- 04 Aug, 2006 1 commit
-
-
chak@cse.unsw.edu.au. authored
Broken up massive patch -=chak Original log message: This is (sadly) all done in one patch to avoid Darcs bugs. It's not complete work... more FC stuff to come. A compiler using just this patch will fail dismally.
-
- 06 Jul, 2006 1 commit
-
-
Jan Rochel authored
-
- 02 Jul, 2006 2 commits
-
-
Jan Rochel authored
HEAD doesn't z-encode external-core output (unlike 6.4). I suppose, that this is unwanted behaviour. It probably results from this patch: ======================================================================== Fri Jan 6 17:30:19 CET 2006 simonmar * [project @ 2006-01-06 16:30:17 by simonmar] Add support for UTF-8 source files [...] Z-encoding has been moved right to the back end. Previously we used to Z-encode every identifier on the way in for simplicity, and only decode when we needed to show something to the user. Instead, we now keep every string in its UTF-8 encoding, and Z-encode right before printing it out. [...] ======================================================================== Greetings Jan
-
Jan Rochel authored
Hello, this is my first patch contributed to GHC. If there are any inadequacies about it (maybe like this introductory disclaimer), please let me know about it. So, the need for this patch arose, while I was involved with processing hcr files (external core output) and I noticed, that the output didn't fully conform to the specification [1]. No %local-tags were used, which turned out to be a real nuisance as it was not possible to determine which VDEFs can be erased in a further optimization process and which ones are exported by the module. Since the specification does not define the meaning of the %local-tag, I assume, it makes sense, that it tags all functions, that are not exported by the module. The patch does not fully comply to the specification, as in my implementation a local tag may appear before a VDEF but not before a VDEFG. [1] An External Representation for the GHC Core Language (DRAFT for GHC5.02), page 3, line 1 Greetings Jan
-
- 07 Apr, 2006 1 commit
-
-
Simon Marlow authored
Most of the other users of the fptools build system have migrated to Cabal, and with the move to darcs we can now flatten the source tree without losing history, so here goes. The main change is that the ghc/ subdir is gone, and most of what it contained is now at the top level. The build system now makes no pretense at being multi-project, it is just the GHC build system. No doubt this will break many things, and there will be a period of instability while we fix the dependencies. A straightforward build should work, but I haven't yet fixed binary/source distributions. Changes to the Building Guide will follow, too.
-
- 07 May, 2005 1 commit
-
-
josefs authored
Allow unicode in string and character literals when pretty printing external core.
-
- 22 Dec, 2004 1 commit
-
-
simonpj authored
---------------------------------------- New Core invariant: keep case alternatives in sorted order ---------------------------------------- We now keep the alternatives of a Case in the Core language in sorted order. Sorted, that is, by constructor tag for DataAlt by literal for LitAlt The main reason is that it makes matching and equality testing more robust. But in fact some lines of code vanished from SimplUtils.mkAlts. WARNING: no change to interface file formats, but you'll need to recompile your libraries so that they generate interface files that respect the invariant.
-
- 30 Sep, 2004 1 commit
-
-
simonpj authored
------------------------------------ Add Generalised Algebraic Data Types ------------------------------------ This rather big commit adds support for GADTs. For example, data Term a where Lit :: Int -> Term Int App :: Term (a->b) -> Term a -> Term b If :: Term Bool -> Term a -> Term a ..etc.. eval :: Term a -> a eval (Lit i) = i eval (App a b) = eval a (eval b) eval (If p q r) | eval p = eval q | otherwise = eval r Lots and lots of of related changes throughout the compiler to make this fit nicely. One important change, only loosely related to GADTs, is that skolem constants in the typechecker are genuinely immutable and constant, so we often get better error messages from the type checker. See TcType.TcTyVarDetails. There's a new module types/Unify.lhs, which has purely-functional unification and matching for Type. This is used both in the typechecker (for type refinement of GADTs) and in Core Lint (also for type refinement).
