1. 06 Sep, 2006 1 commit
  2. 04 Aug, 2006 1 commit
    • simonpj@microsoft.com's avatar
      Do pre-subsumption in the main subsumption check · af20907a
      simonpj@microsoft.com authored
      This patch improves the subsumption check (in TcUnify.tc_sub) so that
      it does pre-subsumption first.  The key code is in the case with
      guard (isSigmaTy actual_ty); note the new call to preSubType.
      
      Shorn of details, the question is this.  Should this hold?
      
      	forall a. a->a   <=   Int -> (forall b. Int)
      
      Really, it should; just instantiate 'a' to Int.  This is just what
      the pre-subsumption phase (which used in function applications),
      will do.
      
      I did a bit of refactoring to achieve this.
      
      Fixes Trac #821.  Test tc205 tests.
      af20907a
  3. 04 Jul, 2006 1 commit
  4. 12 Jul, 2006 1 commit
  5. 23 Jun, 2006 1 commit
  6. 18 Apr, 2006 1 commit
  7. 11 Apr, 2006 1 commit
    • simonpj@microsoft.com's avatar
      Allow IO to be wrapped in a newtype in foreign import/export · fb0f3349
      simonpj@microsoft.com authored
      Up to now, the silent unwrapping of newtypes in foreign import/export
      has been limited to data values.  But it's useful for the IO monad
      itself:
      
      	newtype MyIO a = MIO (IO a)
      
      	foreign import foo :: Int -> MyIO Int
      
      This patch allows the IO monad to be
      wrapped too. This applies to foreign import "dynamic" and "wrapper", 
      thus
         foreign import "wrapper" foo :: MyIO () -> HisIO (FunPtr (MyIO ())) 
      
      Warning: I did on the plane, and I'm no longer sure if its 100% 
      complete, so needs more testing.  In particular the wrapper/dynamic bit.
      fb0f3349
  8. 07 Apr, 2006 1 commit
    • Simon Marlow's avatar
      Reorganisation of the source tree · 0065d5ab
      Simon Marlow authored
      Most of the other users of the fptools build system have migrated to
      Cabal, and with the move to darcs we can now flatten the source tree
      without losing history, so here goes.
      
      The main change is that the ghc/ subdir is gone, and most of what it
      contained is now at the top level.  The build system now makes no
      pretense at being multi-project, it is just the GHC build system.
      
      No doubt this will break many things, and there will be a period of
      instability while we fix the dependencies.  A straightforward build
      should work, but I haven't yet fixed binary/source distributions.
      Changes to the Building Guide will follow, too.
      0065d5ab
  9. 23 Feb, 2006 1 commit
  10. 25 Jan, 2006 1 commit
    • simonpj@microsoft.com's avatar
      Simon's big boxy-type commit · ac10f840
      simonpj@microsoft.com authored
      This very large commit adds impredicativity to GHC, plus
      numerous other small things.
        
      *** WARNING: I have compiled all the libraries, and
      ***	     a stage-2 compiler, and everything seems
      ***	     fine.  But don't grab this patch if you 
      ***	     can't tolerate a hiccup if something is
      ***	     broken.
        
      The big picture is this:
      
      a) GHC handles impredicative polymorphism, as described in the
         "Boxy types: type inference for higher-rank types and
         impredicativity" paper
      
      b) GHC handles GADTs in the new simplified (and very sligtly less
         epxrssive) way described in the
         "Simple unification-based type inference for GADTs" paper
      
        
      But there are lots of smaller changes, and since it was pre-Darcs
      they are not individually recorded.
        
      Some things to watch out for:
        
      c)   The story on lexically-scoped type variables has changed, as per
           my email.  I append the story below for completeness, but I 
           am still not happy with it, and it may change again.  In particular,
           the new story does not allow a pattern-bound scoped type variable
           to be wobbly, so (\(x::[a]) -> ...) is usually rejected.  This is
           more restrictive than before, and we might loosen up again.
        
      d)   A consequence of adding impredicativity is that GHC is a bit less
           gung ho about converting automatically between
        	(ty1 -> forall a. ty2)    and    (forall a. ty1 -> ty2)
           In particular, you may need to eta-expand some functions to make
           typechecking work again.
         
           Furthermore, functions are now invariant in their argument types,
           rather than being contravariant.  Again, the main consequence is
           that you may occasionally need to eta-expand function arguments when
           using higher-rank polymorphism.
        
      
      Please test, and let me know of any hiccups
      
      
      Scoped type variables in GHC
      ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
      	January 2006
      
      0) Terminology.
         
         A *pattern binding* is of the form
      	pat = rhs
      
         A *function binding* is of the form
      	f pat1 .. patn = rhs
      
         A binding of the formm
      	var = rhs
         is treated as a (degenerate) *function binding*.
      
      
         A *declaration type signature* is a separate type signature for a
         let-bound or where-bound variable:
      	f :: Int -> Int
      
         A *pattern type signature* is a signature in a pattern: 
      	\(x::a) -> x
      	f (x::a) = x
      
         A *result type signature* is a signature on the result of a
         function definition:
      	f :: forall a. [a] -> a
      	head (x:xs) :: a = x
      
         The form
      	x :: a = rhs
         is treated as a (degnerate) function binding with a result
         type signature, not as a pattern binding.
      
