1. 04 Aug, 2008 1 commit
  2. 20 Jul, 2008 1 commit
  3. 13 Jul, 2008 1 commit
  4. 04 Jun, 2008 1 commit
  5. 04 May, 2008 1 commit
  6. 12 Apr, 2008 1 commit
  7. 18 Jan, 2008 1 commit
    • simonpj@microsoft.com's avatar
      Add quasi-quotation, courtesy of Geoffrey Mainland · f3399c44
      simonpj@microsoft.com authored
      This patch adds quasi-quotation, as described in
        "Nice to be Quoted: Quasiquoting for Haskell"
      	(Geoffrey Mainland, Haskell Workshop 2007)
      Implemented by Geoffrey and polished by Simon.
      
      Overview
      ~~~~~~~~
      The syntax for quasiquotation is very similar to the existing
      Template haskell syntax:
      	[$q| stuff |]
      where 'q' is the "quoter".  This syntax differs from the paper, by using
      a '$' rather than ':', to avoid clashing with parallel array comprehensions.
       
      The "quoter" is a value of type Language.Haskell.TH.Quote.QuasiQuoter, which
      contains two functions for quoting expressions and patterns, respectively.
       
           quote = Language.Haskell.TH.Quote.QuasiQuoter quoteExp quotePat
       
           quoteExp :: String -> Language.Haskell.TH.ExpQ
           quotePat :: String -> Language.Haskell.TH.PatQ
      
      TEXT is passed unmodified to the quoter. The context of the
      quasiquotation statement determines which of the two quoters is
      called: if the quasiquotation occurs in an expression context,
      quoteExp is called, and if it occurs in a pattern context, quotePat
      is called.
      
      The result of running the quoter on its arguments is spliced into
      the program using Template Haskell's existing mechanisms for
      splicing in code. Note that although Template Haskell does not
      support pattern brackets, with this patch binding occurrences of
      variables in patterns are supported. Quoters must also obey the same
      stage restrictions as Template Haskell; in particular, in this
      example quote may not be defined in the module where it is used as a
      quasiquoter, but must be imported from another module.
      
      Points to notice
      ~~~~~~~~~~~~~~~~
      * The whole thing is enabled with the flag -XQuasiQuotes
      
      * There is an accompanying patch to the template-haskell library. This
        involves one interface change:
      	currentModule :: Q String
        is replaced by
      	location :: Q Loc
        where Loc is a data type defined in TH.Syntax thus:
            data Loc
              = Loc { loc_filename :: String
      	      , loc_package  :: String
      	      , loc_module   :: String
      	      , loc_start    :: CharPos
      	      , loc_end      :: CharPos }
      
            type CharPos = (Int, Int)	-- Line and character position
       
        So you get a lot more info from 'location' than from 'currentModule'.
        The location you get is the location of the splice.
        
        This works in Template Haskell too of course, and lets a TH program
        generate much better error messages.
      
      * There's also a new module in the template-haskell package called 
        Language.Haskell.TH.Quote, which contains support code for the
        quasi-quoting feature.
      
      * Quasi-quote splices are run *in the renamer* because they can build 
        *patterns* and hence the renamer needs to see the output of running the
        splice.  This involved a bit of rejigging in the renamer, especially
        concerning the reporting of duplicate or shadowed names.
      
        (In fact I found and removed a few calls to checkDupNames in RnSource 
        that are redundant, becuase top-level duplicate decls are handled in
        RnNames.)
      
      
      f3399c44
  8. 17 Jan, 2008 1 commit
    • Isaac Dupree's avatar
      lots of portability changes (#1405) · 206b4dec
      Isaac Dupree authored
      re-recording to avoid new conflicts was too hard, so I just put it
      all in one big patch :-(  (besides, some of the changes depended on
      each other.)  Here are what the component patches were:
      
      Fri Dec 28 11:02:55 EST 2007  Isaac Dupree <id@isaac.cedarswampstudios.org>
        * document BreakArray better
      
      Fri Dec 28 11:39:22 EST 2007  Isaac Dupree <id@isaac.cedarswampstudios.org>
        * properly ifdef BreakArray for GHCI
      
      Fri Jan  4 13:50:41 EST 2008  Isaac Dupree <id@isaac.cedarswampstudios.org>
        * change ifs on __GLASGOW_HASKELL__ to account for... (#1405)
        for it not being defined. I assume it being undefined implies
        a compiler with relatively modern libraries but without most
        unportable glasgow extensions.
      
