1. 13 Apr, 2014 1 commit
  2. 03 Apr, 2014 1 commit
  3. 20 Jan, 2014 1 commit
    • Gergő Érdi's avatar
      Implement pattern synonyms · 4f8369bf
      Gergő Érdi authored
      This patch implements Pattern Synonyms (enabled by -XPatternSynonyms),
      allowing y ou to assign names to a pattern and abstract over it.
      
      The rundown is this:
      
        * Named patterns are introduced by the new 'pattern' keyword, and can
          be either *unidirectional* or *bidirectional*. A unidirectional
          pattern is, in the simplest sense, simply an 'alias' for a pattern,
          where the LHS may mention variables to occur in the RHS. A
          bidirectional pattern synonym occurs when a pattern may also be used
          in expression context.
      
        * Unidirectional patterns are declared like thus:
      
              pattern P x <- x:_
      
          The synonym 'P' may only occur in a pattern context:
      
              foo :: [Int] -> Maybe Int
              foo (P x) = Just x
              foo _     = Nothing
      
        * Bidirectional patterns are declared like thus:
      
              pattern P x y = [x, y]
      
          Here, P may not only occur as a pattern, but also as an expression
          when given values for 'x' and 'y', i.e.
      
              bar :: Int -> [Int]
              bar x = P x 10
      
        * Patterns can't yet have their own type signatures; signatures are inferred.
      
        * Pattern synonyms may not be recursive, c.f. type synonyms.
      
        * Pattern synonyms are also exported/imported using the 'pattern'
          keyword in an import/export decl, i.e.
      
              module Foo (pattern Bar) where ...
      
          Note that pattern synonyms share the namespace of constructors, so
          this disambiguation is required as a there may also be a 'Bar'
          type in scope as well as the 'Bar' pattern.
      
        * The semantics of a pattern synonym differ slightly from a typical
          pattern: when using a synonym, the pattern itself is matched,
          followed by all the arguments. This means that the strictness
          differs slightly:
      
              pattern P x y <- [x, y]
      
              f (P True True) = True
              f _             = False
      
              g [True, True] = True
              g _            = False
      
          In the example, while `g (False:undefined)` evaluates to False,
          `f (False:undefined)` results in undefined as both `x` and `y`
          arguments are matched to `True`.
      
      For more information, see the wiki:
      
          https://ghc.haskell.org/trac/ghc/wiki/PatternSynonyms
          https://ghc.haskell.org/trac/ghc/wiki/PatternSynonyms/Implementation
      
      Reviewed-by: Simon Peyton Jones's avatarSimon Peyton Jones <simonpj@microsoft.com>
      Signed-off-by: default avatarAustin Seipp <austin@well-typed.com>
      4f8369bf
  4. 27 Nov, 2013 1 commit
    • Joachim Breitner's avatar
      Roleify TcCoercion · 9d643cf6
      Joachim Breitner authored
      Previously, TcCoercion were only used to represent boxed Nominal
      coercions. In order to also talk about boxed Representational coercions
      in the type checker, we add Roles to TcCoercion. Again, we closely
      mirror Coercion.
      
      The roles are verified by a few assertions, and at the latest after
      conversion to Coercion. I have put my trust in the comprehensiveness of
      the testsuite here, but any role error after desugaring popping up now
      might be caused by this refactoring.
      9d643cf6
  5. 04 Oct, 2013 1 commit
  6. 28 Jul, 2013 1 commit
  7. 25 Apr, 2013 1 commit
  8. 14 Feb, 2013 1 commit
    • Simon Peyton Jones's avatar
      Add OverloadedLists, allowing list syntax to be overloaded · 3234a4ad
      Simon Peyton Jones authored
      This work was all done by
         Achim Krause <achim.t.krause@gmail.com>
         George Giorgidze <giorgidze@gmail.com>
         Weijers Jeroen <jeroen.weijers@uni-tuebingen.de>
      
      It allows list syntax, such as [a,b], [a..b] and so on, to be
      overloaded so that it works for a variety of types.
      
