1. 10 Nov, 2009 1 commit
  2. 09 Nov, 2009 2 commits
  3. 05 Nov, 2009 2 commits
  4. 04 Nov, 2009 1 commit
  5. 05 Nov, 2009 1 commit
  6. 04 Nov, 2009 1 commit
  7. 30 Oct, 2009 2 commits
  8. 29 Oct, 2009 1 commit
    • simonpj@microsoft.com's avatar
      The Big INLINE Patch: totally reorganise way that INLINE pragmas work · 72462499
      simonpj@microsoft.com authored
      This patch has been a long time in gestation and has, as a
      result, accumulated some extra bits and bobs that are only
      loosely related.  I separated the bits that are easy to split
      off, but the rest comes as one big patch, I'm afraid.
      
      Note that:
       * It comes together with a patch to the 'base' library
       * Interface file formats change slightly, so you need to
         recompile all libraries
      
      The patch is mainly giant tidy-up, driven in part by the
      particular stresses of the Data Parallel Haskell project. I don't
      expect a big performance win for random programs.  Still, here are the
      nofib results, relative to the state of affairs without the patch
      
              Program           Size    Allocs   Runtime   Elapsed
      --------------------------------------------------------------------------------
                  Min         -12.7%    -14.5%    -17.5%    -17.8%
                  Max          +4.7%    +10.9%     +9.1%     +8.4%
       Geometric Mean          +0.9%     -0.1%     -5.6%     -7.3%
      
      The +10.9% allocation outlier is rewrite, which happens to have a
      very delicate optimisation opportunity involving an interaction
      of CSE and inlining (see nofib/Simon-nofib-notes). The fact that
      the 'before' case found the optimisation is somewhat accidental.
      Runtimes seem to go down, but I never kno wwhether to really trust
      this number.  Binary sizes wobble a bit, but nothing drastic.
      
      
      The Main Ideas are as follows.
      
      InlineRules
      ~~~~~~~~~~~
      When you say 
            {-# INLINE f #-}
            f x = <rhs>
      you intend that calls (f e) are replaced by <rhs>[e/x] So we
      should capture (\x.<rhs>) in the Unfolding of 'f', and never meddle
      with it.  Meanwhile, we can optimise <rhs> to our heart's content,
      leaving the original unfolding intact in Unfolding of 'f'.
      
      So the representation of an Unfolding has changed quite a bit
      (see CoreSyn).  An INLINE pragma gives rise to an InlineRule 
      unfolding.  
      
      Moreover, it's only used when 'f' is applied to the
      specified number of arguments; that is, the number of argument on 
      the LHS of the '=' sign in the original source definition. 
      For example, (.) is now defined in the libraries like this
         {-# INLINE (.) #-}
         (.) f g = \x -> f (g x)
      so that it'll inline when applied to two arguments. If 'x' appeared
      on the left, thus
         (.) f g x = f (g x)
      it'd only inline when applied to three arguments.  This slightly-experimental
      change was requested by Roman, but it seems to make sense.
      
      Other associated changes
      
      * Moving the deck chairs in DsBinds, which processes the INLINE pragmas
      
      * In the old system an INLINE pragma made the RHS look like
         (Note InlineMe <rhs>)
        The Note switched off optimisation in <rhs>.  But it was quite
        fragile in corner cases. The new system is more robust, I believe.
        In any case, the InlineMe note has disappeared 
      
      * The workerInfo of an Id has also been combined into its Unfolding,
        so it's no longer a separate field of the IdInfo.
      
      * Many changes in CoreUnfold, esp in callSiteInline, which is the critical
        function that decides which function to inline.  Lots of comments added!
      
      * exprIsConApp_maybe has moved to CoreUnfold, since it's so strongly
        associated with "does this expression unfold to a constructor application".
        It can now do some limited beta reduction too, which Roman found 
        was an important.
      
      Instance declarations
      ~~~~~~~~~~~~~~~~~~~~~
      It's always been tricky to get the dfuns generated from instance
      declarations to work out well.  This is particularly important in 
      the Data Parallel Haskell project, and I'm now on my fourth attempt,
      more or less.
      
      There is a detailed description in TcInstDcls, particularly in
      Note [How instance declarations are translated].   Roughly speaking
      we now generate a top-level helper function for every method definition
      in an instance declaration, so that the dfun takes a particularly
      stylised form:
        dfun a d1 d2 = MkD (op1 a d1 d2) (op2 a d1 d2) ...etc...
      
      In fact, it's *so* stylised that we never need to unfold a dfun.
      Instead ClassOps have a special rewrite rule that allows us to
      short-cut dictionary selection.  Suppose dfun :: Ord a -> Ord [a]
                                                  d :: Ord a
      Then   
          compare (dfun a d)  -->   compare_list a d 
      in one rewrite, without first inlining the 'compare' selector
      and the body of the dfun.
      
      To support this
      a) ClassOps have a BuiltInRule (see MkId.dictSelRule)
      b) DFuns have a special form of unfolding (CoreSyn.DFunUnfolding)
         which is exploited in CoreUnfold.exprIsConApp_maybe
      
      Implmenting all this required a root-and-branch rework of TcInstDcls
      and bits of TcClassDcl.
      
      
      Default methods
      ~~~~~~~~~~~~~~~
      If you give an INLINE pragma to a default method, it should be just
      as if you'd written out that code in each instance declaration, including
      the INLINE pragma.  I think that it now *is* so.  As a result, library
      code can be simpler; less duplication.
      