-
- 17 Nov, 2003 1 commit
-
-
simonmar authored
GC some dead code. In some places, I left useful-looking but currently unused definitions in place, surrounded by #ifdef UNUSED ... #endif.
-
- 09 Oct, 2003 1 commit
-
-
simonpj authored
------------------------- GHC heart/lung transplant ------------------------- This major commit changes the way that GHC deals with importing types and functions defined in other modules, during renaming and typechecking. On the way I've changed or cleaned up numerous other things, including many that I probably fail to mention here. Major benefit: GHC should suck in many fewer interface files when compiling (esp with -O). (You can see this with -ddump-rn-stats.) It's also some 1500 lines of code shorter than before. ** So expect bugs! I can do a 3-stage bootstrap, and run ** the test suite, but you may be doing stuff I havn't tested. ** Don't update if you are relying on a working HEAD. In particular, (a) External Core and (b) GHCi are very little tested. But please, please DO test this version! ------------------------ Big things ------------------------ Interface files, version control, and importing declarations ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * There is a totally new data type for stuff that lives in interface files: Original names IfaceType.IfaceExtName Types IfaceType.IfaceType Declarations (type,class,id) IfaceSyn.IfaceDecl Unfoldings IfaceSyn.IfaceExpr (Previously we used HsSyn for type/class decls, and UfExpr for unfoldings.) The new data types are in iface/IfaceType and iface/IfaceSyn. They are all instances of Binary, so they can be written into interface files. Previous engronkulation concering the binary instance of RdrName has gone away -- RdrName is not an instance of Binary any more. Nor does Binary.lhs need to know about the ``current module'' which it used to, which made it specialised to GHC. A good feature of this is that the type checker for source code doesn't need to worry about the possibility that we might be typechecking interface file stuff. Nor does it need to do renaming; we can typecheck direct from IfaceSyn, saving a whole pass (module TcIface) * Stuff from interface files is sucked in *lazily*, rather than being eagerly sucked in by the renamer. Instead, we use unsafeInterleaveIO to capture a thunk for the unfolding of an imported function (say). If that unfolding is every pulled on, TcIface will scramble over the unfolding, which may in turn pull in the interface files of things mentioned in the unfolding. The External Package State is held in a mutable variable so that it can be side-effected by this lazy-sucking-in process (which may happen way later, e.g. when the simplifier runs). In effect, the EPS is a kind of lazy memo table, filled in as we suck things in. Or you could think of it as a global symbol table, populated on demand. * This lazy sucking is very cool, but it can lead to truly awful bugs. The intent is that updates to the symbol table happen atomically, but very bad things happen if you read the variable for the table, and then force a thunk which updates the table. Updates can get lost that way. I regret this subtlety. One example of the way it showed up is that the top level of TidyPgm (which updates the global name cache) to be much more disciplined about those updates, since TidyPgm may itself force thunks which allocate new names. * Version numbering in interface files has changed completely, fixing one major bug with ghc --make. Previously, the version of A.f changed only if A.f's type and unfolding was textually different. That missed changes to things that A.f's unfolding mentions; which was fixed by eagerly sucking in all of those things, and listing them in the module's usage list. But that didn't work with --make, because they might have been already sucked in. Now, A.f's version changes if anything reachable from A.f (via interface files) changes. A module with unchanged source code needs recompiling only if the versions of any of its free variables changes. [This isn't quite right for dictionary functions and rules, which aren't mentioned explicitly in the source. There are extensive comments in module MkIface, where all version-handling stuff is done.] * We don't need equality on HsDecls any more (because they aren't used in interface files). Instead we have a specialised equality for IfaceSyn (eqIfDecl etc), which uses IfaceEq instead of Bool as its result type. See notes in IfaceSyn. * The horrid bit of the