      The design is described here:
          http://hackage.haskell.org/trac/ghc/wiki/OverloadedLists
      
      Eg. you can use it for maps, so that
              [(1,"foo"), (4,"bar")] :: Map Int String
      
      The main changes
       * The ExplicitList constructor of HsExpr gets witness field
       * Ditto ArithSeq constructor
       * Ditto the ListPat constructor of HsPat
      
      Everything else flows from this.
      3234a4ad
  9. 13 Feb, 2013 1 commit
  10. 04 Jan, 2013 1 commit
    • Simon Peyton Jones's avatar
      Allow empty case expressions (and lambda-case) with -XEmptyCase · 3671e674
      Simon Peyton Jones authored
      The main changes are:
        * Parser accepts empty case alternatives
        * Renamer checks that -XEmptyCase is on in that case
        * (Typechecker is pretty much unchanged.)
        * Desugarer desugars empty case alternatives, esp:
            - Match.matchWrapper and Match.match now accept empty eqns
            - New function matchEmpty deals with the empty case
            - See Note [Empty case alternatives] in Match
      
      This patch contains most of the work, but it's a bit mixed up
      with a refactoring of MatchGroup that I did at the same time
      (next commit).
      3671e674
  11. 18 Oct, 2012 1 commit
    • ian@well-typed.com's avatar
      Refactor the way dump flags are handled · d4a19643
      ian@well-typed.com authored
      We were being inconsistent about how we tested whether dump flags
      were enabled; in particular, sometimes we also checked the verbosity,
      and sometimes we didn't.
      
      This lead to oddities such as "ghc -v4" printing an "Asm code" section
      which didn't contain any code, and "-v4" enabled some parts of
      "-ddump-deriv" but not others.
      
      Now all the tests use dopt, which also takes the verbosity into account
      as appropriate.
      d4a19643
  12. 16 Oct, 2012 1 commit
    • ian@well-typed.com's avatar
      Some alpha renaming · cd33eefd
      ian@well-typed.com authored
      Mostly d -> g (matching DynFlag -> GeneralFlag).
      Also renamed if* to when*, matching the Haskell if/when names
      cd33eefd
  13. 03 Oct, 2012 1 commit
    • Simon Peyton Jones's avatar
      This big patch re-factors the way in which arrow-syntax is handled · ba56d20d
      Simon Peyton Jones authored
      All the work was done by Dan Winograd-Cort.
      
      The main thing is that arrow comamnds now have their own
      data type HsCmd (defined in HsExpr).  Previously it was
      punned with the HsExpr type, which was jolly confusing,
      and made it hard to do anything arrow-specific.
      
      To make this work, we now parameterise
        * MatchGroup
        * Match
        * GRHSs, GRHS
        * StmtLR and friends
      over the "body", that is the kind of thing they
      enclose.  This "body" parameter can be instantiated to
      either LHsExpr or LHsCmd respectively.
      
      Everything else is really a knock-on effect; there should
      be no change (yet!) in behaviour.  But it should be a sounder
      basis for fixing bugs.
      ba56d20d
  14. 17 Sep, 2012 1 commit
  15. 16 Jul, 2012 1 commit
  16. 19 Jan, 2012 1 commit
  17. 07 Jan, 2012 1 commit
  18. 05 Dec, 2011 1 commit
    • Simon Peyton Jones's avatar
      Allow full constraint solving under a for-all (Trac #5595) · 2e6dcdf7
      Simon Peyton Jones authored
      The main idea is that when we unify
          forall a. t1  ~  forall a. t2
      we get constraints from unifying t1~t2 that mention a.
      We are producing a coercion witnessing the equivalence of
      the for-alls, and inside *that* coercion we need bindings
      for the solved constraints arising from t1~t2.
      
      We didn't have way to do this before.  The big change is
      that here's a new type TcEvidence.TcCoercion, which is
      much like Coercion.Coercion except that there's a slot
      for TcEvBinds in it.
      
      This has a wave of follow-on changes. Not deep but broad.
      
      * New module TcEvidence, which now contains the HsWrapper
        TcEvBinds, EvTerm etc types that used to be in HsBinds
      
      * The typechecker works exclusively in terms of TcCoercion.
      
      * The desugarer converts TcCoercion to Coercion
      
      * The main payload is in TcUnify.unifySigmaTy. This is the
        function that had a gross hack before, but is now beautiful.
      
      * LCoercion is gone!  Hooray.
      