      
      The CONLIKE pragma
      ~~~~~~~~~~~~~~~~~~
      In the DPH project, Roman found cases where he had
      
         p n k = let x = replicate n k
                 in ...(f x)...(g x)....
      
         {-# RULE f (replicate x) = f_rep x #-}
      
      Normally the RULE would not fire, because doing so involves 
      (in effect) duplicating the redex (replicate n k).  A new
      experimental modifier to the INLINE pragma, {-# INLINE CONLIKE
      replicate #-}, allows you to tell GHC to be prepared to duplicate
      a call of this function if it allows a RULE to fire.
      
      See Note [CONLIKE pragma] in BasicTypes
      
      
      Join points
      ~~~~~~~~~~~
      See Note [Case binders and join points] in Simplify
      
      
      Other refactoring
      ~~~~~~~~~~~~~~~~~
      * I moved endPass from CoreLint to CoreMonad, with associated jigglings
      
      * Better pretty-printing of Core
      
      * The top-level RULES (ones that are not rules for locally-defined things)
        are now substituted on every simplifier iteration.  I'm not sure how
        we got away without doing this before.  This entails a bit more plumbing
        in SimplCore.
      
      * The necessary stuff to serialise and deserialise the new
        info across interface files.
      
      * Something about bottoming floats in SetLevels
            Note [Bottoming floats]
      
      * substUnfolding has moved from SimplEnv to CoreSubs, where it belongs
      
      
      --------------------------------------------------------------------------------
              Program           Size    Allocs   Runtime   Elapsed
      --------------------------------------------------------------------------------
                 anna          +2.4%     -0.5%      0.16      0.17
                 ansi          +2.6%     -0.1%      0.00      0.00
                 atom          -3.8%     -0.0%     -1.0%     -2.5%
               awards          +3.0%     +0.7%      0.00      0.00
               banner          +3.3%     -0.0%      0.00      0.00
           bernouilli          +2.7%     +0.0%     -4.6%     -6.9%
                boyer          +2.6%     +0.0%      0.06      0.07
               boyer2          +4.4%     +0.2%      0.01      0.01
                 bspt          +3.2%     +9.6%      0.02      0.02
            cacheprof          +1.4%     -1.0%    -12.2%    -13.6%
             calendar          +2.7%     -1.7%      0.00      0.00
             cichelli          +3.7%     -0.0%      0.13      0.14
              circsim          +3.3%     +0.0%     -2.3%     -9.9%
             clausify          +2.7%     +0.0%      0.05      0.06
        comp_lab_zift          +2.6%     -0.3%     -7.2%     -7.9%
             compress          +3.3%     +0.0%     -8.5%     -9.6%
            compress2          +3.6%     +0.0%    -15.1%    -17.8%
          constraints          +2.7%     -0.6%    -10.0%    -10.7%
         cryptarithm1          +4.5%     +0.0%     -4.7%     -5.7%
         cryptarithm2          +4.3%    -14.5%      0.02      0.02
                  cse          +4.4%     -0.0%      0.00      0.00
                eliza          +2.8%     -0.1%      0.00      0.00
                event          +2.6%     -0.0%     -4.9%     -4.4%
               exp3_8          +2.8%     +0.0%     -4.5%     -9.5%
               expert          +2.7%     +0.3%      0.00      0.00
                  fem          -2.0%     +0.6%      0.04      0.04
                  fft          -6.0%     +1.8%      0.05      0.06
                 fft2          -4.8%     +2.7%      0.13      0.14
             fibheaps          +2.6%     -0.6%      0.05      0.05
                 fish          +4.1%     +0.0%      0.03      0.04
                fluid          -2.1%     -0.2%      0.01      0.01
               fulsom          -4.8%     +9.2%     +9.1%     +8.4%
               gamteb          -7.1%     -1.3%      0.10      0.11
                  gcd          +2.7%     +0.0%      0.05      0.05
          gen_regexps          +3.9%     -0.0%      0.00      0.00
               genfft          +2.7%     -0.1%      0.05      0.06
                   gg          -2.7%     -0.1%      0.02      0.02
                 grep          +3.2%     -0.0%      0.00      0.00
               hidden          -0.5%     +0.0%    -11.9%    -13.3%
                  hpg          -3.0%     -1.8%     +0.0%     -2.4%
                  ida          +2.6%     -1.2%      0.17     -9.0%
                infer          +1.7%     -0.8%      0.08      0.09
              integer          +2.5%     -0.0%     -2.6%     -2.2%
            integrate          -5.0%     +0.0%     -1.3%     -2.9%
              knights          +4.3%     -1.5%      0.01      0.01
                 lcss          +2.5%     -0.1%     -7.5%     -9.4%
                 life          +4.2%     +0.0%     -3.1%     -3.3%
                 lift          +2.4%     -3.2%      0.00      0.00
            listcompr          +4.0%     -1.6%      0.16      0.17
             listcopy          +4.0%     -1.4%      0.17      0.18
             maillist          +4.1%     +0.1%      0.09      0.14
               mandel          +2.9%     +0.0%      0.11      0.12
              mandel2          +4.7%     +0.0%      0.01      0.01
              minimax          +3.8%     -0.0%      0.00      0.00
              mkhprog          +3.2%     -4.2%      0.00      0.00
           multiplier          +2.5%     -0.4%     +0.7%     -1.3%
             nucleic2          -9.3%     +0.0%      0.10      0.10
                 para          +2.9%     +0.1%     -0.7%     -1.2%
            paraffins         -10.4%     +0.0%      0.20     -1.9%
               parser          +3.1%     -0.0%      0.05      0.05
              parstof          +1.9%     -0.0%      0.00      0.01
                  pic          -2.8%     -0.8%      0.01      0.02
                power          +2.1%     +0.1%     -8.5%     -9.0%
               pretty         -12.7%     +0.1%      0.00      0.00
               primes          +2.8%     +0.0%      0.11      0.11
            primetest          +2.5%     -0.0%     -2.1%     -3.1%
               prolog          +3.2%     -7.2%      0.00      0.00
               puzzle          +4.1%     +0.0%     -3.5%     -8.0%
               queens          +2.8%     +0.0%      0.03      0.03
              reptile          +2.2%     -2.2%      0.02      0.02
              rewrite          +3.1%    +10.9%      0.03      0.03
                 rfib          -5.2%     +0.2%      0.03      0.03
                  rsa          +2.6%     +0.0%      0.05      0.06
                  scc          +4.6%     +0.4%      0.00      0.00
                sched          +2.7%     +0.1%      0.03      0.03
                  scs          -2.6%     -0.9%     -9.6%    -11.6%
               simple          -4.0%     +0.4%    -14.6%    -14.9%
                solid          -5.6%     -0.6%     -9.3%    -14.3%
              sorting          +3.8%     +0.0%      0.00      0.00
               sphere          -3.6%     +8.5%      0.15      0.16
               symalg          -1.3%     +0.2%      0.03      0.03
                  tak          +2.7%     +0.0%      0.02      0.02
            transform          +2.0%     -2.9%     -8.0%     -8.8%
             treejoin          +3.1%     +0.0%    -17.5%    -17.8%
            typecheck          +2.9%     -0.3%     -4.6%     -6.6%
              veritas          +3.9%     -0.3%      0.00      0.00
                 wang          -6.2%     +0.0%      0.18     -9.8%
            wave4main         -10.3%     +2.6%     -2.1%     -2.3%
         wheel-sieve1          +2.7%     -0.0%     +0.3%     -0.6%
         wheel-sieve2          +2.7%     +0.0%     -3.7%     -7.5%
                 x2n1          -4.1%     +0.1%      0.03      0.04
      --------------------------------------------------------------------------------
                  Min         -12.7%    -14.5%    -17.5%    -17.8%
                  Max          +4.7%    +10.9%     +9.1%     +8.4%
       Geometric Mean          +0.9%     -0.1%     -5.6%     -7.3%
      72462499
  9. 26 Oct, 2009 1 commit
    • simonpj@microsoft.com's avatar
      Add a coercion optimiser, to reduce the size of coercion terms · 48196c3c
      simonpj@microsoft.com authored
      Coercion terms can get big (see Trac #2859 for example), so this
      patch puts the infrastructure in place to optimise them:
      
