
      Implement overlapping type family instances. · 8366792e
      eir@cis.upenn.edu authored
      An ordered, overlapping type family instance is introduced by 'type
      instance
      where', followed by equations. See the new section in the user manual
      (7.7.2.2) for details. The canonical example is Boolean equality at the
      type
      level:
      
      type family Equals (a :: k) (b :: k) :: Bool
      type instance where
        Equals a a = True
        Equals a b = False
      
      A branched family instance, such as this one, checks its equations in
      order
      and applies only the first the matches. As explained in the note
      [Instance
      checking within groups] in FamInstEnv.lhs, we must be careful not to
      simplify,
      say, (Equals Int b) to False, because b might later unify with Int.
      
      This commit includes all of the commits on the overlapping-tyfams
      branch. SPJ
      requested that I combine all my commits over the past several months
      into one
      monolithic commit. The following GHC repos are affected: ghc, testsuite,
      utils/haddock, libraries/template-haskell, and libraries/dph.
      
      Here are some details for the interested:
      
      - The definition of CoAxiom has been moved from TyCon.lhs to a
        new file CoAxiom.lhs. I made this decision because of the
        number of definitions necessary to support BranchList.
      
      - BranchList is a GADT whose type tracks whether it is a
        singleton list or not-necessarily-a-singleton-list. The reason
        I introduced this type is to increase static checking of places
        where GHC code assumes that a FamInst or CoAxiom is indeed a
        singleton. This assumption takes place roughly 10 times
        throughout the code. I was worried that a future change to GHC
        would invalidate the assumption, and GHC might subtly fail to
        do the right thing. By explicitly labeling CoAxioms and
        FamInsts as being Unbranched (singleton) or
        Branched (not-necessarily-singleton), we make this assumption
        explicit and checkable. Furthermore, to enforce the accuracy of
        this label, the list of branches of a CoAxiom or FamInst is
        stored using a BranchList, whose constructors constrain its
        type index appropriately.
      
      I think that the decision to use BranchList is probably the most
      controversial decision I made from a code design point of view.
      Although I provide conversions to/from ordinary lists, it is more
      efficient to use the brList... functions provided in CoAxiom than
      always to convert. The use of these functions does not wander far
      from the core CoAxiom/FamInst logic.
      
      BranchLists are motivated and explained in the note [Branched axioms] in
      CoAxiom.lhs.
      
      - The CoAxiom type has changed significantly. You can see the new
        type in CoAxiom.lhs. It uses a CoAxBranch type to track
        branches of the CoAxiom. Correspondingly various functions
        producing and consuming CoAxioms had to change, including the
        binary layout of interface files.
      
      - To get branched axioms to work correctly, it is important to have a
        notion
        of type "apartness": two types are apart if they cannot unify, and no
        substitution of variables can ever get them to unify, even after type
      family
        simplification. (This is different than the normal failure to unify
      because
        of the type family bit.) This notion in encoded in tcApartTys, in
      Unify.lhs.
        Because apartness is finer-grained than unification, the tcUnifyTys
      now
        calls tcApartTys.
      
      - CoreLinting axioms has been updated, both to reflect the new
        form of CoAxiom and to enforce the apartness rules of branch
        application. The formalization of the new rules is in
        docs/core-spec/core-spec.pdf.
      
      - The FamInst type (in types/FamInstEnv.lhs) has changed
        significantly, paralleling the changes to CoAxiom. Of course,
        this forced minor changes in many files.
      
      - There are several new Notes in FamInstEnv.lhs, including one
        discussing confluent overlap and why we're not doing it.
      
      - lookupFamInstEnv, lookupFamInstEnvConflicts, and
        lookup_fam_inst_env' (the function that actually does the work)
        have all been more-or-less completely rewritten. There is a
        Note [lookup_fam_inst_env' implementation] describing the
        implementation. One of the changes that affects other files is
        to change the type of matches from a pair of (FamInst, [Type])
        to a new datatype (which now includes the index of the matching
        branch). This seemed a better design.
      
      - The TySynInstD constructor in Template Haskell was updated to
        use the new datatype TySynEqn. I also bumped the TH version
        number, requiring changes to DPH cabal files. (That's why the
        DPH repo has an overlapping-tyfams branch.)
      
      - As SPJ requested, I refactored some of the code in HsDecls:
      
       * splitting up TyDecl into SynDecl and DataDecl, correspondingly
         changing HsTyDefn to HsDataDefn (with only one constructor)
      
       * splitting FamInstD into TyFamInstD and DataFamInstD and
         splitting FamInstDecl into DataFamInstDecl and TyFamInstDecl
      
       * making the ClsInstD take a ClsInstDecl, for parallelism with
         InstDecl's other constructors
      
       * changing constructor TyFamily into FamDecl
      
       * creating a FamilyDecl type that stores the details for a family
         declaration; this is useful because FamilyDecls can appear in classes
      but
         other decls cannot
      
       * restricting the associated types and associated type defaults for a
       * class
         to be the new, more restrictive types
      
       * splitting cid_fam_insts into cid_tyfam_insts and cid_datafam_insts,
         according to the new types
      
       * perhaps one or two more that I'm overlooking
      
      None of these changes has far-reaching implications.
      