      Many many fiddly changes in conssequence.  But it's nice.
      2e6dcdf7
  19. 04 Nov, 2011 1 commit
  20. 02 Nov, 2011 1 commit
    • Simon Marlow's avatar
      Overhaul of infrastructure for profiling, coverage (HPC) and breakpoints · 7bb0447d
      Simon Marlow authored
      User visible changes
      ====================
      
      Profilng
      --------
      
      Flags renamed (the old ones are still accepted for now):
      
        OLD            NEW
        ---------      ------------
        -auto-all      -fprof-auto
        -auto          -fprof-exported
        -caf-all       -fprof-cafs
      
      New flags:
      
        -fprof-auto              Annotates all bindings (not just top-level
                                 ones) with SCCs
      
        -fprof-top               Annotates just top-level bindings with SCCs
      
        -fprof-exported          Annotates just exported bindings with SCCs
      
        -fprof-no-count-entries  Do not maintain entry counts when profiling
                                 (can make profiled code go faster; useful with
                                 heap profiling where entry counts are not used)
      
      Cost-centre stacks have a new semantics, which should in most cases
      result in more useful and intuitive profiles.  If you find this not to
      be the case, please let me know.  This is the area where I have been
      experimenting most, and the current solution is probably not the
      final version, however it does address all the outstanding bugs and
      seems to be better than GHC 7.2.
      
      Stack traces
      ------------
      
      +RTS -xc now gives more information.  If the exception originates from
      a CAF (as is common, because GHC tends to lift exceptions out to the
      top-level), then the RTS walks up the stack and reports the stack in
      the enclosing update frame(s).
      
      Result: +RTS -xc is much more useful now - but you still have to
      compile for profiling to get it.  I've played around a little with
      adding 'head []' to GHC itself, and +RTS -xc does pinpoint the problem
      quite accurately.
      
      I plan to add more facilities for stack tracing (e.g. in GHCi) in the
      future.
      
      Coverage (HPC)
      --------------
      
       * derived instances are now coloured yellow if they weren't used
       * likewise record field names
       * entry counts are more accurate (hpc --fun-entry-count)
       * tab width is now correct (markup was previously off in source with
         tabs)
      
      Internal changes
      ================
      
      In Core, the Note constructor has been replaced by
      
              Tick (Tickish b) (Expr b)
      
      which is used to represent all the kinds of source annotation we
      support: profiling SCCs, HPC ticks, and GHCi breakpoints.
      
      Depending on the properties of the Tickish, different transformations
      apply to Tick.  See CoreUtils.mkTick for details.
      
      Tickets
      =======
      
      This commit closes the following tickets, test cases to follow:
      
        - Close #2552: not a bug, but the behaviour is now more intuitive
          (test is T2552)
      
        - Close #680 (test is T680)
      
        - Close #1531 (test is result001)
      
        - Close #949 (test is T949)
      
        - Close #2466: test case has bitrotted (doesn't compile against current
          version of vector-space package)
      7bb0447d
  21. 06 Sep, 2011 1 commit
    • batterseapower's avatar
      Implement -XConstraintKind · 9729fe7c
      batterseapower authored
      Basically as documented in http://hackage.haskell.org/trac/ghc/wiki/KindFact,
      this patch adds a new kind Constraint such that:
      
        Show :: * -> Constraint
        (?x::Int) :: Constraint
        (Int ~ a) :: Constraint
      
      And you can write *any* type with kind Constraint to the left of (=>):
      even if that type is a type synonym, type variable, indexed type or so on.
      
      The following (somewhat related) changes are also made:
       1. We now box equality evidence. This is required because we want
          to give (Int ~ a) the *lifted* kind Constraint
       2. For similar reasons, implicit parameters can now only be of
          a lifted kind. (?x::Int#) => ty is now ruled out
       3. Implicit parameter constraints are now allowed in superclasses
          and instance contexts (this just falls out as OK with the new
          constraint solver)
      