        * Adds Coercion.optCoercion :: Coercion -> Coercion
      
        * Calls optCoercion in Simplify.lhs
      
      The optimiser doesn't work right at the moment, so it is 
      commented out, but Tom is going to work on it.
      48196c3c
  10. 11 Sep, 2009 1 commit
    • simonpj@microsoft.com's avatar
      Improve optimisation of cost centres · e0419565
      simonpj@microsoft.com authored
      This patch fixes test failures for the profiling way for drv001.
      The problem was that the arity of a function was decreasing during
      "optimisation" because of interaction with SCC annotations.
      In particular
            f = /\a. scc "f" (h x)    -- where h had arity 2
      and h gets inlined, led to
            f = /\a. scc "f" let v = scc "f" x in \y. <blah>
      
      Two main changes:
      
      1.  exprIsTrivial now says True for (scc "f" x)
          See Note [SCCs are trivial] in CoreUtils
      
      2.  The simplifier eliminates nested pushing of the same cost centre:
        	scc "f" (...(scc "f" e)...) 
        	==>  scc "f" (...e...)
      
      
      e0419565
  11. 18 Jun, 2009 1 commit
  12. 03 Jun, 2009 1 commit
    • simonpj@microsoft.com's avatar
      Allow RULES for seq, and exploit them · 90ce88a0
      simonpj@microsoft.com authored
      Roman found situations where he had
            case (f n) of _ -> e
      where he knew that f (which was strict in n) would terminate if n did.
      Notice that the result of (f n) is discarded. So it makes sense to
      transform to
            case n of _ -> e
      
      Rather than attempt some general analysis to support this, I've added
      enough support that you can do this using a rewrite rule:
      
        RULE "f/seq" forall n.  seq (f n) e = seq n e
      
      You write that rule.  When GHC sees a case expression that discards
      its result, it mentally transforms it to a call to 'seq' and looks for
      a RULE.  (This is done in Simplify.rebuildCase.)  As usual, the
      correctness of the rule is up to you.
      
      This patch implements the extra stuff.  I have not documented it explicitly
      in the user manual yet... let's see how useful it is first.
      
      The patch looks bigger than it is, because
        a) Comments; see esp MkId Note [seqId magic]
      
        b) Some refactoring.  Notably, I moved the special desugaring for
           seq from MkCore back into DsUtils where it properly belongs.
           (It's really a desugaring thing, not a CoreSyn invariant.)
      
        c) Annoyingly, in a RULE left-hand side we need to be careful that
           the magical desugaring done in MkId Note [seqId magic] item (c) 
           is *not* done on the LHS of a rule. Or rather, we arrange to 
           un-do it, in DsBinds.decomposeRuleLhs.
      