renamer that tried to predict what instance decls would be needed has gone entirely. Instead, the type checker simply sucks in whatever instance decls it needs, when it needs them. Easy! Similarly, no need for 'implicitModuleFVs' and 'implicitTemplateHaskellFVs' etc. Hooray! Types and type checking ~~~~~~~~~~~~~~~~~~~~~~~ * Kind-checking of types is far far tidier (new module TcHsTypes replaces the badly-named TcMonoType). Strangely, this was one of my original goals, because the kind check for types is the Right Place to do type splicing, but it just didn't fit there before. * There's a new representation for newtypes in TypeRep.lhs. Previously they were represented using "SourceTypes" which was a funny compromise. Now they have their own constructor in the Type datatype. SourceType has turned back into PredType, which is what it used to be. * Instance decl overlap checking done lazily. Consider instance C Int b instance C a Int These were rejected before as overlapping, because when seeking (C Int Int) one couldn't tell which to use. But there's no problem when seeking (C Bool Int); it can only be the second. So instead of checking for overlap when adding a new instance declaration, we check for overlap when looking up an Inst. If we find more than one matching instance, we see if any of the candidates dominates the others (in the sense of being a substitution instance of all the others); and only if not do we report an error. ------------------------ Medium things ------------------------ * The TcRn monad is generalised a bit further. It's now based on utils/IOEnv.lhs, the IO monad with an environment. The desugarer uses the monad too, so that anything it needs can get faulted in nicely. * Reduce the number of wired-in things; in particular Word and Integer are no longer wired in. The latter required HsLit.HsInteger to get a Type argument. The 'derivable type classes' data types (:+:, :*: etc) are not wired in any more either (see stuff about derivable type classes below). * The PersistentComilerState is now held in a mutable variable in the HscEnv. Previously (a) it was passed to and then returned by many top-level functions, which was painful; (b) it was invariably accompanied by the HscEnv. This change tidies up top-level plumbing without changing anything important. * Derivable type classes are treated much more like 'deriving' clauses. Previously, the Ids for the to/from functions lived inside the TyCon, but now the TyCon simply records their existence (with a simple boolean). Anyone who wants to use them must look them up in the environment. This in turn makes it easy to generate the to/from functions (done in types/Generics) using HsSyn (like TcGenDeriv for ordinary derivings) instead of CoreSyn, which in turn means that (a) we don't have to figure out all the type arguments etc; and (b) it'll be type-checked for us. Generally, the task of generating the code has become easier, which is good for Manuel, who wants to make it more sophisticated. * A Name now says what its "parent" is. For example, the parent of a data constructor is its type constructor; the parent of a class op is its class. This relationship corresponds exactly to the Avail data type; there may be other places we can exploit it. (I made the change so that version comparison in interface files would be a bit easier; but in fact it tided up other things here and there (see calls to Name.nameParent). For example, the declaration pool, of declararations read from interface files, but not yet used, is now keyed only by the 'main' name of the declaration, not the subordinate names. * New types OccEnv and OccSet, with the usual operations. OccNames can be efficiently compared, because they have uniques, thanks to the hashing implementation of FastStrings. * The GlobalRdrEnv is now keyed by OccName rather than RdrName. Not only does this halve the size of the env (because we don't need both qualified and unqualified versions in the env), but it's also more efficient because we can use a UniqFM instead of a FiniteMap. Consequential changes to Provenance, which has moved to RdrName. * External Core remains a bit of a hack, as it was before, done with a mixture of HsDecls (so that recursiveness and argument variance is still inferred), and IfaceExprs (for value declarations). It's not thoroughly tested. ------------------------ Minor things ------------------------ * DataCon fields dcWorkId, dcWrapId combined into a single field dcIds, that is explicit about