      Internally the following major changes were made:
       1. There is now no PredTy in the Type data type. Instead
          GHC checks the kind of a type to figure out if it is a predicate
       2. There is now no AClass TyThing: we represent classes as TyThings
          just as a ATyCon (classes had TyCons anyway)
       3. What used to be (~) is now pretty-printed as (~#). The box
          constructor EqBox :: (a ~# b) -> (a ~ b)
       4. The type LCoercion is used internally in the constraint solver
          and type checker to represent coercions with free variables
          of type (a ~ b) rather than (a ~# b)
      9729fe7c
  22. 14 Jul, 2011 1 commit
    • Ian Lynagh's avatar
      Separate the warning flags into their own datatype · 493ea4ab
      Ian Lynagh authored
      The -w flag wasn't turning off a few warnings (Opt_WarnMissingImportList,
      Opt_WarnMissingLocalSigs, Opt_WarnIdentities). Rather than just adding
      them, I've separated the Opt_Warn* contructors off into their own type,
      so -w now just sets the list of warning flags to [].
      493ea4ab
  23. 04 May, 2011 1 commit
  24. 19 Apr, 2011 1 commit
    • Simon Peyton Jones's avatar
      This BIG PATCH contains most of the work for the New Coercion Representation · fdf86568
      Simon Peyton Jones authored
      See the paper "Practical aspects of evidence based compilation in System FC"
      
      * Coercion becomes a data type, distinct from Type
      
      * Coercions become value-level things, rather than type-level things,
        (although the value is zero bits wide, like the State token)
        A consequence is that a coerion abstraction increases the arity by 1
        (just like a dictionary abstraction)
      
      * There is a new constructor in CoreExpr, namely Coercion, to inject
        coercions into terms
      fdf86568
  25. 27 Jan, 2011 1 commit
    • simonpj@microsoft.com's avatar
      Refine incomplete-pattern checks (Trac #4905) · a0f6d307
      simonpj@microsoft.com authored
      The changes are:
      
      * New flag -fwarn-incomplete-uni-patterns, which checks for
        incomplete patterns in (a) lambdas, (b) pattern bindings
      
      * New flag is not implied by -W or -Wall (too noisy; and many
        libraries use incomplete pattern bindings)
      
      * Actually do the incomplete-pattern check for pattern bindings
        (previously simply omitted)
      
      * Documentation for new flag
      a0f6d307
  26. 05 Nov, 2010 1 commit
  27. 22 Oct, 2010 1 commit
    • simonpj@microsoft.com's avatar
      Add rebindable syntax for if-then-else · 4e0c994e
      simonpj@microsoft.com authored
      There are two main changes
      
       * New LANGUAGE option RebindableSyntax, which implies NoImplicitPrelude
      
       * if-the-else becomes rebindable, with function name "ifThenElse"
         (but case expressions are unaffected)
      
      Thanks to Sam Anklesaria for doing most of the work here
      4e0c994e
  28. 21 Oct, 2010 1 commit
  29. 06 Oct, 2010 2 commits
  30. 22 Sep, 2010 1 commit
  31. 18 Sep, 2010 1 commit
  32. 14 Sep, 2010 2 commits
  33. 13 Sep, 2010 1 commit
  34. 29 Oct, 2009 1 commit
    • simonpj@microsoft.com's avatar
      The Big INLINE Patch: totally reorganise way that INLINE pragmas work · 72462499
      simonpj@microsoft.com authored
      This patch has been a long time in gestation and has, as a
      result, accumulated some extra bits and bobs that are only
      loosely related.  I separated the bits that are easy to split
      off, but the rest comes as one big patch, I'm afraid.
      
      Note that:
       * It comes together with a patch to the 'base' library
       * Interface file formats change slightly, so you need to
         recompile all libraries
      
      The patch is mainly giant tidy-up, driven in part by the
      particular stresses of the Data Parallel Haskell project. I don't
      expect a big performance win for random programs.  Still, here are the
      nofib results, relative to the state of affairs without the patch
      
              Program           Size    Allocs   Runtime   Elapsed
      --------------------------------------------------------------------------------
                  Min         -12.7%    -14.5%    -17.5%    -17.8%
                  Max          +4.7%    +10.9%     +9.1%     +8.4%
       Geometric Mean          +0.9%     -0.1%     -5.6%     -7.3%
      
      The +10.9% allocation outlier is rewrite, which happens to have a
      very delicate optimisation opportunity involving an interaction
      of CSE and inlining (see nofib/Simon-nofib-notes). The fact that
      the 'before' case found the optimisation is somewhat accidental.
      Runtimes seem to go down, but I never kno wwhether to really trust
      this number.  Binary sizes wobble a bit, but nothing drastic.
      
      
      The Main Ideas are as follows.
      