      90ce88a0
  13. 02 Apr, 2009 1 commit
    • simonpj@microsoft.com's avatar
      Fix Trac #3118: missing alternative · 9414bda0
      simonpj@microsoft.com authored
      This patch fixes a rather obscure bug, whereby it's possible
      for (case C a b of <alts>) to have altenatives that do not inclue
      (C a b)!  See Note [Unreachable code] in CoreUtils.
      9414bda0
  14. 25 Mar, 2009 1 commit
    • simonpj@microsoft.com's avatar
      Improve mkDupableCont; and fix Trac #3116 · 63f6b086
      simonpj@microsoft.com authored
      It turns out that, as a result of a change I made a few months ago to
      the representation of SimplCont, it's easy to solve the optimisation
      challenge posed by Trac #3116.  Hurrah.
      
      Extensive comments in Note [Duplicating StrictArg].
      63f6b086
  15. 23 Mar, 2009 1 commit
  16. 18 Mar, 2009 1 commit
    • simonpj@microsoft.com's avatar
      Add the notion of "constructor-like" Ids for rule-matching · 4bc25e8c
      simonpj@microsoft.com authored
      This patch adds an optional CONLIKE modifier to INLINE/NOINLINE pragmas, 
         {-# NOINLINE CONLIKE [1] f #-}
      The effect is to allow applications of 'f' to be expanded in a potential
      rule match.  Example
        {-# RULE "r/f" forall v. r (f v) = f (v+1) #-}
      
      Consider the term
           let x = f v in ..x...x...(r x)...
      Normally the (r x) would not match the rule, because GHC would be scared
      about duplicating the redex (f v). However the CONLIKE modifier says to
      treat 'f' like a constructor in this situation, and "look through" the
      unfolding for x.  So (r x) fires, yielding (f (v+1)).
      
      The main changes are:
        - Syntax
      
        - The inlinePragInfo field of an IdInfo has a RuleMatchInfo
          component, which records whether or not the Id is CONLIKE.
          Of course, this needs to be serialised in interface files too.
      
        - The occurrence analyser (OccAnal) and simplifier (Simplify) treat
          CONLIKE thing like constructors, by ANF-ing them
      
        - New function coreUtils.exprIsExpandable is like exprIsCheap, but
          additionally spots applications of CONLIKE functions
      
        - A CoreUnfolding has a field that caches exprIsExpandable
      
        - The rule matcher consults this field.  See 
          Note [Expanding variables] in Rules.lhs.
      
      On the way I fixed a lurking variable bug in the way variables are
      expanded.  See Note [Do not expand locally-bound variables] in
      Rule.lhs.  I also did a bit of reformatting and refactoring in
      Rules.lhs, so the module has more lines changed than are really
      different.
      4bc25e8c
  17. 13 Jan, 2009 1 commit
    • simonpj@microsoft.com's avatar
      Rewrite CorePrep and improve eta expansion · 62eeda5a
      simonpj@microsoft.com authored
      This patch does two main things
      
      a) Rewrite most of CorePrep to be much easier to understand (I hope!).
         The invariants established by CorePrep are now written out, and
         the code is more perspicuous.  It is surpringly hard to get right,
         and the old code had become quite incomprehensible.
      
      b) Rewrite the eta-expander so that it does a bit of simplifying
         on-the-fly, and thereby guarantees to maintain the CorePrep
         invariants.  This make it much easier to use from CorePrep, and
         is a generally good thing anyway.
      
      A couple of pieces of re-structuring:
      
      *  I moved the eta-expander and arity analysis stuff into a new
         module coreSyn/CoreArity.
      
         Max will find that the type CoreArity.EtaInfo looks strangely 
         familiar.
      
      *  I moved a bunch of comments from Simplify to OccurAnal; that's
         why it looks as though there's a lot of lines changed in those
         modules.
      
      On the way I fixed various things
      
        - Function arguments are eta expanded
             f (map g)  ===>  let s = \x. map g x in f s
      
        - Trac #2368
      
      The result is a modest performance gain, I think mainly due
      to the first of these changes:
      
      --------------------------------------------------------------------------------
              Program           Size    Allocs   Runtime   Elapsed
      --------------------------------------------------------------------------------
                  Min          -1.0%    -17.4%    -19.1%    -46.4%
                  Max          +0.3%     +0.5%     +5.4%    +53.8%
       Geometric Mean          -0.1%     -0.3%     -7.0%    -10.2%
      
      
      62eeda5a
  18. 16 Dec, 2008 2 commits
    • Simon Marlow's avatar
      UNDO: Add -fpass-case-bndr-to-join-points · 5a336f14
      Simon Marlow authored
      rolling back:
      
      Fri Dec  5 10:51:59 GMT 2008  simonpj@microsoft.com
        * Add -fpass-case-bndr-to-join-points
        
        See Note [Passing the case binder to join points] in Simplify.lhs
        The default now is *not* to pass the case binder.  There are some
        nofib results with the above note; the effect is almost always 
        negligible.
        
        I don't expect this flag to be used by users (hence no docs). It's just
        there to let me try the performance effects of switching on and off.
        