      Fri Jan  4 14:21:21 EST 2008  Isaac Dupree <id@isaac.cedarswampstudios.org>
        * MyEither-->EitherString to allow Haskell98 instance
      
      Fri Jan  4 16:13:29 EST 2008  Isaac Dupree <id@isaac.cedarswampstudios.org>
        * re-portabilize Pretty, and corresponding changes
      
      Fri Jan  4 17:19:55 EST 2008  Isaac Dupree <id@isaac.cedarswampstudios.org>
        * Augment FastTypes to be much more complete
      
      Fri Jan  4 20:14:19 EST 2008  Isaac Dupree <id@isaac.cedarswampstudios.org>
        * use FastFunctions, cleanup FastString slightly
      
      Fri Jan  4 21:00:22 EST 2008  Isaac Dupree <id@isaac.cedarswampstudios.org>
        * Massive de-"#", mostly Int# --> FastInt (#1405)
      
      Fri Jan  4 21:02:49 EST 2008  Isaac Dupree <id@isaac.cedarswampstudios.org>
        * miscellaneous unnecessary-extension-removal
      
      Sat Jan  5 19:30:13 EST 2008  Isaac Dupree <id@isaac.cedarswampstudios.org>
        * add FastFunctions
      206b4dec
  9. 12 Jan, 2008 2 commits
  10. 20 Dec, 2007 1 commit
    • simonpj@microsoft.com's avatar
      Implement generalised list comprehensions · 67cb4091
      simonpj@microsoft.com authored
        This patch implements generalised list comprehensions, as described in 
        the paper "Comprehensive comprehensions" (Peyton Jones & Wadler, Haskell
        Workshop 2007).  If you don't use the new comprehensions, nothing
        should change.
        
        The syntax is not exactly as in the paper; see the user manual entry 
        for details.
        
        You need an accompanying patch to the base library for this stuff 
        to work.
        
        The patch is the work of Max Bolingbroke [batterseapower@hotmail.com], 
        with some advice from Simon PJ.
        
        The related GHC Wiki page is 
          http://hackage.haskell.org/trac/ghc/wiki/SQLLikeComprehensions 
      67cb4091
  11. 10 Oct, 2007 2 commits
    • Dan Licata's avatar
      View patterns, record wildcards, and record puns · 6a05ec5e
      Dan Licata authored
      This patch implements three new features:
      * view patterns (syntax: expression -> pat in a pattern)
      * working versions of record wildcards and record puns
      See the manual for detailed descriptions.
      
      Other minor observable changes:
      * There is a check prohibiting local fixity declarations
        when the variable being fixed is not defined in the same let
      * The warn-unused-binds option now reports warnings for do and mdo stmts
      
      Implementation notes: 
      
      * The pattern renamer is now in its own module, RnPat, and the
      implementation is now in a CPS style so that the correct context is
      delivered to pattern expressions.
      
      * These features required a fairly major upheaval to the renamer.
      Whereas the old version used to collect up all the bindings from a let
      (or top-level, or recursive do statement, ...) and put them into scope
      before renaming anything, the new version does the collection as it
      renames.  This allows us to do the right thing with record wildcard
      patterns (which need to be expanded to see what names should be
      collected), and it allows us to implement the desired semantics for view
      patterns in lets.  This change had a bunch of domino effects brought on
      by fiddling with the top-level renaming.
      