      InlineRules
      ~~~~~~~~~~~
      When you say 
            {-# INLINE f #-}
            f x = <rhs>
      you intend that calls (f e) are replaced by <rhs>[e/x] So we
      should capture (\x.<rhs>) in the Unfolding of 'f', and never meddle
      with it.  Meanwhile, we can optimise <rhs> to our heart's content,
      leaving the original unfolding intact in Unfolding of 'f'.
      
      So the representation of an Unfolding has changed quite a bit
      (see CoreSyn).  An INLINE pragma gives rise to an InlineRule 
      unfolding.  
      
      Moreover, it's only used when 'f' is applied to the
      specified number of arguments; that is, the number of argument on 
      the LHS of the '=' sign in the original source definition. 
      For example, (.) is now defined in the libraries like this
         {-# INLINE (.) #-}
         (.) f g = \x -> f (g x)
      so that it'll inline when applied to two arguments. If 'x' appeared
      on the left, thus
         (.) f g x = f (g x)
      it'd only inline when applied to three arguments.  This slightly-experimental
      change was requested by Roman, but it seems to make sense.
      
      Other associated changes
      
      * Moving the deck chairs in DsBinds, which processes the INLINE pragmas
      
      * In the old system an INLINE pragma made the RHS look like
         (Note InlineMe <rhs>)
        The Note switched off optimisation in <rhs>.  But it was quite
        fragile in corner cases. The new system is more robust, I believe.
        In any case, the InlineMe note has disappeared 
      
      * The workerInfo of an Id has also been combined into its Unfolding,
        so it's no longer a separate field of the IdInfo.
      
      * Many changes in CoreUnfold, esp in callSiteInline, which is the critical
        function that decides which function to inline.  Lots of comments added!
      
      * exprIsConApp_maybe has moved to CoreUnfold, since it's so strongly
        associated with "does this expression unfold to a constructor application".
        It can now do some limited beta reduction too, which Roman found 
        was an important.
      
      Instance declarations
      ~~~~~~~~~~~~~~~~~~~~~
      It's always been tricky to get the dfuns generated from instance
      declarations to work out well.  This is particularly important in 
      the Data Parallel Haskell project, and I'm now on my fourth attempt,
      more or less.
      
      There is a detailed description in TcInstDcls, particularly in
      Note [How instance declarations are translated].   Roughly speaking
      we now generate a top-level helper function for every method definition
      in an instance declaration, so that the dfun takes a particularly
      stylised form:
        dfun a d1 d2 = MkD (op1 a d1 d2) (op2 a d1 d2) ...etc...
      
      In fact, it's *so* stylised that we never need to unfold a dfun.
      Instead ClassOps have a special rewrite rule that allows us to
      short-cut dictionary selection.  Suppose dfun :: Ord a -> Ord [a]
                                                  d :: Ord a
      Then   
          compare (dfun a d)  -->   compare_list a d 
      in one rewrite, without first inlining the 'compare' selector
      and the body of the dfun.
      
      To support this
      a) ClassOps have a BuiltInRule (see MkId.dictSelRule)
      b) DFuns have a special form of unfolding (CoreSyn.DFunUnfolding)
         which is exploited in CoreUnfold.exprIsConApp_maybe
      
      Implmenting all this required a root-and-branch rework of TcInstDcls
      and bits of TcClassDcl.
      
      
      Default methods
      ~~~~~~~~~~~~~~~
      If you give an INLINE pragma to a default method, it should be just
      as if you'd written out that code in each instance declaration, including
      the INLINE pragma.  I think that it now *is* so.  As a result, library
      code can be simpler; less duplication.
      
      
      The CONLIKE pragma
      ~~~~~~~~~~~~~~~~~~
      In the DPH project, Roman found cases where he had
      
         p n k = let x = replicate n k
                 in ...(f x)...(g x)....
      
         {-# RULE f (replicate x) = f_rep x #-}
      
      Normally the RULE would not fire, because doing so involves 
      (in effect) duplicating the redex (replicate n k).  A new
      experimental modifier to the INLINE pragma, {-# INLINE CONLIKE
      replicate #-}, allows you to tell GHC to be prepared to duplicate
      a call of this function if it allows a RULE to fire.
      