      
          M ./compiler/main/StaticFlagParser.hs +1
          M ./compiler/main/StaticFlags.hs +4
          M ./compiler/simplCore/Simplify.lhs -14 +73
      5a336f14
    • Simon Marlow's avatar
      Rollback INLINE patches · e79c9ce0
      Simon Marlow authored
      rolling back:
      
      Fri Dec  5 16:54:00 GMT 2008  simonpj@microsoft.com
        * Completely new treatment of INLINE pragmas (big patch)
        
        This is a major patch, which changes the way INLINE pragmas work.
        Although lots of files are touched, the net is only +21 lines of
        code -- and I bet that most of those are comments!
        
        HEADS UP: interface file format has changed, so you'll need to
        recompile everything.
        
        There is not much effect on overall performance for nofib, 
        probably because those programs don't make heavy use of INLINE pragmas.
        
                Program           Size    Allocs   Runtime   Elapsed
                    Min         -11.3%     -6.9%     -9.2%     -8.2%
                    Max          -0.1%     +4.6%     +7.5%     +8.9%
         Geometric Mean          -2.2%     -0.2%     -1.0%     -0.8%
        
        (The +4.6% for on allocs is cichelli; see other patch relating to
        -fpass-case-bndr-to-join-points.)
        
        The old INLINE system
        ~~~~~~~~~~~~~~~~~~~~~
        The old system worked like this. A function with an INLINE pragam
        got a right-hand side which looked like
             f = __inline_me__ (\xy. e)
        The __inline_me__ part was an InlineNote, and was treated specially
        in various ways.  Notably, the simplifier didn't inline inside an
        __inline_me__ note.  
        
        As a result, the code for f itself was pretty crappy. That matters
        if you say (map f xs), because then you execute the code for f,
        rather than inlining a copy at the call site.
        
        The new story: InlineRules
        ~~~~~~~~~~~~~~~~~~~~~~~~~~
        The new system removes the InlineMe Note altogether.  Instead there
        is a new constructor InlineRule in CoreSyn.Unfolding.  This is a 
        bit like a RULE, in that it remembers the template to be inlined inside
        the InlineRule.  No simplification or inlining is done on an InlineRule,
        just like RULEs.  
        
        An Id can have an InlineRule *or* a CoreUnfolding (since these are two
        constructors from Unfolding). The simplifier treats them differently:
        
          - An InlineRule is has the substitution applied (like RULES) but 
            is otherwise left undisturbed.
        
          - A CoreUnfolding is updated with the new RHS of the definition,
            on each iteration of the simplifier.
        
        An InlineRule fires regardless of size, but *only* when the function
        is applied to enough arguments.  The "arity" of the rule is specified
        (by the programmer) as the number of args on the LHS of the "=".  So
        it makes a difference whether you say
          	{-# INLINE f #-}
        	f x = \y -> e     or     f x y = e
        This is one of the big new features that InlineRule gives us, and it
        is one that Roman really wanted.
        
        In contrast, a CoreUnfolding can fire when it is applied to fewer
        args than than the function has lambdas, provided the result is small
        enough.
        
        
        Consequential stuff
        ~~~~~~~~~~~~~~~~~~~
        * A 'wrapper' no longer has a WrapperInfo in the IdInfo.  Instead,
          the InlineRule has a field identifying wrappers.
        
        * Of course, IfaceSyn and interface serialisation changes appropriately.
        
        * Making implication constraints inline nicely was a bit fiddly. In
          the end I added a var_inline field to HsBInd.VarBind, which is why
          this patch affects the type checker slightly
        
        * I made some changes to the way in which eta expansion happens in
          CorePrep, mainly to ensure that *arguments* that become let-bound
          are also eta-expanded.  I'm still not too happy with the clarity
          and robustness fo the result.
        
        * We now complain if the programmer gives an INLINE pragma for
          a recursive function (prevsiously we just ignored it).  Reason for
          change: we don't want an InlineRule on a LoopBreaker, because then
          we'd have to check for loop-breaker-hood at occurrence sites (which
          isn't currenlty done).  Some tests need changing as a result.
        
        This patch has been in my tree for quite a while, so there are
        probably some other minor changes.
        