      * Prior to this patch, there was a tricky bug in mkRecordSelId in HEAD,
      which did not maintain the invariant necessary for loadDecl.  See note
      [Tricky iface loop] for details.
      6a05ec5e
    • simonpj@microsoft.com's avatar
      ce43dfc7
  12. 04 Sep, 2007 1 commit
  13. 03 Sep, 2007 1 commit
  14. 01 Sep, 2007 1 commit
  15. 22 Aug, 2007 1 commit
  16. 09 Aug, 2007 1 commit
  17. 21 Jun, 2007 1 commit
    • David Himmelstrup's avatar
      Add several new record features · 2eb04ca0
      David Himmelstrup authored
      1. Record disambiguation (-fdisambiguate-record-fields)
      
      In record construction and pattern matching (although not
      in record updates) it is clear which field name is intended
      even if there are several in scope.  This extension uses
      the constructor to disambiguate.  Thus
      	C { x=3 }
      uses the 'x' field from constructor C (assuming there is one)
      even if there are many x's in scope.
      
      
      2. Record punning (-frecord-puns)
      
      In a record construction or pattern match or update you can 
      omit the "=" part, thus
      	C { x, y }
      This is just syntactic sugar for
      	C { x=x, y=y }
      
      
      3.  Dot-dot notation for records (-frecord-dot-dot)
      
      In record construction or pattern match (but not update) 
      you can use ".." to mean "all the remaining fields".  So
      
      	C { x=v, .. }
      
      means to fill in the remaining fields to give
      
      	C { x=v, y=y }
      
      (assuming C has fields x and y).  This might reasonably
      considered very dodgy stuff.  For pattern-matching it brings
      into scope a bunch of things that are not explictly mentioned;
      and in record construction it just picks whatver 'y' is in
      scope for the 'y' field.   Still, Lennart Augustsson really
      wants it, and it's a feature that is extremely easy to explain.
      
      
      Implementation
      ~~~~~~~~~~~~~~
      I thought of using the "parent" field in the GlobalRdrEnv, but
      that's really used for import/export and just isn't right for this.
      For example, for import/export a field is a subordinate of the *type
      constructor* whereas here we need to know what fields belong to a
      particular *data* constructor.
      
      The main thing is that we need to map a data constructor to its
      fields, and we need to do so in the renamer.   For imported modules
      it's easy: just look in the imported TypeEnv.  For the module being
      compiled, we make a new field tcg_field_env in the TcGblEnv.
      The important functions are
      	RnEnv.lookupRecordBndr
      	RnEnv.lookupConstructorFields
      
      There is still a significant infelicity in the way the renamer
      works on patterns, which I'll tackle next.
      
      
      I also did quite a bit of refactoring in the representation of
      record fields (mainly in HsPat).***END OF DESCRIPTION***
      
      Place the long patch description above the ***END OF DESCRIPTION*** marker.
      The first line of this file will be the patch name.
      
      
      This patch contains the following changes:
      
      M ./compiler/deSugar/Check.lhs -3 +5
      M ./compiler/deSugar/Coverage.lhs -6 +7
      M ./compiler/deSugar/DsExpr.lhs -6 +13
      M ./compiler/deSugar/DsMeta.hs -8 +8
      M ./compiler/deSugar/DsUtils.lhs -1 +1
      M ./compiler/deSugar/MatchCon.lhs -2 +2
      M ./compiler/hsSyn/Convert.lhs -3 +3
      M ./compiler/hsSyn/HsDecls.lhs -9 +25
      M ./compiler/hsSyn/HsExpr.lhs -13 +3
      M ./compiler/hsSyn/HsPat.lhs -25 +63
      M ./compiler/hsSyn/HsUtils.lhs -3 +3
      M ./compiler/main/DynFlags.hs +6
      M ./compiler/parser/Parser.y.pp -13 +17
      M ./compiler/parser/RdrHsSyn.lhs -16 +18
      M ./compiler/rename/RnBinds.lhs -2 +2
      M ./compiler/rename/RnEnv.lhs -22 +82
      M ./compiler/rename/RnExpr.lhs -34 +12
      M ./compiler/rename/RnHsSyn.lhs -3 +2
      M ./compiler/rename/RnSource.lhs -50 +78
      M ./compiler/rename/RnTypes.lhs -50 +84
      M ./compiler/typecheck/TcExpr.lhs -18 +18
      M ./compiler/typecheck/TcHsSyn.lhs -20 +21
      M ./compiler/typecheck/TcPat.lhs -8 +6
      M ./compiler/typecheck/TcRnMonad.lhs -6 +15
      M ./compiler/typecheck/TcRnTypes.lhs -2 +11
      M ./compiler/typecheck/TcTyClsDecls.lhs -3 +4
      M ./docs/users_guide/flags.xml +7
      M ./docs/users_guide/glasgow_exts.xml +42
      2eb04ca0
  18. 05 May, 2007 3 commits
  19. 04 May, 2007 1 commit
  20. 02 May, 2007 1 commit
  21. 24 Apr, 2007 1 commit
    • Simon Marlow's avatar
      Breakpoints: get the names of the free variables right · 367b0590
      Simon Marlow authored
      Previously we relied on the names of the Ids attached to a tick being
      the same as the names of the original variables in the source code.
      Sometimes this worked, sometimes it didn't because the simplifier
      would inline away the Id.  So now we do this properly and retain the
      original OccNames from the source code for each breakpoint, and use
      these to construct the new Ids when we stop.
      