      1) The main invariants:
      
           A) A lexically-scoped type variable always names a (rigid)
       	type variable (not an arbitrary type).  THIS IS A CHANGE.
              Previously, a scoped type variable named an arbitrary *type*.
      
           B) A type signature always describes a rigid type (since
      	its free (scoped) type variables name rigid type variables).
      	This is also a change, a consequence of (A).
      
           C) Distinct lexically-scoped type variables name distinct
      	rigid type variables.  This choice is open; 
      
      2) Scoping
      
      2(a) If a declaration type signature has an explicit forall, those type
         variables are brought into scope in the right hand side of the 
         corresponding binding (plus, for function bindings, the patterns on
         the LHS).  
      	f :: forall a. a -> [a]
      	f (x::a) = [x :: a, x]
         Both occurences of 'a' in the second line are bound by 
         the 'forall a' in the first line
      
         A declaration type signature *without* an explicit top-level forall
         is implicitly quantified over all the type variables that are
         mentioned in the type but not already in scope.  GHC's current
         rule is that this implicit quantification does *not* bring into scope
         any new scoped type variables.
      	f :: a -> a
      	f x = ...('a' is not in scope here)...
         This gives compatibility with Haskell 98
      
      2(b) A pattern type signature implicitly brings into scope any type
         variables mentioned in the type that are not already into scope.
         These are called *pattern-bound type variables*.
      	g :: a -> a -> [a]
      	g (x::a) (y::a) = [y :: a, x]
         The pattern type signature (x::a) brings 'a' into scope.
         The 'a' in the pattern (y::a) is bound, as is the occurrence on 
         the RHS.  
      
         A pattern type siganture is the only way you can bring existentials 
         into scope.
      	data T where
      	  MkT :: forall a. a -> (a->Int) -> T
      
      	f x = case x of
      		MkT (x::a) f -> f (x::a)
      
      2a) QUESTION
      	class C a where
      	  op :: forall b. b->a->a
      
      	instance C (T p q) where
      	  op = <rhs>
          Clearly p,q are in scope in <rhs>, but is 'b'?  Not at the moment.
          Nor can you add a type signature for op in the instance decl.
          You'd have to say this:
      	instance C (T p q) where
      	  op = let op' :: forall b. ...
      	           op' = <rhs>
      	       in op'
      
      3) A pattern-bound type variable is allowed only if the pattern's
         expected type is rigid.  Otherwise we don't know exactly *which*
         skolem the scoped type variable should be bound to, and that means
         we can't do GADT refinement.  This is invariant (A), and it is a 
         big change from the current situation.
      
      	f (x::a) = x	-- NO; pattern type is wobbly
      	
      	g1 :: b -> b
      	g1 (x::b) = x	-- YES, because the pattern type is rigid
      
      	g2 :: b -> b
      	g2 (x::c) = x	-- YES, same reason
      
      	h :: forall b. b -> b
      	h (x::b) = x	-- YES, but the inner b is bound
      
      	k :: forall b. b -> b
      	k (x::c) = x	-- NO, it can't be both b and c
      
      3a) You cannot give different names for the same type variable in the same scope
          (Invariant (C)):
      
      	f1 :: p -> p -> p		-- NO; because 'a' and 'b' would be
      	f1 (x::a) (y::b) = (x::a)	--     bound to the same type variable
      
      	f2 :: p -> p -> p		-- OK; 'a' is bound to the type variable
      	f2 (x::a) (y::a) = (x::a)	--     over which f2 is quantified
      					-- NB: 'p' is not lexically scoped
      
      	f3 :: forall p. p -> p -> p	-- NO: 'p' is now scoped, and is bound to
      	f3 (x::a) (y::a) = (x::a)	--     to the same type varialble as 'a'
      
      	f4 :: forall p. p -> p -> p	-- OK: 'p' is now scoped, and its occurences
      	f4 (x::p) (y::p) = (x::p)	--     in the patterns are bound by the forall
      
      
      3b) You can give a different name to the same type variable in different
          disjoint scopes, just as you can (if you want) give diferent names to 
          the same value parameter
      
      	g :: a -> Bool -> Maybe a
      	g (x::p) True  = Just x  :: Maybe p
      	g (y::q) False = Nothing :: Maybe q
      
      3c) Scoped type variables respect alpha renaming. For example, 
          function f2 from (3a) above could also be written:
      	f2' :: p -> p -> p
      	f2' (x::b) (y::b) = x::b
         where the scoped type variable is called 'b' instead of 'a'.
      
      
      4) Result type signatures obey the same rules as pattern types signatures.
         In particular, they can bind a type variable only if the result type is rigid
      
      	f x :: a = x	-- NO
      
      	g :: b -> b
      	g x :: b = x	-- YES; binds b in rhs
      
      5) A *pattern type signature* in a *pattern binding* cannot bind a 
         scoped type variable
      
      	(x::a, y) = ...		-- Legal only if 'a' is already in scope
      
         Reason: in type checking, the "expected type" of the LHS pattern is
         always wobbly, so we can't bind a rigid type variable.  (The exception
         would be for an existential type variable, but existentials are not
         allowed in pattern bindings either.)
       