      See Note [CONLIKE pragma] in BasicTypes
      
      
      Join points
      ~~~~~~~~~~~
      See Note [Case binders and join points] in Simplify
      
      
      Other refactoring
      ~~~~~~~~~~~~~~~~~
      * I moved endPass from CoreLint to CoreMonad, with associated jigglings
      
      * Better pretty-printing of Core
      
      * The top-level RULES (ones that are not rules for locally-defined things)
        are now substituted on every simplifier iteration.  I'm not sure how
        we got away without doing this before.  This entails a bit more plumbing
        in SimplCore.
      
      * The necessary stuff to serialise and deserialise the new
        info across interface files.
      
      * Something about bottoming floats in SetLevels
            Note [Bottoming floats]
      
      * substUnfolding has moved from SimplEnv to CoreSubs, where it belongs
      
      
      --------------------------------------------------------------------------------
              Program           Size    Allocs   Runtime   Elapsed
      --------------------------------------------------------------------------------
                 anna          +2.4%     -0.5%      0.16      0.17
                 ansi          +2.6%     -0.1%      0.00      0.00
                 atom          -3.8%     -0.0%     -1.0%     -2.5%
               awards          +3.0%     +0.7%      0.00      0.00
               banner          +3.3%     -0.0%      0.00      0.00
           bernouilli          +2.7%     +0.0%     -4.6%     -6.9%
                boyer          +2.6%     +0.0%      0.06      0.07
               boyer2          +4.4%     +0.2%      0.01      0.01
                 bspt          +3.2%     +9.6%      0.02      0.02
            cacheprof          +1.4%     -1.0%    -12.2%    -13.6%
             calendar          +2.7%     -1.7%      0.00      0.00
             cichelli          +3.7%     -0.0%      0.13      0.14
              circsim          +3.3%     +0.0%     -2.3%     -9.9%
             clausify          +2.7%     +0.0%      0.05      0.06
        comp_lab_zift          +2.6%     -0.3%     -7.2%     -7.9%
             compress          +3.3%     +0.0%     -8.5%     -9.6%
            compress2          +3.6%     +0.0%    -15.1%    -17.8%
          constraints          +2.7%     -0.6%    -10.0%    -10.7%
         cryptarithm1          +4.5%     +0.0%     -4.7%     -5.7%
         cryptarithm2          +4.3%    -14.5%      0.02      0.02
                  cse          +4.4%     -0.0%      0.00      0.00
                eliza          +2.8%     -0.1%      0.00      0.00
                event          +2.6%     -0.0%     -4.9%     -4.4%
               exp3_8          +2.8%     +0.0%     -4.5%     -9.5%
               expert          +2.7%     +0.3%      0.00      0.00
                  fem          -2.0%     +0.6%      0.04      0.04
                  fft          -6.0%     +1.8%      0.05      0.06
                 fft2          -4.8%     +2.7%      0.13      0.14
             fibheaps          +2.6%     -0.6%      0.05      0.05
                 fish          +4.1%     +0.0%      0.03      0.04
                fluid          -2.1%     -0.2%      0.01      0.01
               fulsom          -4.8%     +9.2%     +9.1%     +8.4%
               gamteb          -7.1%     -1.3%      0.10      0.11
                  gcd          +2.7%     +0.0%      0.05      0.05
          gen_regexps          +3.9%     -0.0%      0.00      0.00
               genfft          +2.7%     -0.1%      0.05      0.06
                   gg          -2.7%     -0.1%      0.02      0.02
                 grep          +3.2%     -0.0%      0.00      0.00
               hidden          -0.5%     +0.0%    -11.9%    -13.3%
                  hpg          -3.0%     -1.8%     +0.0%     -2.4%
                  ida          +2.6%     -1.2%      0.17     -9.0%
                infer          +1.7%     -0.8%      0.08      0.09
              integer          +2.5%     -0.0%     -2.6%     -2.2%
            integrate          -5.0%     +0.0%     -1.3%     -2.9%
              knights          +4.3%     -1.5%      0.01      0.01
                 lcss          +2.5%     -0.1%     -7.5%     -9.4%
                 life          +4.2%     +0.0%     -3.1%     -3.3%
                 lift          +2.4%     -3.2%      0.00      0.00
            listcompr          +4.0%     -1.6%      0.16      0.17