      
          M ./compiler/basicTypes/Id.lhs -11
          M ./compiler/basicTypes/IdInfo.lhs -82
          M ./compiler/basicTypes/MkId.lhs -2 +2
          M ./compiler/coreSyn/CoreFVs.lhs -2 +25
          M ./compiler/coreSyn/CoreLint.lhs -5 +1
          M ./compiler/coreSyn/CorePrep.lhs -59 +53
          M ./compiler/coreSyn/CoreSubst.lhs -22 +31
          M ./compiler/coreSyn/CoreSyn.lhs -66 +92
          M ./compiler/coreSyn/CoreUnfold.lhs -112 +112
          M ./compiler/coreSyn/CoreUtils.lhs -185 +184
          M ./compiler/coreSyn/MkExternalCore.lhs -1
          M ./compiler/coreSyn/PprCore.lhs -4 +40
          M ./compiler/deSugar/DsBinds.lhs -70 +118
          M ./compiler/deSugar/DsForeign.lhs -2 +4
          M ./compiler/deSugar/DsMeta.hs -4 +3
          M ./compiler/hsSyn/HsBinds.lhs -3 +3
          M ./compiler/hsSyn/HsUtils.lhs -2 +7
          M ./compiler/iface/BinIface.hs -11 +25
          M ./compiler/iface/IfaceSyn.lhs -13 +21
          M ./compiler/iface/MkIface.lhs -24 +19
          M ./compiler/iface/TcIface.lhs -29 +23
          M ./compiler/main/TidyPgm.lhs -55 +49
          M ./compiler/parser/ParserCore.y -5 +6
          M ./compiler/simplCore/CSE.lhs -2 +1
          M ./compiler/simplCore/FloatIn.lhs -6 +1
          M ./compiler/simplCore/FloatOut.lhs -23
          M ./compiler/simplCore/OccurAnal.lhs -36 +5
          M ./compiler/simplCore/SetLevels.lhs -59 +54
          M ./compiler/simplCore/SimplCore.lhs -48 +52
          M ./compiler/simplCore/SimplEnv.lhs -26 +22
          M ./compiler/simplCore/SimplUtils.lhs -28 +4
          M ./compiler/simplCore/Simplify.lhs -91 +109
          M ./compiler/specialise/Specialise.lhs -15 +18
          M ./compiler/stranal/WorkWrap.lhs -14 +11
          M ./compiler/stranal/WwLib.lhs -2 +2
          M ./compiler/typecheck/Inst.lhs -1 +3
          M ./compiler/typecheck/TcBinds.lhs -17 +27
          M ./compiler/typecheck/TcClassDcl.lhs -1 +2
          M ./compiler/typecheck/TcExpr.lhs -4 +6
          M ./compiler/typecheck/TcForeign.lhs -1 +1
          M ./compiler/typecheck/TcGenDeriv.lhs -14 +13
          M ./compiler/typecheck/TcHsSyn.lhs -3 +2
          M ./compiler/typecheck/TcInstDcls.lhs -5 +4
          M ./compiler/typecheck/TcRnDriver.lhs -2 +11
          M ./compiler/typecheck/TcSimplify.lhs -10 +17
          M ./compiler/vectorise/VectType.hs +7
      
      Mon Dec  8 12:43:10 GMT 2008  simonpj@microsoft.com
        * White space only
      
          M ./compiler/simplCore/Simplify.lhs -2
      
      Mon Dec  8 12:48:40 GMT 2008  simonpj@microsoft.com
        * Move simpleOptExpr from CoreUnfold to CoreSubst
      
          M ./compiler/coreSyn/CoreSubst.lhs -1 +87
          M ./compiler/coreSyn/CoreUnfold.lhs -72 +1
      
      Mon Dec  8 17:30:18 GMT 2008  simonpj@microsoft.com
        * Use CoreSubst.simpleOptExpr in place of the ad-hoc simpleSubst (reduces code too)
      
          M ./compiler/deSugar/DsBinds.lhs -50 +16
      
      Tue Dec  9 17:03:02 GMT 2008  simonpj@microsoft.com
        * Fix Trac #2861: bogus eta expansion
        
        Urghlhl!  I "tided up" the treatment of the "state hack" in CoreUtils, but
        missed an unexpected interaction with the way that a bottoming function
        simply swallows excess arguments.  There's a long
             Note [State hack and bottoming functions]
        to explain (which accounts for most of the new lines of code).
        
      
          M ./compiler/coreSyn/CoreUtils.lhs -16 +53
      
      Mon Dec 15 10:02:21 GMT 2008  Simon Marlow <marlowsd@gmail.com>
        * Revert CorePrep part of "Completely new treatment of INLINE pragmas..."
        
        The original patch said:
        
        * I made some changes to the way in which eta expansion happens in
          CorePrep, mainly to ensure that *arguments* that become let-bound
          are also eta-expanded.  I'm still not too happy with the clarity
          and robustness fo the result.
          
        Unfortunately this change apparently broke some invariants that were
        relied on elsewhere, and in particular lead to panics when compiling
        with profiling on.
        
        Will re-investigate in the new year.
      
          M ./compiler/coreSyn/CorePrep.lhs -53 +58
          M ./configure.ac -1 +1
      
      Mon Dec 15 12:28:51 GMT 2008  Simon Marlow <marlowsd@gmail.com>
        * revert accidental change to configure.ac
      
          M ./configure.ac -1 +1
      e79c9ce0
  19. 08 Dec, 2008 1 commit
  20. 05 Dec, 2008 2 commits
    • simonpj@microsoft.com's avatar
      Completely new treatment of INLINE pragmas (big patch) · d95ce839
      simonpj@microsoft.com authored
      This is a major patch, which changes the way INLINE pragmas work.
      Although lots of files are touched, the net is only +21 lines of
      code -- and I bet that most of those are comments!
      
      HEADS UP: interface file format has changed, so you'll need to
      recompile everything.
      
      There is not much effect on overall performance for nofib, 
      probably because those programs don't make heavy use of INLINE pragmas.
      
              Program           Size    Allocs   Runtime   Elapsed
                  Min         -11.3%     -6.9%     -9.2%     -8.2%
                  Max          -0.1%     +4.6%     +7.5%     +8.9%
       Geometric Mean          -2.2%     -0.2%     -1.0%     -0.8%
      
      (The +4.6% for on allocs is cichelli; see other patch relating to
      -fpass-case-bndr-to-join-points.)
      
      The old INLINE system
      ~~~~~~~~~~~~~~~~~~~~~
      The old system worked like this. A function with an INLINE pragam
      got a right-hand side which looked like
           f = __inline_me__ (\xy. e)
      The __inline_me__ part was an InlineNote, and was treated specially
      in various ways.  Notably, the simplifier didn't inline inside an
      __inline_me__ note.  
      