      - The user manual, section 7.7.2.2, is updated to describe the new type
        family
        instances.
      8366792e
  3. 19 Dec, 2012 1 commit
  4. 26 Nov, 2012 1 commit
    • Simon Peyton Jones's avatar
      Accurately report usage of newtype data constructors in FFI declarations · c8f4f509
      Simon Peyton Jones authored
      See Note [Newtype constructor usage in foreign declarations] in TcForeign.
      It's quite non-trivial to say which newtype constructor are used in
      foreign import/export declarations, and I had to do a bit of refactoring
      to achieve it.  (Say hello to the X5 bus from Oxford to Cambridge.)
      It's a bit tiresome, with some more plumbing, but not hard.
      
      Trac #7048 triggered this change.
      c8f4f509
  5. 08 Oct, 2012 1 commit
    • Simon Marlow's avatar
      Produce new-style Cmm from the Cmm parser · a7c0387d
      Simon Marlow authored
      The main change here is that the Cmm parser now allows high-level cmm
      code with argument-passing and function calls.  For example:
      
      foo ( gcptr a, bits32 b )
      {
        if (b > 0) {
           // we can make tail calls passing arguments:
           jump stg_ap_0_fast(a);
        }
      
        return (x,y);
      }
      
      More details on the new cmm syntax are in Note [Syntax of .cmm files]
      in CmmParse.y.
      
      The old syntax is still more-or-less supported for those occasional
      code fragments that really need to explicitly manipulate the stack.
      However there are a couple of differences: it is now obligatory to
      give a list of live GlobalRegs on every jump, e.g.
      
        jump %ENTRY_CODE(Sp(0)) [R1];
      
      Again, more details in Note [Syntax of .cmm files].
      
      I have rewritten most of the .cmm files in the RTS into the new
      syntax, except for AutoApply.cmm which is generated by the genapply
      program: this file could be generated in the new syntax instead and
      would probably be better off for it, but I ran out of enthusiasm.
      
      Some other changes in this batch:
      
       - The PrimOp calling convention is gone, primops now use the ordinary
         NativeNodeCall convention.  This means that primops and "foreign
         import prim" code must be written in high-level cmm, but they can
         now take more than 10 arguments.
      
       - CmmSink now does constant-folding (should fix #7219)
      
       - .cmm files now go through the cmmPipeline, and as a result we
         generate better code in many cases.  All the object files generated
         for the RTS .cmm files are now smaller.  Performance should be
         better too, but I haven't measured it yet.
      
       - RET_DYN frames are removed from the RTS, lots of code goes away
      
       - we now have some more canned GC points to cover unboxed-tuples with
         2-4 pointers, which will reduce code size a little.
      a7c0387d
  6. 05 Jun, 2012 1 commit
  7. 03 May, 2012 1 commit
  8. 24 Apr, 2012 1 commit
  9. 04 Apr, 2012 2 commits
  10. 18 Mar, 2012 1 commit
  11. 26 Feb, 2012 1 commit
    • Ian Lynagh's avatar
      Implement "value" imports with the CAPI · ae04bd43
      Ian Lynagh authored
      This allows us to import values (i.e. non-functions) with the CAPI.
      This means we can access values even if (on some or all platforms)
      they are simple #defines.
      ae04bd43
  12. 21 Feb, 2012 1 commit
  13. 19 Jan, 2012 1 commit
  14. 13 Jan, 2012 1 commit
  15. 12 Jan, 2012 1 commit
    • Simon Peyton Jones's avatar
      Implememt -fdefer-type-errors (Trac #5624) · 5508ada4
      Simon Peyton Jones authored
      This patch implements the idea of deferring (most) type errors to
      runtime, instead emitting only a warning at compile time.  The
      basic idea is very simple:
      
       * The on-the-fly unifier in TcUnify never fails; instead if it
         gets stuck it emits a constraint.
      
       * The constraint solver tries to solve the constraints (and is
         entirely unchanged, hooray).
      
       * The remaining, unsolved constraints (if any) are passed to
         TcErrors.reportUnsolved.  With -fdefer-type-errors, instead of
         emitting an error message, TcErrors emits a warning, AND emits
         a binding for the constraint witness, binding it
         to (error "the error message"), via the new form of evidence
         TcEvidence.EvDelayedError.  So, when the program is run,
         when (and only when) that witness is needed, the program will
         crash with the exact same error message that would have been
         given at compile time.
      
      Simple really.  But, needless to say, the exercise forced me
      into some major refactoring.
      