      Doing this involved moving the tracking of in-scope variables from the
      desugarer to the coverage pass.
      367b0590
  22. 22 Apr, 2007 1 commit
    • simonpj@microsoft.com's avatar
      Improve depth-cutoff for printing HsSyn in error messages · d38a30cb
      simonpj@microsoft.com authored
      	MERGE TO STABLE
      
      The "user style" in Outputable allows us to elide large expressions
      when printing HsSyn, printing "..." instead.  This is done by calling
      Outputable.pprDeeper.   
      
      But there was no mechanism for trimming very long lists, which 
      occur when using do-notation or explicit lists.  This patch fixes
      the problem, by adding Outputable.pprDeeperList.
      
      I also made some of the pretty-printing in HsExpr rather more
      vigorous about increasing the depth; in particular, pprParendExpr.
      This should make debug prints shorter.
      
      d38a30cb
  23. 04 Feb, 2007 1 commit
  24. 03 Jan, 2007 1 commit
  25. 29 Dec, 2006 1 commit
    • andy@galois.com's avatar
      Adding a GENERATED pragma · d386e0d2
      andy@galois.com authored
      Adding a {-# GENERATED "SourceFile" SourceSpan #-} <expr> pragma.
      This will be used to generate coverage for tool generated (or quoted) code.
      The pragma states the the expression was generated/quoted from the stated
      source file and source span.
      d386e0d2
  26. 24 Oct, 2006 1 commit
    • andy@galois.com's avatar
      Haskell Program Coverage · d5934bbb
      andy@galois.com authored
      This large checkin is the new ghc version of Haskell
      Program Coverage, an expression-level coverage tool for Haskell.
      
      Parts:
      
       - Hpc.[ch] - small runtime support for Hpc; reading/writing *.tix files.
       - Coverage.lhs - Annotates the HsSyn with coverage tickboxes.
        - New Note's in Core,
            - TickBox      -- ticked on entry to sub-expression
            - BinaryTickBox  -- ticked on exit to sub-expression, depending
      	       	     -- on the boolean result.
      
        - New Stg level TickBox (no BinaryTickBoxes, though) 
      
      You can run the coverage tool with -fhpc at compile time. 
      Main must be compiled with -fhpc. 
      				      
      d5934bbb
  27. 11 Oct, 2006 1 commit
  28. 29 Sep, 2006 2 commits
  29. 20 Sep, 2006 3 commits
    • chak@cse.unsw.edu.au.'s avatar
      fix bugs, add boolean flag to identify coercion variables · 0b86bc9b
      chak@cse.unsw.edu.au. authored
      Mon Sep 18 16:41:32 EDT 2006  Manuel M T Chakravarty <chak@cse.unsw.edu.au>
        * fix bugs, add boolean flag to identify coercion variables
        Sun Aug  6 17:04:02 EDT 2006  Manuel M T Chakravarty <chak@cse.unsw.edu.au>
          * fix bugs, add boolean flag to identify coercion variables
          Tue Jul 25 06:20:05 EDT 2006  kevind@bu.edu
      0b86bc9b
    • chak@cse.unsw.edu.au.'s avatar
      Complete the evidence generation for GADTs · 15cb792d
      chak@cse.unsw.edu.au. authored
      Mon Sep 18 14:43:22 EDT 2006  Manuel M T Chakravarty <chak@cse.unsw.edu.au>
        * Complete the evidence generation for GADTs
        Sat Aug  5 21:39:51 EDT 2006  Manuel M T Chakravarty <chak@cse.unsw.edu.au>
          * Complete the evidence generation for GADTs
          Thu Jul 13 17:18:07 EDT 2006  simonpj@microsoft.com
            
            This patch completes FC evidence generation for GADTs.
            