whether the data con is a newtype or not. MkId.mkDataConWorkId and mkDataConWrapId are similarly combined into MkId.mkDataConIds * Choosing the boxing strategy is done for *source* type decls only, and hence is now in TcTyDecls, not DataCon. * WiredIn names are distinguished by their n_sort field, not by their location, which was rather strange * Define Maybes.mapCatMaybes :: (a -> Maybe b) -> [a] -> [b] and use it here and there * Much better pretty-printing of interface files (--show-iface) Many, many other small things. ------------------------ File changes ------------------------ * New iface/ subdirectory * Much of RnEnv has moved to iface/IfaceEnv * MkIface and BinIface have moved from main/ to iface/ * types/Variance has been absorbed into typecheck/TcTyDecls * RnHiFiles and RnIfaces have vanished entirely. Their work is done by iface/LoadIface * hsSyn/HsCore has gone, replaced by iface/IfaceSyn * typecheck/TcIfaceSig has gone, replaced by iface/TcIface * typecheck/TcMonoType has been renamed to typecheck/TcHsType * basicTypes/Var.hi-boot and basicTypes/Generics.hi-boot have gone altogether
-
- 27 Aug, 2001 1 commit
-
-
apt authored
use qualified names to indicate external status of values
-
- 17 Aug, 2001 1 commit
-
-
apt authored
How I spent my summer vacation. Primops ------- The format of the primops.txt.pp file has been enhanced to allow (latex-style) primop descriptions to be included. There is a new flag to genprimopcode that generates documentation including these descriptions. A first cut at descriptions of the more interesting primops has been made, and the file has been reordered a bit. 31-bit words ------------ The front end now can cope with the possibility of 31-bit (or even 30-bit) Int# and Word# types. The only current use of this is to generate external .core files that can be translated into OCAML source files (OCAML uses a one-bit tag to distinguish integers from pointers). The only way to get this right now is by hand-defining the preprocessor symbol WORD_SIZE_IN_BITS, which is normally set automatically from the familiar WORD_SIZE_IN_BYTES. Just in case 31-bit words are used, we now have Int32# and Word32# primitive types and an associated family of operators, paralleling the existing 64-bit stuff. Of course, none of the operators actually need to be implemented in the absence of a 31-bit backend. There has also been some minor re-jigging of the 32 vs. 64 bit stuff. See the description at the top of primops.txt.pp file for more details. Note that, for the first time, the *type* of a primop can now depend on the target word size. Also, the family of primops intToInt8#, intToInt16#, etc. have been renamed narrow8Int#, narrow16Int#, etc., to emphasize that they work on Int#'s and don't actually convert between types. Addresses --------- As another part of coping with the possibility of 31-bit ints, the addr2Int# and int2Addr# primops are now thoroughly deprecated (and not even defined in the 31-bit case) and all uses of them have been removed except from the (deprecated) module hslibs/lang/Addr Addr# should now be treated as a proper abstract type, and has these suitable operators: nullAddr# : Int# -> Addr# (ignores its argument; nullary primops cause problems at various places) plusAddr# : Addr# -> Int# -> Addr# minusAddr : Addr# -> Addr# -> Int# remAddr# : Addr# -> Int# -> Int# Obviously, these don't allow completely arbitrary offsets if 31-bit ints are in use, but they should do for all practical purposes. It is also still possible to generate an address constant, and there is a built-in rule that makes use of this to remove the nullAddr# calls. Misc ---- There is a new compile flag -fno-code that causes GHC to quit after generating .hi files and .core files (if requested) but before generating STG. Z-encoded names for tuples have been rationalized; e.g., Z3H now means an unboxed 3-tuple, rather than an unboxed tuple with 3 commas (i.e., a 4-tuple)! Removed misc. litlits in hslibs/lang Misc. small changes to external core format. The external core description has also been substantially updated, and incorporates the automatically-generated primop documentation; its in the repository at /papers/ext-core/core.tex. A little make-system addition to allow passing CPP options to compiler and library builds.
-
- 19 Jul, 2001 1 commit
-
-
apt authored
external core: omit repn for recursive newtypes and fix char literals
-
- 01 Jun, 2001 1 commit
-
-
apt authored
added support for emiting external core format
-