         Even this is illegal
      	f :: forall a. a -> a
      	f x = let ((y::b)::a, z) = ... 
      	      in 
         Here it looks as if 'b' might get a rigid binding; but you can't bind
         it to the same skolem as a.
      
      6) Explicitly-forall'd type variables in the *declaration type signature(s)*
         for a *pattern binding* do not scope AT ALL.
      
      	x :: forall a. a->a	  -- NO; the forall a does 
      	Just (x::a->a) = Just id  --     not scope at all
      
      	y :: forall a. a->a
      	Just y = Just (id :: a->a)  -- NO; same reason
      
         THIS IS A CHANGE, but one I bet that very few people will notice.
         Here's why:
      
      	strange :: forall b. (b->b,b->b)
      	strange = (id,id)
      
      	x1 :: forall a. a->a
      	y1 :: forall b. b->b
      	(x1,y1) = strange
      
          This is legal Haskell 98 (modulo the forall). If both 'a' and 'b'
          both scoped over the RHS, they'd get unified and so cannot stand
          for distinct type variables. One could *imagine* allowing this:
         
      	x2 :: forall a. a->a
      	y2 :: forall a. a->a
      	(x2,y2) = strange
      
          using the very same type variable 'a' in both signatures, so that
          a single 'a' scopes over the RHS.  That seems defensible, but odd,
          because though there are two type signatures, they introduce just
          *one* scoped type variable, a.
      
      7) Possible extension.  We might consider allowing
      	\(x :: [ _ ]) -> <expr>
          where "_" is a wild card, to mean "x has type list of something", without
          naming the something.
      ac10f840
  11. 16 Nov, 2005 1 commit
    • simonpj's avatar
      [project @ 2005-11-16 12:55:58 by simonpj] · cdea9949
      simonpj authored
      Two significant changes to the representation of types
      
      1. Change the representation of type synonyms
      
          Up to now, type synonym applications have been held in
          *both* expanded *and* un-expanded form.  Unfortunately, this
          has exponential (!) behaviour when type synonyms are deeply
          nested.  E.g.
      	    type P a b = (a,b)
      	    f :: P a (P b (P c (P d e)))
          
          This showed up in a program of Joel Reymont, now immortalised
          as typecheck/should_compile/syn-perf.hs
      
          So now synonyms are held as ordinary TyConApps, and expanded
          only on demand.  
      
          SynNote has disappeared altogether, so the only remaining TyNote
          is a FTVNote.  I'm not sure if it's even useful.
      
      2. Eta-reduce newtypes
      
          See the Note [Newtype eta] in TyCon.lhs
          
          If we have 
      	    newtype T a b = MkT (S a b)
          
          then, in Core land, we would like S = T, even though the application
          of T is then not saturated. This commit eta-reduces T's RHS, and
          keeps that inside the TyCon (in nt_etad_rhs).  Result is that 
          coreEqType can be simpler, and has less need of expanding newtypes.
      cdea9949
  12. 14 Oct, 2005 1 commit
    • simonpj's avatar
      [project @ 2005-10-14 11:22:41 by simonpj] · 36436bc6
      simonpj authored
      Add record syntax for GADTs
      	~~~~~~~~~~~~~~~~~~~~~~~~~~~
      
      Atrijus Tang wanted to add record syntax for GADTs and existential
      types, so he and I worked on it a bit at ICFP.  This commit is the
      result.  Now you can say
      
       data T a where
        T1 { x :: a }           	 :: T [a]
        T2 { x :: a, y :: Int } 	 :: T [a]
        forall b. Show b =>
       	T3 { naughty :: b, ok :: Int } :: T Int
        T4 :: Eq a => a -> b -> T (a,b)
      
      Here the constructors are declared using record syntax.
      
      Still to come after this commit:
        - User manual documentation
        - More regression tests
        - Some missing cases in the parser (e.g. T3 won't parse)
      Autrijus is going to do these.
      
      
      Here's a quick summary of the rules.  (Atrijus is going to write
      proper documentation shortly.)
      
      Defnition: a 'vanilla' constructor has a type of the form
      	forall a1..an. t1 -> ... -> tm -> T a1 ... an
      No existentials, no context, nothing.  A constructor declared with
      Haskell-98 syntax is vanilla by construction.  A constructor declared
      with GADT-style syntax is vanilla iff its type looks like the above.
      (In the latter case, the order of the type variables does not matter.)
      
      * You can mix record syntax and non-record syntax in a single decl
      
      * All constructors that share a common field 'x' must have the
        same result type (T [a] in the example).
      
      * You can use field names without restriction in record construction
        and record pattern matching.
      
      * Record *update* only works for data types that only have 'vanilla'
        constructors.
      
      * Consider the field 'naughty', which uses a type variable that does
        not appear in the result type ('b' in the example).  You can use the
        field 'naughty' in pattern matching and construction, but NO
        SELECTOR function is generated for 'naughty'.  [An attempt to use
        'naughty' as a selector function will elicit a helpful error
        message.]
      