      As a result, the code for f itself was pretty crappy. That matters
      if you say (map f xs), because then you execute the code for f,
      rather than inlining a copy at the call site.
      
      The new story: InlineRules
      ~~~~~~~~~~~~~~~~~~~~~~~~~~
      The new system removes the InlineMe Note altogether.  Instead there
      is a new constructor InlineRule in CoreSyn.Unfolding.  This is a 
      bit like a RULE, in that it remembers the template to be inlined inside
      the InlineRule.  No simplification or inlining is done on an InlineRule,
      just like RULEs.  
      
      An Id can have an InlineRule *or* a CoreUnfolding (since these are two
      constructors from Unfolding). The simplifier treats them differently:
      
        - An InlineRule is has the substitution applied (like RULES) but 
          is otherwise left undisturbed.
      
        - A CoreUnfolding is updated with the new RHS of the definition,
          on each iteration of the simplifier.
      
      An InlineRule fires regardless of size, but *only* when the function
      is applied to enough arguments.  The "arity" of the rule is specified
      (by the programmer) as the number of args on the LHS of the "=".  So
      it makes a difference whether you say
        	{-# INLINE f #-}
      	f x = \y -> e     or     f x y = e
      This is one of the big new features that InlineRule gives us, and it
      is one that Roman really wanted.
      
      In contrast, a CoreUnfolding can fire when it is applied to fewer
      args than than the function has lambdas, provided the result is small
      enough.
      
      
      Consequential stuff
      ~~~~~~~~~~~~~~~~~~~
      * A 'wrapper' no longer has a WrapperInfo in the IdInfo.  Instead,
        the InlineRule has a field identifying wrappers.
      
      * Of course, IfaceSyn and interface serialisation changes appropriately.
      
      * Making implication constraints inline nicely was a bit fiddly. In
        the end I added a var_inline field to HsBInd.VarBind, which is why
        this patch affects the type checker slightly
      
      * I made some changes to the way in which eta expansion happens in
        CorePrep, mainly to ensure that *arguments* that become let-bound
        are also eta-expanded.  I'm still not too happy with the clarity
        and robustness fo the result.
      
      * We now complain if the programmer gives an INLINE pragma for
        a recursive function (prevsiously we just ignored it).  Reason for
        change: we don't want an InlineRule on a LoopBreaker, because then
        we'd have to check for loop-breaker-hood at occurrence sites (which
        isn't currenlty done).  Some tests need changing as a result.
      
      This patch has been in my tree for quite a while, so there are
      probably some other minor changes.
      d95ce839
    • simonpj@microsoft.com's avatar
      Add -fpass-case-bndr-to-join-points · ccd0e382
      simonpj@microsoft.com authored
      See Note [Passing the case binder to join points] in Simplify.lhs
      The default now is *not* to pass the case binder.  There are some
      nofib results with the above note; the effect is almost always 
      negligible.
      
      I don't expect this flag to be used by users (hence no docs). It's just
      there to let me try the performance effects of switching on and off.
      ccd0e382
  21. 02 Oct, 2008 1 commit
  22. 20 Sep, 2008 1 commit
    • simonpj@microsoft.com's avatar
      Tidy up the treatment of dead binders · 7e8cba32
      simonpj@microsoft.com authored
      This patch does a lot of tidying up of the way that dead variables are
      handled in Core.  Just the sort of thing to do on an aeroplane.
      
      * The tricky "binder-swap" optimisation is moved from the Simplifier
        to the Occurrence Analyser.  See Note [Binder swap] in OccurAnal.
        This is really a nice change.  It should reduce the number of
        simplifier iteratoins (slightly perhaps).  And it means that
        we can be much less pessimistic about zapping occurrence info
        on binders in a case expression.  
      
      * For example:
      	case x of y { (a,b) -> e }
        Previously, each time around, even if y,a,b were all dead, the
        Simplifier would pessimistically zap their OccInfo, so that we
        can't see they are dead any more.  As a result virtually no 
        case expression ended up with dead binders.  This wasn't Bad
        in itself, but it always felt wrong.
      
      * I added a check to CoreLint to check that a dead binder really
        isn't used.  That showed up a couple of bugs in CSE. (Only in
        this sense -- they didn't really matter.)
        
      * I've changed the PprCore printer to print "_" for a dead variable.
        (Use -dppr-debug to see it again.)  This reduces clutter quite a
        bit, and of course it's much more useful with the above change.
      
      * Another benefit of the binder-swap change is that I could get rid of
        the Simplifier hack (working, but hacky) in which the InScopeSet was
        used to map a variable to a *different* variable. That allowed me
        to remove VarEnv.modifyInScopeSet, and to simplify lookupInScopeSet
        so that it doesn't look for a fixpoint.  This fixes no bugs, but 
        is a useful cleanup.
      
      * Roman pointed out that Id.mkWildId is jolly dangerous, because
        of its fixed unique.  So I've 
      
           - localied it to MkCore, where it is private (not exported)
      
           - renamed it to 'mkWildBinder' to stress that you should only
             use it at binding sites, unless you really know what you are
             doing
      
           - provided a function MkCore.mkWildCase that emodies the most
             common use of mkWildId, and use that elsewhere
      
         So things are much better
      
      * A knock-on change is that I found a common pattern of localising
        a potentially global Id, and made a function for it: Id.localiseId
      7e8cba32
  23. 18 Sep, 2008 1 commit
  24. 17 Sep, 2008 1 commit
    • simonpj@microsoft.com's avatar
      Add extra WARN test · a211dd24
      simonpj@microsoft.com authored
      This warning tests that the arity of a function does not decrease.
      And that it's at least as great as the strictness signature.
      