            It doesn't work properly yet, because part of the compiler thinks
            	(t1 :=: t2) => t3
            is represented with FunTy/PredTy, while the rest thinks it's represented
            using ForAllTy.  Once that's done things should start to work.
      15cb792d
    • chak@cse.unsw.edu.au.'s avatar
      some bug-fixes, newtype deriving might work now · 44ba24dc
      chak@cse.unsw.edu.au. authored
      Mon Sep 18 14:33:01 EDT 2006  Manuel M T Chakravarty <chak@cse.unsw.edu.au>
        * some bug-fixes, newtype deriving might work now
        Sat Aug  5 21:29:28 EDT 2006  Manuel M T Chakravarty <chak@cse.unsw.edu.au>
          * some bug-fixes, newtype deriving might work now
          Tue Jul 11 12:16:13 EDT 2006  kevind@bu.edu
      44ba24dc
  30. 15 Sep, 2006 1 commit
    • chak@cse.unsw.edu.au.'s avatar
      Massive patch for the first months work adding System FC to GHC #14 · 108361d0
      chak@cse.unsw.edu.au. authored
      Fri Aug  4 15:59:09 EDT 2006  Manuel M T Chakravarty <chak@cse.unsw.edu.au>
        * Massive patch for the first months work adding System FC to GHC #14
        
        Broken up massive patch -=chak
        Original log message:  
        This is (sadly) all done in one patch to avoid Darcs bugs.
        It's not complete work... more FC stuff to come.  A compiler
        using just this patch will fail dismally.
      108361d0
  31. 04 Sep, 2006 1 commit
  32. 07 Apr, 2006 1 commit
    • Simon Marlow's avatar
      Reorganisation of the source tree · 0065d5ab
      Simon Marlow authored
      Most of the other users of the fptools build system have migrated to
      Cabal, and with the move to darcs we can now flatten the source tree
      without losing history, so here goes.
      
      The main change is that the ghc/ subdir is gone, and most of what it
      contained is now at the top level.  The build system now makes no
      pretense at being multi-project, it is just the GHC build system.
      
      No doubt this will break many things, and there will be a period of
      instability while we fix the dependencies.  A straightforward build
      should work, but I haven't yet fixed binary/source distributions.
      Changes to the Building Guide will follow, too.
      0065d5ab
  33. 25 Jan, 2006 1 commit
    • simonpj@microsoft.com's avatar
      Simon's big boxy-type commit · ac10f840
      simonpj@microsoft.com authored
      This very large commit adds impredicativity to GHC, plus
      numerous other small things.
        
      *** WARNING: I have compiled all the libraries, and
      ***	     a stage-2 compiler, and everything seems
      ***	     fine.  But don't grab this patch if you 
      ***	     can't tolerate a hiccup if something is
      ***	     broken.
        
      The big picture is this:
      
      a) GHC handles impredicative polymorphism, as described in the
         "Boxy types: type inference for higher-rank types and
         impredicativity" paper
      
      b) GHC handles GADTs in the new simplified (and very sligtly less
         epxrssive) way described in the
         "Simple unification-based type inference for GADTs" paper
      
        
      But there are lots of smaller changes, and since it was pre-Darcs
      they are not individually recorded.
        