      * Data types declared in GADT syntax cannot have a context. So this
      is illegal:
      	data (Monad m) => T a where
      		  ....
      
      * Constructors in GADT syntax can have a context (t.g. T3, T4 above)
        and that context is stored in the constructor and made available
        when the constructor is pattern-matched on.  WARNING: not competely
        implemented yet, but that's the plan.
      
      
      
      Implementation notes
      ~~~~~~~~~~~~~~~~~~~~
      - Data constructors (even vanilla ones) no longer share the type
        variables of their parent type constructor.
      
      - HsDecls.ConDecl has changed quite a bit
      
      - TyCons don't record the field labels and type any more (doesn't
        make sense for existential fields)
      
      - GlobalIdDetails records which selectors are 'naughty', and hence
        don't have real code.
      36436bc6
  13. 11 Aug, 2005 1 commit
    • simonpj's avatar
      [project @ 2005-08-11 08:04:33 by simonpj] · 89627230
      simonpj authored
      Do 'tidying' on Kinds before printing them.  This avoids printing
      stuff like 'k_43b' in user error messages.
      
      To do this, I ended up adding an OccName to Kind.KindVar.  Even
      then the implementation is a bit of hack (see comments with 
      Type.tidyKind).  Still, it's a highly localised hack, whereas the
      "right thing" entails making KindVar into a flavour of Var, which
      seems like an uncomfortably big change.
      
         I think this change can merge to the stable branch
      89627230
  14. 08 Jul, 2005 1 commit
  15. 28 Apr, 2005 1 commit
    • simonpj's avatar
      [project @ 2005-04-28 10:09:41 by simonpj] · dd313897
      simonpj authored
      This big commit does several things at once (aeroplane hacking)
      which change the format of interface files.  
      
      	So you'll need to recompile your libraries!
      
      1. The "stupid theta" of a newtype declaration
      ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
      Retain the "stupid theta" in a newtype declaration.
      For some reason this was being discarded, and putting it
      back in meant changing TyCon and IfaceSyn slightly.
         
      
      2. Overlap flags travel with the instance
      ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
      Arrange that the ability to support overlap and incoherence
      is a property of the *instance declaration* rather than the
      module that imports the instance decl.  This allows a library
      writer to define overlapping instance decls without the
      library client having to know.  
      
      The implementation is that in an Instance we store the
      overlap flag, and preseve that across interface files
      
      
      3. Nuke the "instnce pool" and "rule pool"
      ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
      A major tidy-up and simplification of the way that instances
      and rules are sucked in from interface files.  Up till now
      an instance decl has been held in a "pool" until its "gates" 
      (a set of Names) are in play, when the instance is typechecked
      and added to the InstEnv in the ExternalPackageState.  
      This is complicated and error-prone; it's easy to suck in 
      too few (and miss an instance) or too many (and thereby be
      forced to suck in its type constructors, etc).
      
      Now, as we load an instance from an interface files, we 
      put it straight in the InstEnv... but the Instance we put in
      the InstEnv has some Names (the "rough-match" names) that 
      can be used on lookup to say "this Instance can't match".
      The detailed dfun is only read lazily, and the rough-match
      thing meansn it is'nt poked on until it has a chance of
      being needed.
      
      This simply continues the successful idea for Ids, whereby
      they are loaded straightaway into the TypeEnv, but their
      TyThing is a lazy thunk, not poked on until the thing is looked
      up.
      
      Just the same idea applies to Rules.
      
      On the way, I made CoreRule and Instance into full-blown records
      with lots of info, with the same kind of key status as TyCon or 
      DataCon or Class.  And got rid of IdCoreRule altogether.   
      It's all much more solid and uniform, but it meant touching
      a *lot* of modules.
      
      
      4. Allow instance decls in hs-boot files
      ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
      Allowing instance decls in hs-boot files is jolly useful, becuase
      in a big mutually-recursive bunch of data types, you want to give
      the instances with the data type declarations.  To achieve this
      
      * The hs-boot file makes a provisional name for the dict-fun, something
        like $fx9.
      
      * When checking the "mother module", we check that the instance
        declarations line up (by type) and generate bindings for the 
        boot dfuns, such as
      	$fx9 = $f2
        where $f2 is the dfun generated by the mother module
      
      * In doing this I decided that it's cleaner to have DFunIds get their
        final External Name at birth.  To do that they need a stable OccName,
        so I have an integer-valued dfun-name-supply in the TcM monad.
        That keeps it simple.
      
      This feature is hardly tested yet.
      