             listcopy          +4.0%     -1.4%      0.17      0.18
             maillist          +4.1%     +0.1%      0.09      0.14
               mandel          +2.9%     +0.0%      0.11      0.12
              mandel2          +4.7%     +0.0%      0.01      0.01
              minimax          +3.8%     -0.0%      0.00      0.00
              mkhprog          +3.2%     -4.2%      0.00      0.00
           multiplier          +2.5%     -0.4%     +0.7%     -1.3%
             nucleic2          -9.3%     +0.0%      0.10      0.10
                 para          +2.9%     +0.1%     -0.7%     -1.2%
            paraffins         -10.4%     +0.0%      0.20     -1.9%
               parser          +3.1%     -0.0%      0.05      0.05
              parstof          +1.9%     -0.0%      0.00      0.01
                  pic          -2.8%     -0.8%      0.01      0.02
                power          +2.1%     +0.1%     -8.5%     -9.0%
               pretty         -12.7%     +0.1%      0.00      0.00
               primes          +2.8%     +0.0%      0.11      0.11
            primetest          +2.5%     -0.0%     -2.1%     -3.1%
               prolog          +3.2%     -7.2%      0.00      0.00
               puzzle          +4.1%     +0.0%     -3.5%     -8.0%
               queens          +2.8%     +0.0%      0.03      0.03
              reptile          +2.2%     -2.2%      0.02      0.02
              rewrite          +3.1%    +10.9%      0.03      0.03
                 rfib          -5.2%     +0.2%      0.03      0.03
                  rsa          +2.6%     +0.0%      0.05      0.06
                  scc          +4.6%     +0.4%      0.00      0.00
                sched          +2.7%     +0.1%      0.03      0.03
                  scs          -2.6%     -0.9%     -9.6%    -11.6%
               simple          -4.0%     +0.4%    -14.6%    -14.9%
                solid          -5.6%     -0.6%     -9.3%    -14.3%
              sorting          +3.8%     +0.0%      0.00      0.00
               sphere          -3.6%     +8.5%      0.15      0.16
               symalg          -1.3%     +0.2%      0.03      0.03
                  tak          +2.7%     +0.0%      0.02      0.02
            transform          +2.0%     -2.9%     -8.0%     -8.8%
             treejoin          +3.1%     +0.0%    -17.5%    -17.8%
            typecheck          +2.9%     -0.3%     -4.6%     -6.6%
              veritas          +3.9%     -0.3%      0.00      0.00
                 wang          -6.2%     +0.0%      0.18     -9.8%
            wave4main         -10.3%     +2.6%     -2.1%     -2.3%
         wheel-sieve1          +2.7%     -0.0%     +0.3%     -0.6%
         wheel-sieve2          +2.7%     +0.0%     -3.7%     -7.5%
                 x2n1          -4.1%     +0.1%      0.03      0.04
      --------------------------------------------------------------------------------
                  Min         -12.7%    -14.5%    -17.5%    -17.8%
                  Max          +4.7%    +10.9%     +9.1%     +8.4%
       Geometric Mean          +0.9%     -0.1%     -5.6%     -7.3%
      72462499
  35. 23 Jul, 2009 1 commit
    • simonpj@microsoft.com's avatar
      Add tuple sections as a new feature · 58521c72
      simonpj@microsoft.com authored
      This patch adds tuple sections, so that
      
      	(x,,z)  means   \y -> (x,y,z)
      
      Thanks for Max Bolinbroke for doing the hard work.
      
      In the end, instead of using two constructors in HsSyn, I used
      just one (still called ExplicitTuple) whose arguments can be
      	Present (LHsExpr id)
      or	Missing PostTcType
      
      While I was at it, I did a bit of refactoring too.
      58521c72
  36. 24 Apr, 2009 1 commit
  37. 31 Mar, 2009 1 commit
  38. 30 Mar, 2009 1 commit
    • simonpj@microsoft.com's avatar
      Fix Trac #3126: matching overloaded literals · 4da93ad2
      simonpj@microsoft.com authored
      Claus Reinke uncovered a long-standing bug in GHC, whereby we were
      combining the pattern-match on overloaded literals, missing the fact
      that an intervening pattern (for a different literal) might also 
      match.  (If someone had a very odd implementation of fromInteger!)
      
      See Note [Grouping overloaded literal patterns] in Match.lhs
      
      If this merges smoothly to 6.10, go for it, but it's very much
      a corner case.
      
      Thank you Claus!
      4da93ad2