       * TcErrors is almost entirely rewritten
      
       * EvVarX and WantedEvVar have gone away entirely
      
       * ErrUtils is changed a bit:
           * New Severity field in ErrMsg
           * Renamed the type Message to MsgDoc (this change
             touches a lot of files trivially)
      
       * One minor change is that in the constraint solver we try
         NOT to combine insoluble constraints, like Int~Bool, else
         all such type errors get combined together and result in
         only one error message!
      
       * I moved some definitions from TcSMonad to TcRnTypes,
         where they seem to belong more
      5508ada4
  16. 19 Dec, 2011 1 commit
  17. 13 Dec, 2011 1 commit
  18. 05 Dec, 2011 1 commit
    • Simon Peyton Jones's avatar
      Allow full constraint solving under a for-all (Trac #5595) · 2e6dcdf7
      Simon Peyton Jones authored
      The main idea is that when we unify
          forall a. t1  ~  forall a. t2
      we get constraints from unifying t1~t2 that mention a.
      We are producing a coercion witnessing the equivalence of
      the for-alls, and inside *that* coercion we need bindings
      for the solved constraints arising from t1~t2.
      
      We didn't have way to do this before.  The big change is
      that here's a new type TcEvidence.TcCoercion, which is
      much like Coercion.Coercion except that there's a slot
      for TcEvBinds in it.
      
      This has a wave of follow-on changes. Not deep but broad.
      
      * New module TcEvidence, which now contains the HsWrapper
        TcEvBinds, EvTerm etc types that used to be in HsBinds
      
      * The typechecker works exclusively in terms of TcCoercion.
      
      * The desugarer converts TcCoercion to Coercion
      
      * The main payload is in TcUnify.unifySigmaTy. This is the
        function that had a gross hack before, but is now beautiful.
      
      * LCoercion is gone!  Hooray.
      
      Many many fiddly changes in conssequence.  But it's nice.
      2e6dcdf7
  19. 28 Nov, 2011 1 commit
    • Ian Lynagh's avatar
      Implement a capi calling convention; fixes #2979 · 36f8cabe
      Ian Lynagh authored
      In GHC, this provides an easy way to call a C function via a C wrapper.
      This is important when the function is really defined by CPP.
      
      Requires the new CApiFFI extension.
      
      Not documented yet, as it's still an experimental feature at this stage.
      36f8cabe
  20. 24 Nov, 2011 1 commit
    • Simon Marlow's avatar
      Relax the restriction on using abstract newtypes in FFI declarations. · c6b0fd62
      Simon Marlow authored
      Given the high impact of this change, we decided to back off and make
      abstract newtypes give a warning for one release, before we make it an
      error in 7.6.1.
      
      Codec/Compression/Zlib/Stream.hsc:884:1:
          Warning: newtype `CInt' is used in an FFI declaration,
                   but its constructor is not in scope.
                   This will become an error in GHC 7.6.1.
          When checking declaration:
            foreign import ccall unsafe "static zlib.h deflate" c_deflate
              :: StreamState -> CInt -> IO CInt
      c6b0fd62
  21. 08 Nov, 2011 1 commit
  22. 01 Nov, 2011 1 commit
  23. 26 Oct, 2011 1 commit
  24. 25 Oct, 2011 1 commit
  25. 20 Oct, 2011 1 commit
  26. 14 Oct, 2011 1 commit
  27. 01 Oct, 2011 1 commit
  28. 11 Sep, 2011 1 commit
  29. 14 Jul, 2011 1 commit
    • Ian Lynagh's avatar
      Separate the warning flags into their own datatype · 493ea4ab
      Ian Lynagh authored
      The -w flag wasn't turning off a few warnings (Opt_WarnMissingImportList,
      Opt_WarnMissingLocalSigs, Opt_WarnIdentities). Rather than just adding
      them, I've separated the Opt_Warn* contructors off into their own type,
      so -w now just sets the list of warning flags to [].
      493ea4ab
  30. 13 Jul, 2011 1 commit
  31. 18 Jun, 2011 1 commit
  32. 26 Apr, 2011 1 commit
  33. 24 Sep, 2010 1 commit
  34. 18 Sep, 2010 1 commit
  35. 13 Sep, 2010 1 commit
  36. 08 Jul, 2010 1 commit
    • Sergei Trofimovich's avatar
      alpha: switch handling of 'foreign import wrapper' (FIW) to libffi · a8dc46dc
      Sergei Trofimovich authored
      I tried to build ghc-6.12.3 and found out FIW part of code
      does not compile anymore. It uses absent functions under #ifdef.
      Instead of fixing it I just switched to libffi. Result built successfully
      and passed 'foreign import wrapper' test I wrote for trac ticket #3516.
      
      I didn't try to build -HEAD yet, but this patch only removes code, so
      it should not make -HEAD worse.
      a8dc46dc
  37. 15 Jun, 2010 1 commit
  38. 04 Jan, 2010 1 commit