      
      5. Tidy up tidying, and Iface file generation
      ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
      main/TidyPgm now has two entry points:
      
        simpleTidyPgm is for hi-boot files, when typechecking only
        (not yet implemented), and potentially when compiling without -O.
        It ignores the bindings, and generates a nice small TypeEnv.
      
        optTidyPgm is the normal case: compiling with -O.  It generates a
        TypeEnv rich in IdInfo
      
      MkIface.mkIface now only generates a ModIface.  A separate
      procedure, MkIface.writeIfaceFile, writes the file out to disk.
      dd313897
  16. 04 Apr, 2005 1 commit
    • simonpj's avatar
      [project @ 2005-04-04 11:55:11 by simonpj] · d551dbfe
      simonpj authored
      This commit combines three overlapping things:
      
      1.  Make rebindable syntax work for do-notation. The idea
          here is that, in particular, (>>=) can have a type that
          has class constraints on its argument types, e.g.
             (>>=) :: (Foo m, Baz a) => m a -> (a -> m b) -> m b
          The consequence is that a BindStmt and ExprStmt must have
          individual evidence attached -- previously it was one
          batch of evidence for the entire Do
          
          Sadly, we can't do this for MDo, because we use bind at
          a polymorphic type (to tie the knot), so we still use one
          blob of evidence (now in the HsStmtContext) for MDo.
          
          For arrow syntax, the evidence is in the HsCmd.
          
          For list comprehensions, it's all built-in anyway.
          
          So the evidence on a BindStmt is only used for ordinary
          do-notation.
      
      2.  Tidy up HsSyn.  In particular:
      
      	- Eliminate a few "Out" forms, which we can manage
      	without (e.g. 
      
      	- It ought to be the case that the type checker only
      	decorates the syntax tree, but doesn't change one
      	construct into another.  That wasn't true for NPat,
      	LitPat, NPlusKPat, so I've fixed that.
      
      	- Eliminate ResultStmts from Stmt.  They always had
      	to be the last Stmt, which led to awkward pattern
      	matching in some places; and the benefits didn't seem
      	to outweigh the costs.  Now each construct that uses
      	[Stmt] has a result expression too (e.g. GRHS).
      
      
      3.  Make 'deriving( Ix )' generate a binding for unsafeIndex,
          rather than for index.  This is loads more efficient.
      
          (This item only affects TcGenDeriv, but some of point (2)
          also affects TcGenDeriv, so it has to be in one commit.)
      d551dbfe
  17. 18 Mar, 2005 1 commit
    • simonmar's avatar
      [project @ 2005-03-18 13:37:27 by simonmar] · d1c1b7d0
      simonmar authored
      Flags cleanup.
      
      Basically the purpose of this commit is to move more of the compiler's
      global state into DynFlags, which is moving in the direction we need
      to go for the GHC API which can have multiple active sessions
      supported by a single GHC instance.
      
      Before:
      
      $ grep 'global_var' */*hs | wc -l
           78
      
      After:
      
      $ grep 'global_var' */*hs | wc -l
           27
      
      Well, it's an improvement.  Most of what's left won't really affect
      our ability to host multiple sessions.
      
      Lots of static flags have become dynamic flags (yay!).  Notably lots
      of flags that we used to think of as "driver" flags, like -I and -L,
      are now dynamic.  The most notable static flags left behind are the
      "way" flags, eg. -prof.  It would be nice to fix this, but it isn't
      urgent.
      
      On the way, lots of cleanup has happened.  Everything related to
      static and dynamic flags lives in StaticFlags and DynFlags
      respectively, and they share a common command-line parser library in
      CmdLineParser.  The flags related to modes (--makde, --interactive
      etc.) are now private to the front end: in fact private to Main
      itself, for now.
      d1c1b7d0
  18. 01 Mar, 2005 1 commit
    • simonpj's avatar
      [project @ 2005-03-01 21:40:40 by simonpj] · ff818166
      simonpj authored
      Type signatures and skolem constants (again)
      		Merge to STABLE
      
      This commit lays to rest the vexed question of skolem constants
      and type signatures.  My fix last week made type-signature variables
      into ordinary meta type variables, because they can be unified
      together (see Note [Signature skolems] in TcType).  But that was wrong
      becuase GADTs will only refine skolems.
      
      So this commit extends TcTyVarDetails with a new constructors, SigSkolTv,
      which is a skolem (like SkolemTv) but is unifiable (like MetaTv).  It's
      a bit of a hack, but the code came out quite nicely.
      
      Now the GADT tests work.
      ff818166
  19. 25 Feb, 2005 1 commit
    • simonpj's avatar
      [project @ 2005-02-25 13:06:31 by simonpj] · 8e67f550
      simonpj authored
      ---------------------------------------------
      Type signatures are no longer instantiated with skolem constants
      	---------------------------------------------
      
      	Merge to STABLE
      
      Consider
      
        p :: a
        q :: b
        (p,q,r) = (r,r,p)
      
      Here, 'a' and 'b' end up being the same, because they are both bound
      to the type for 'r', which is just a meta type variable.  So 'a' and 'b'
      can't be skolems.
      
      Sigh.  This commit goes back to an earlier way of doing things, by
      arranging that type signatures get instantiated with *meta* type
      variables; then at the end we must check that they have not been
      unified with types, nor with each other.
      
      This is a real bore.  I had to do quite a bit of related fiddling around
      to make error messages come out right.  Improved one or two.
      
      Also a small unrelated fix to make
      	:i (:+)
      print with parens in ghci.  Sorry this got mixed up in the same commit.
      8e67f550
  20. 31 Jan, 2005 2 commits
  21. 27 Jan, 2005 1 commit
    • simonpj's avatar
      [project @ 2005-01-27 10:44:00 by simonpj] · 508a505e
      simonpj authored
      --------------------------------------------
                Replace hi-boot files with hs-boot files
        	--------------------------------------------
      
      This major commit completely re-organises the way that recursive modules
      are dealt with.
      