      Some things to watch out for:
        
      c)   The story on lexically-scoped type variables has changed, as per
           my email.  I append the story below for completeness, but I 
           am still not happy with it, and it may change again.  In particular,
           the new story does not allow a pattern-bound scoped type variable
           to be wobbly, so (\(x::[a]) -> ...) is usually rejected.  This is
           more restrictive than before, and we might loosen up again.
        
      d)   A consequence of adding impredicativity is that GHC is a bit less
           gung ho about converting automatically between
        	(ty1 -> forall a. ty2)    and    (forall a. ty1 -> ty2)
           In particular, you may need to eta-expand some functions to make
           typechecking work again.
         
           Furthermore, functions are now invariant in their argument types,
           rather than being contravariant.  Again, the main consequence is
           that you may occasionally need to eta-expand function arguments when
           using higher-rank polymorphism.
        
      
      Please test, and let me know of any hiccups
      
      
      Scoped type variables in GHC
      ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
      	January 2006
      
      0) Terminology.
         
         A *pattern binding* is of the form
      	pat = rhs
      
         A *function binding* is of the form
      	f pat1 .. patn = rhs
      
         A binding of the formm
      	var = rhs
         is treated as a (degenerate) *function binding*.
      
      
         A *declaration type signature* is a separate type signature for a
         let-bound or where-bound variable:
      	f :: Int -> Int
      
         A *pattern type signature* is a signature in a pattern: 
      	\(x::a) -> x
      	f (x::a) = x
      
         A *result type signature* is a signature on the result of a
         function definition:
      	f :: forall a. [a] -> a
      	head (x:xs) :: a = x
      
         The form
      	x :: a = rhs
         is treated as a (degnerate) function binding with a result
         type signature, not as a pattern binding.
      
      1) The main invariants:
      
           A) A lexically-scoped type variable always names a (rigid)
       	type variable (not an arbitrary type).  THIS IS A CHANGE.
              Previously, a scoped type variable named an arbitrary *type*.
      
           B) A type signature always describes a rigid type (since
      	its free (scoped) type variables name rigid type variables).
      	This is also a change, a consequence of (A).
      
           C) Distinct lexically-scoped type variables name distinct
      	rigid type variables.  This choice is open; 
      
      2) Scoping
      
      2(a) If a declaration type signature has an explicit forall, those type
         variables are brought into scope in the right hand side of the 
         corresponding binding (plus, for function bindings, the patterns on
         the LHS).  
      	f :: forall a. a -> [a]
      	f (x::a) = [x :: a, x]
         Both occurences of 'a' in the second line are bound by 
         the 'forall a' in the first line
      
         A declaration type signature *without* an explicit top-level forall
         is implicitly quantified over all the type variables that are
         mentioned in the type but not already in scope.  GHC's current
         rule is that this implicit quantification does *not* bring into scope
         any new scoped type variables.
      	f :: a -> a
      	f x = ...('a' is not in scope here)...
         This gives compatibility with Haskell 98
      
      2(b) A pattern type signature implicitly brings into scope any type
         variables mentioned in the type that are not already into scope.
         These are called *pattern-bound type variables*.
      	g :: a -> a -> [a]
      	g (x::a) (y::a) = [y :: a, x]
         The pattern type signature (x::a) brings 'a' into scope.
         The 'a' in the pattern (y::a) is bound, as is the occurrence on 
         the RHS.  
      
         A pattern type siganture is the only way you can bring existentials 
         into scope.
      	data T where
      	  MkT :: forall a. a -> (a->Int) -> T
      
      	f x = case x of
      		MkT (x::a) f -> f (x::a)
      
      2a) QUESTION
      	class C a where
      	  op :: forall b. b->a->a
      
      	instance C (T p q) where
      	  op = <rhs>
          Clearly p,q are in scope in <rhs>, but is 'b'?  Not at the moment.
          Nor can you add a type signature for op in the instance decl.
          You'd have to say this:
      	instance C (T p q) where
      	  op = let op' :: forall b. ...
      	           op' = <rhs>
      	       in op'
      
      3) A pattern-bound type variable is allowed only if the pattern's
         expected type is rigid.  Otherwise we don't know exactly *which*
         skolem the scoped type variable should be bound to, and that means
         we can't do GADT refinement.  This is invariant (A), and it is a 
         big change from the current situation.
      