      Failing this test isn't a disater, but it's distinctly odd and 
      usually indicates that not enough information is getting propagated
      around, and hence you may get more simplifier iterations.
      a211dd24
  25. 14 Sep, 2008 1 commit
  26. 05 Sep, 2008 1 commit
    • simonpj@microsoft.com's avatar
      Retain unfoldings even with SimplGently · cef4b33c
      simonpj@microsoft.com authored
      When binding x = e, we now attach an unfolding to 'x' even if
      it won't be used because SimplGently is on. 
      
      Reason: the specialiser runs right after SimplGently, and it (now)
      only gathers call information for calls whose dictionary arguments are
      "interesting" -- i.e. have an unfolding of some kind.
      cef4b33c
  27. 03 Sep, 2008 1 commit
    • simonpj@microsoft.com's avatar
      Improved specialisation of recursive groups · 78260da4
      simonpj@microsoft.com authored
      This patch significantly improves the way in which recursive groups
      are specialised.  This turns out ot be very important when specilising
      the bindings that (now) emerge from instance declarations.
      
      Consider
          let rec { f x = ...g x'...
                  ; g y = ...f y'.... }
          in f 'a'
      Here we specialise 'f' at Char; but that is very likely to lead to 
      a specialisation of 'g' at Char.  We must do the latter, else the
      whole point of specialisation is lost.  This was not happening before.
      
      The whole thing is desribed in 
          Note [Specialising a recursive group]
      
      
      Simon
      78260da4
  28. 31 Jul, 2008 1 commit
  29. 20 Jul, 2008 1 commit
  30. 17 Jun, 2008 1 commit
  31. 14 Jun, 2008 1 commit
    • simonpj@microsoft.com's avatar
      Fix nasty Simplifier scoping bug · 562ce83f
      simonpj@microsoft.com authored
      This bug was somehow tickled by the new code for desugaring
      polymorphic bindings, but the bug has been there a long time.  The
      bindings floated out in simplLazyBind, generated by abstractFloats,
      were getting processed by postInlineUnconditionally. But that was
      wrong because part of their scope has already been processed.
      
      That led to a bit of refactoring in the simplifier.  See comments
      with Simplify.addPolyBind.
      
      In principle this might happen in 6.8.3, but in practice it doesn't seem
      to, so probably not worth merging.
      562ce83f
  32. 05 Jun, 2008 1 commit
    • simonpj@microsoft.com's avatar
      Add non-recursive let-bindings for types · 1b1190e0
      simonpj@microsoft.com authored
      This patch adds to Core the ability to say
      	let a = Int in <body>
      where 'a' is a type variable.  That is: a type-let.
      See Note [Type let] in CoreSyn.
      
      * The binding is always non-recursive
      * The simplifier immediately eliminates it by substitution 
      
      So in effect a type-let is just a delayed substitution.  This is convenient
      in a couple of places in the desugarer, one existing (see the call to
      CoreTyn.mkTyBind in DsUtils), and one that's in the next upcoming patch.
      
      The first use in the desugarer was previously encoded as
      	(/\a. <body>) Int
      rather that eagerly substituting, but that was horrid because Core Lint
      had do "know" that a=Int inside <body> else it would bleat.  Expressing
      it directly as a 'let' seems much nicer.
      
      1b1190e0
  33. 16 May, 2008 1 commit
    • simonpj@microsoft.com's avatar
      Improve the treatment of 'seq' (Trac #2273) · 4e36a8b1
      simonpj@microsoft.com authored
      Trac #2273 showed a case in which 'seq' didn't cure the space leak
      it was supposed to.  This patch does two things to help
      
      a) It removes a now-redundant special case in Simplify, which
         switched off the case-binder-swap in the early stages.  This
         isn't necessary any more because FloatOut has improved since
         the Simplify code was written.  And switching off the binder-swap
         is harmful for seq.
      
      However fix (a) is a bit fragile, so I did (b) too:
      
      b) Desugar 'seq' specially.  See Note [Desugaring seq (2)] in DsUtils
         This isn't very robust either, since it's defeated by abstraction, 
         but that's not something GHC can fix; the programmer should use
         a let! instead.
      4e36a8b1
  34. 12 Apr, 2008 1 commit
  35. 22 Apr, 2008 1 commit
    • simonpj@microsoft.com's avatar
      Simplify SimplCont, plus some other small changes to the Simplifier · 53f99d84
      simonpj@microsoft.com authored
      The main change in this patch is this:
        
        * The Stop constructor of SimplCont no longer contains the OutType
          of the whole continuation.  This is a nice simplification in 
          lots of places where we build a Stop continuation.  For example,
          rebuildCall no longer needs to maintain the type of the function.
      
        * Similarly StrictArg no longer needs an OutType
      
        * The consequential complication is that contResultType (not called
          much) needs to be given the type of the thing in the middle.  No
          big deal.
      
        * Lots of other small knock-on effects
      
      Other changes in here
      
        * simplLazyBind does do the type-abstraction thing if there's
          a lambda inside.  See comments in simplLazyBind
      
        * simplLazyBind reduces simplifier iterations by keeping 
          unfolding information for stuff for which type abstraction is 
          done (see add_poly_bind)
      
      All of this came up when implementing System IF, but seems worth applying
      to the HEAD
      53f99d84