        * It should have NO EFFECT if you do not use recursive modules
      
        * It is a BREAKING CHANGE if you do
      
      ====== Warning: .hi-file format has changed, so if you are
      ======		updating into an existing HEAD build, you'll
      ======		need to make clean and re-make
      
      
      The details:  [documentation still to be done]
      
      * Recursive loops are now broken with Foo.hs-boot (or Foo.lhs-boot),
        not Foo.hi-boot
      
      * An hs-boot files is a proper source file.  It is compiled just like
        a regular Haskell source file:
      	ghc Foo.hs		generates Foo.hi, Foo.o
      	ghc Foo.hs-boot		generates Foo.hi-boot, Foo.o-boot
      
      * hs-boot files are precisely a subset of Haskell. In particular:
      	- they have the same import, export, and scoping rules
      	- errors (such as kind errors) in hs-boot files are checked
        You do *not* need to mention the "original" name of something in
        an hs-boot file, any more than you do in any other Haskell module.
      
      * The Foo.hi-boot file generated by compiling Foo.hs-boot is a machine-
        generated interface file, in precisely the same format as Foo.hi
      
      * When compiling Foo.hs, its exports are checked for compatibility with
        Foo.hi-boot (previously generated by compiling Foo.hs-boot)
      
      * The dependency analyser (ghc -M) knows about Foo.hs-boot files, and
        generates appropriate dependencies.  For regular source files it
        generates
      	Foo.o : Foo.hs
      	Foo.o : Baz.hi		-- Foo.hs imports Baz
      	Foo.o : Bog.hi-boot	-- Foo.hs source-imports Bog
      
        For a hs-boot file it generates similar dependencies
      	Bog.o-boot : Bog.hs-boot
      	Bog.o-boot : Nib.hi	-- Bog.hs-boto imports Nib
      
      * ghc -M is also enhanced to use the compilation manager dependency
        chasing, so that
      	ghc -M Main
        will usually do the job.  No need to enumerate all the source files.
      
      * The -c flag is no longer a "compiler mode". It simply means "omit the
        link step", and synonymous with -no-link.
      508a505e
  22. 26 Jan, 2005 1 commit
    • simonpj's avatar
      [project @ 2005-01-26 16:10:02 by simonpj] · 8254dcf1
      simonpj authored
      -----------------------
      	Fixup to hoistForAllTys
      	-----------------------
      
      * hoistForAllTys moves from TcHsType to TcType
      
      hoistForAllTys was being too vigorous and breaking up type synonyms,
      even when it was entirely unnecessary to do so.
      
      Not only does this make error messsages less good, but it's actually
      wrong for Haskell 98, because we are meant to report under-applied
      type synonyms, and that check doesn't happen until after hoistForAllTys.
      This led to a very obscure bug, immortalised as tcfail129.
      8254dcf1
  23. 22 Dec, 2004 1 commit
    • simonpj's avatar
      [project @ 2004-12-22 16:58:34 by simonpj] · 20e39e0e
      simonpj authored
      ----------------------------------------
      	     Add more scoped type variables
      	----------------------------------------
      
      Now the top-level forall'd variables of a type signature scope
      over the right hand side of that function.
      
      	f :: a -> a
      	f x = ....
      
      The type variable 'a' is in scope in the RHS, and in f's patterns.
      
      It's implied by -fglasgow-exts, but can also be switched off independently
      using -fscoped-type-variables (and the -fno variant)
      20e39e0e
  24. 21 Dec, 2004 1 commit
    • simonpj's avatar
      [project @ 2004-12-21 12:22:22 by simonpj] · 79a8b87c
      simonpj authored
      ---------------------------------
           Improve handling of lexically scoped type variables
      	---------------------------------
      
      If we have
      
      	f :: T a -> a
      	f (x :: T b) = ...
      
      then the lexically scoped variable 'b' should refer to the rigid
      type variable 'a', without any intervening wobbliness.  Previously
      the in-scope type variables were always mutable TyVars, which were
      instantatiated to point to the type they were bound to; but since
      the advent of GADTs the intervening mutable type variable is a bad
      thing.
      
      Hence
        * In the type environment, ATyVar now carries a type
        * The call to refineTyVars in tc_pat on SigPatIn
          finds the types by matching
        * Then tcExtendTyVarEnv3 extends the type envt appropriately
      
      Rater a lot of huff and puff, but it's quite natural for ATyVar
      to contain a type.
      
      Various other small nomenclature changes along the way.
      79a8b87c
  25. 20 Dec, 2004 1 commit
    • simonpj's avatar
      [project @ 2004-12-20 17:16:24 by simonpj] · c45a0ac5
      simonpj authored
      --------------------------------
      	Deal properly with dual-renaming
      	--------------------------------
      
      When comparing types and terms, and during matching, we are faced
      with 
      	\x.e1	~   \y.e2
      
      There are many pitfalls here, and GHC has never done the job properly.
      Now, at last it does, using a new abstraction VarEnv.RnEnv2.  See
      comments there for how it works.
      