      	f (x::a) = x	-- NO; pattern type is wobbly
      	
      	g1 :: b -> b
      	g1 (x::b) = x	-- YES, because the pattern type is rigid
      
      	g2 :: b -> b
      	g2 (x::c) = x	-- YES, same reason
      
      	h :: forall b. b -> b
      	h (x::b) = x	-- YES, but the inner b is bound
      
      	k :: forall b. b -> b
      	k (x::c) = x	-- NO, it can't be both b and c
      
      3a) You cannot give different names for the same type variable in the same scope
          (Invariant (C)):
      
      	f1 :: p -> p -> p		-- NO; because 'a' and 'b' would be
      	f1 (x::a) (y::b) = (x::a)	--     bound to the same type variable
      
      	f2 :: p -> p -> p		-- OK; 'a' is bound to the type variable
      	f2 (x::a) (y::a) = (x::a)	--     over which f2 is quantified
      					-- NB: 'p' is not lexically scoped
      
      	f3 :: forall p. p -> p -> p	-- NO: 'p' is now scoped, and is bound to
      	f3 (x::a) (y::a) = (x::a)	--     to the same type varialble as 'a'
      
      	f4 :: forall p. p -> p -> p	-- OK: 'p' is now scoped, and its occurences
      	f4 (x::p) (y::p) = (x::p)	--     in the patterns are bound by the forall
      
      
      3b) You can give a different name to the same type variable in different
          disjoint scopes, just as you can (if you want) give diferent names to 
          the same value parameter
      
      	g :: a -> Bool -> Maybe a
      	g (x::p) True  = Just x  :: Maybe p
      	g (y::q) False = Nothing :: Maybe q
      
      3c) Scoped type variables respect alpha renaming. For example, 
          function f2 from (3a) above could also be written:
      	f2' :: p -> p -> p
      	f2' (x::b) (y::b) = x::b
         where the scoped type variable is called 'b' instead of 'a'.
      
      
      4) Result type signatures obey the same rules as pattern types signatures.
         In particular, they can bind a type variable only if the result type is rigid
      
      	f x :: a = x	-- NO
      
      	g :: b -> b
      	g x :: b = x	-- YES; binds b in rhs
      
      5) A *pattern type signature* in a *pattern binding* cannot bind a 
         scoped type variable
      
      	(x::a, y) = ...		-- Legal only if 'a' is already in scope
      
         Reason: in type checking, the "expected type" of the LHS pattern is
         always wobbly, so we can't bind a rigid type variable.  (The exception
         would be for an existential type variable, but existentials are not
         allowed in pattern bindings either.)
       
         Even this is illegal
      	f :: forall a. a -> a
      	f x = let ((y::b)::a, z) = ... 
      	      in 
         Here it looks as if 'b' might get a rigid binding; but you can't bind
         it to the same skolem as a.
      
      6) Explicitly-forall'd type variables in the *declaration type signature(s)*
         for a *pattern binding* do not scope AT ALL.
      
      	x :: forall a. a->a	  -- NO; the forall a does 
      	Just (x::a->a) = Just id  --     not scope at all
      
      	y :: forall a. a->a
      	Just y = Just (id :: a->a)  -- NO; same reason
      
         THIS IS A CHANGE, but one I bet that very few people will notice.
         Here's why:
      
      	strange :: forall b. (b->b,b->b)
      	strange = (id,id)
      
      	x1 :: forall a. a->a
      	y1 :: forall b. b->b
      	(x1,y1) = strange
      
          This is legal Haskell 98 (modulo the forall). If both 'a' and 'b'
          both scoped over the RHS, they'd get unified and so cannot stand
          for distinct type variables. One could *imagine* allowing this:
         
      	x2 :: forall a. a->a
      	y2 :: forall a. a->a
      	(x2,y2) = strange
      
          using the very same type variable 'a' in both signatures, so that
          a single 'a' scopes over the RHS.  That seems defensible, but odd,
          because though there are two type signatures, they introduce just
          *one* scoped type variable, a.
      
      7) Possible extension.  We might consider allowing
      	\(x :: [ _ ]) -> <expr>
          where "_" is a wild card, to mean "x has type list of something", without
          naming the something.
      ac10f840