      There are lots of consequential changes to use the new stuff, especially
      in 
      	types/Type (type comparison), 
      	types/Unify (matching on types)
      	coreSyn/CoreUtils (equality on expressions), 
      	specialise/Rules (matching).
      
      I'm not 100% certain of that I've covered all the bases, so let me
      know if something unexpected happens after you update.  Maybe wait until
      a nightly build has worked ok first!
      c45a0ac5
  26. 30 Nov, 2004 1 commit
  27. 11 Oct, 2004 1 commit
  28. 01 Oct, 2004 2 commits
    • simonpj's avatar
      [project @ 2004-10-01 13:42:04 by simonpj] · 837824d2
      simonpj authored
      ------------------------------------
      	Simplify the treatment of newtypes
      	Complete hi-boot file consistency checking
      	------------------------------------
      
      In the representation of types, newtypes used to have a special constructor
      all to themselves, very like TyConApp, called NewTcApp.    The trouble is
      that means we have to *know* when a newtype is a newtype, and in an hi-boot
      context we may not -- the data type might be declared as
      	data T
      in the hi-boot file, but as
      	newtype T = ...
      in the source file.  In GHCi, which accumulates stuff from multiple compiles,
      this makes a difference.
      
      So I've nuked NewTcApp.  Newtypes are represented using TyConApps again. This
      turned out to reduce the total amount of code, and simplify the Type data type,
      which is all to the good.
      
      
      This commit also fixes a few things in the hi-boot consistency checking
      stuff.
      837824d2
    • simonpj's avatar
      [project @ 2004-10-01 10:08:49 by simonpj] · da95f4a0
      simonpj authored
      -----------------------------------
      	Do simple checking on hi-boot files
      	-----------------------------------
      
      This commit arranges that, when compiling A.hs, we compare
      the types we infer with those in A.hi-boot, if the latter 
      exists.  (Or, more accurately, if anything A.hs imports in
      turn imports A.hi-boot, directly or indirectly.)
      
      This has been on the to-do list forever.
      da95f4a0
  29. 30 Sep, 2004 1 commit
    • simonpj's avatar
      [project @ 2004-09-30 10:35:15 by simonpj] · 23f40f0e
      simonpj authored
      ------------------------------------
      	Add Generalised Algebraic Data Types
      	------------------------------------
      
      This rather big commit adds support for GADTs.  For example,
      
          data Term a where
       	  Lit :: Int -> Term Int
      	  App :: Term (a->b) -> Term a -> Term b
      	  If  :: Term Bool -> Term a -> Term a
      	  ..etc..
      
          eval :: Term a -> a
          eval (Lit i) = i
          eval (App a b) = eval a (eval b)
          eval (If p q r) | eval p    = eval q
          		    | otherwise = eval r
      
      
      Lots and lots of of related changes throughout the compiler to make
      this fit nicely.
      
      One important change, only loosely related to GADTs, is that skolem
      constants in the typechecker are genuinely immutable and constant, so
      we often get better error messages from the type checker.  See
      TcType.TcTyVarDetails.
      
      There's a new module types/Unify.lhs, which has purely-functional
      unification and matching for Type. This is used both in the typechecker
      (for type refinement of GADTs) and in Core Lint (also for type refinement).
      23f40f0e
  30. 18 Aug, 2004 1 commit
    • simonpj's avatar
      [project @ 2004-08-18 09:33:03 by simonpj] · 370765b2
      simonpj authored
      -------------------------------
      		Fix a fundep bug
      	-------------------------------
      
      		MERGE TO STABLE
      
      Big thank-you to Martin Sulzmann for finding this functional dependency bug.
      
      The new defn of FunDeps.Equation is:
      	type Equation = (TyVarSet, [(Type, Type)])
      Before it was (TyVarSet, Type, Type), so each pair of types was separately
      quantified (wrong).
      
      It's important that we have a *list* of pairs of types.  Consider
       	class C a b c | a -> b c where ...
      	instance C Int x x where ...
      Then, given the constraint (C Int Bool v) we should improve v to Bool,
      via the equation ({x}, [(Bool,x), (v,x)])
      This would not happen if the class had looked like
      	class C a b c | a -> b, a -> c
      
      
      Test in typecheck/should_compile/tc180
      370765b2
  31. 02 Apr, 2004 2 commits
    • simonpj's avatar
      [project @ 2004-04-02 16:46:57 by simonpj] · 40888e1d
      simonpj authored
      Extend the "newtype deriving" feature a little bit more
      (at the request of Wolfgang Jeltsch)
      
      Here's the example:
          class C a b
          instance C [a] Char
          newtype T = T Char deriving( C [a] )
      
      Perfectly sensible, and no reason it should not work.
      Fixing this required me to generalise the abstract syntax of
      a 'deriving' item, hence the non-local effects.
      40888e1d
    • simonpj's avatar
      [project @ 2004-04-02 12:38:33 by simonpj] · bc7bd6e3
      simonpj authored
      A preliminary step towards being able to identify existential
      type variables separately.  That in turn helps when resolving
      overloading; I think we want to resolve overloading without
      worrying about what these type variables might instantiate to.
      bc7bd6e3
  32. 17 Mar, 2004 2 commits
    • simonpj's avatar
      [project @ 2004-03-17 13:59:06 by simonpj] · af5a2151
      simonpj authored
      ------------------------
      	More newtype clearing up
      	------------------------
      
      * Change the representation of TyCons so that it accurately reflects
      	* data     (0 or more constrs)
      	* newtype  (1 constr)
      	* abstract (unknown)
        Replaces DataConDetails and AlgTyConFlavour with AlgTyConRhs
      
      * Add IfaceSyn.IfaceConDecls, a kind of stripped-down analogue
        of AlgTyConRhs
      
      * Move NewOrData from BasicTypes to HsDecl (it's now an HsSyn thing)
      
      * Arrange that Type.newTypeRep and splitRecNewType_maybe unwrap just
        one layer of new-type-ness, leaving the caller to recurse.
      
        This still leaves typeRep and repType in Type.lhs; these functions
        are still vaguely disturbing and probably should get some attention.
      
      Lots of knock-on changes.  Fixes bug in ds054.
      af5a2151
    • simonpj's avatar
      [project @ 2004-03-17 08:54:19 by simonpj] · a6001411
      simonpj authored
      Use sub-kind rather than kind-equality check in matchTys,
      just as we do in TcUnify.  This is someting I failed to
      do when shifting to the funky new kind representation.
      a6001411
  33. 25 Feb, 2004 1 commit
    • simonpj's avatar
      [project @ 2004-02-25 13:54:30 by simonpj] · 49ac6c39
      simonpj authored
      Yet another fix to the -Onot optimisation that hides data type
      representations in .hi files.
      
      1.  Expose the representation if any fields are exposed
      
      2.  Don't expose newtypes whose data-cons are abstract, unless the
          rep type is a FFI type.  (Previously we were more conservative
          and always exposed newtypes, just in case of a foreign decl.)
      49ac6c39
  34. 05 Jan, 2004 1 commit
  35. 30 Dec, 2003 1 commit
    • simonpj's avatar
      [project @ 2003-12-30 16:29:17 by simonpj] · f714e6b6
      simonpj authored
      ----------------------------
              Re-do kind inference (again)
      	----------------------------
      
         [WARNING: interface file binary representation has
         (as usual) changed slightly; recompile your libraries!]
      
      Inspired by the lambda-cube, for some time GHC has used
      	type Kind = Type
      That is, kinds were represented by the same data type as types.
      
      But GHC also supports unboxed types and unboxed tuples, and these
      complicate the kind system by requiring a sub-kind relationship.
      Notably, an unboxed tuple is acceptable as the *result* of a
      function but not as an *argument*.  So we have the following setup:
      
      		 ?
      		/ \
      	       /   \
      	      ??   (#)
      	     /  \
                  *   #
      
      where	*    [LiftedTypeKind]   means a lifted type
      	#    [UnliftedTypeKind] means an unlifted type
      	(#)  [UbxTupleKind]     means unboxed tuple
      	??   [ArgTypeKind]      is the lub of *,#
      	?    [OpenTypeKind]	means any type at all
      
      In particular:
      
        error :: forall a:?. String -> a
        (->)  :: ?? -> ? -> *
        (\(x::t) -> ...)	Here t::?? (i.e. not unboxed tuple)
      
      All this has beome rather difficult to accommodate with Kind=Type, so this
      commit splits the two.
      
        * Kind is a distinct type, defined in types/Kind.lhs
      
        * IfaceType.IfaceKind disappears: we just re-use Kind.Kind
      
        * TcUnify.unifyKind is a distinct unifier for kinds
      
        * TyCon no longer needs KindCon and SuperKindCon variants
      
        * TcUnify.zapExpectedType takes an expected Kind now, so that
          in TcPat.tcMonoPatBndr we can express that the bound variable
          must have an argTypeKind (??).
      
      The big change is really that kind inference is much more systematic and
      well behaved.  In particular, a kind variable can unify only with a
      "simple kind", which is built from * and (->).  This deals neatly
      with awkward questions about how we can combine sub-kinding with type
      inference.
      
      Lots of small consequential changes, especially to the kind-checking
      plumbing in TcTyClsDecls.  (We played a bit fast and loose before, and
      now we have to be more honest, in particular about how kind inference
      works for type synonyms.  They can have kinds like (* -> #), so
      
      This cures two long-standing SourceForge bugs
      
      * 753777 (tcfail115.hs), which used erroneously to pass,
        but crashed in the code generator
            type T a = Int -> (# Int, Int #)
            f :: T a -> T a
            f t = \x -> case t x of r -> r
      
      * 753780 (tc167.hs), which used erroneously to fail
            f :: (->) Int# Int#
      
      
      Still, the result is not entirely satisfactory.  In particular
      
      * The error message from tcfail115 is pretty obscure
      
      * SourceForge bug 807249 (Instance match failure on openTypeKind)
        is not fixed.  Alas.
      f714e6b6
  36. 03 Nov, 2003 1 commit