% % (c) The GRASP/AQUA Project, Glasgow University, 1992-1998 % \section[DsExpr]{Matching expressions (Exprs)} \begin{code} module DsExpr ( dsExpr, dsLExpr, dsLet, dsLit ) where #include "HsVersions.h" import Match ( matchWrapper, matchSimply ) import MatchLit ( dsLit ) import DsBinds ( dsHsBinds, AutoScc(..) ) import DsGRHSs ( dsGuarded ) import DsListComp ( dsListComp, dsPArrComp ) import DsUtils ( mkErrorAppDs, mkStringLit, mkConsExpr, mkNilExpr, mkCoreTupTy, selectMatchVarL, dsReboundNames, lookupReboundName ) import DsArrows ( dsProcExpr ) import DsMonad #ifdef GHCI -- Template Haskell stuff iff bootstrapped import DsMeta ( dsBracket ) #endif import HsSyn import TcHsSyn ( hsPatType ) -- NB: The desugarer, which straddles the source and Core worlds, sometimes -- needs to see source types (newtypes etc), and sometimes not -- So WATCH OUT; check each use of split*Ty functions. -- Sigh. This is a pain. import TcType ( tcSplitAppTy, tcSplitFunTys, tcTyConAppArgs, tcSplitTyConApp, isUnLiftedType, Type, mkAppTy ) import Type ( splitFunTys ) import CoreSyn import CoreUtils ( exprType, mkIfThenElse, bindNonRec ) import FieldLabel ( FieldLabel, fieldLabelTyCon ) import CostCentre ( mkUserCC ) import Id ( Id, idType, idName, recordSelectorFieldLabel ) import PrelInfo ( rEC_CON_ERROR_ID, iRREFUT_PAT_ERROR_ID ) import DataCon ( DataCon, dataConWrapId, dataConFieldLabels, dataConInstOrigArgTys ) import DataCon ( isExistentialDataCon ) import Name ( Name ) import TyCon ( tyConDataCons ) import TysWiredIn ( tupleCon ) import BasicTypes ( RecFlag(..), Boxity(..), ipNameName ) import PrelNames ( toPName, returnMName, bindMName, thenMName, failMName, mfixName ) import SrcLoc ( Located(..), unLoc, getLoc, noLoc ) import Util ( zipEqual, zipWithEqual ) import Bag ( bagToList ) import Outputable import FastString \end{code} %************************************************************************ %* * \subsection{dsLet} %* * %************************************************************************ @dsLet@ is a match-result transformer, taking the @MatchResult@ for the body and transforming it into one for the let-bindings enclosing the body. This may seem a bit odd, but (source) let bindings can contain unboxed binds like \begin{verbatim} C x# = e \end{verbatim} This must be transformed to a case expression and, if the type has more than one constructor, may fail. \begin{code} dsLet :: [HsBindGroup Id] -> CoreExpr -> DsM CoreExpr dsLet groups body = foldlDs dsBindGroup body (reverse groups) dsBindGroup :: CoreExpr -> HsBindGroup Id -> DsM CoreExpr dsBindGroup body (HsIPBinds binds) = foldlDs dsIPBind body binds where dsIPBind body (L _ (IPBind n e)) = dsLExpr e `thenDs` \ e' -> returnDs (Let (NonRec (ipNameName n) e') body) -- Special case for bindings which bind unlifted variables -- We need to do a case right away, rather than building -- a tuple and doing selections. -- Silently ignore INLINE pragmas... dsBindGroup body bind@(HsBindGroup hsbinds sigs is_rec) | [L _ (AbsBinds [] [] exports inlines binds)] <- bagToList hsbinds, or [isUnLiftedType (idType g) | (_, g, l) <- exports] = ASSERT (case is_rec of {NonRecursive -> True; other -> False}) -- Unlifted bindings are always non-recursive -- and are always a Fun or Pat monobind -- -- ToDo: in some bizarre case it's conceivable that there -- could be dict binds in the 'binds'. (See the notes -- below. Then pattern-match would fail. Urk.) let body_w_exports = foldr bind_export body exports bind_export (tvs, g, l) body = ASSERT( null tvs ) bindNonRec g (Var l) body mk_error_app pat = mkErrorAppDs iRREFUT_PAT_ERROR_ID (exprType body) (showSDoc (ppr pat)) in case bagToList binds of [L loc (FunBind (L _ fun) _ matches)] -> putSrcSpanDs loc $ matchWrapper (FunRhs (idName fun)) matches `thenDs` \ (args, rhs) -> ASSERT( null args ) -- Functions aren't lifted returnDs (bindNonRec fun rhs body_w_exports) [L loc (PatBind pat grhss)] -> putSrcSpanDs loc $ dsGuarded grhss `thenDs` \ rhs -> mk_error_app pat `thenDs` \ error_expr -> matchSimply rhs PatBindRhs pat body_w_exports error_expr other -> pprPanic "dsLet: unlifted" (ppr bind $$ ppr body) -- Ordinary case for bindings dsBindGroup body (HsBindGroup binds sigs is_rec) = dsHsBinds NoSccs binds [] `thenDs` \ prs -> returnDs (Let (Rec prs) body) -- Use a Rec regardless of is_rec. -- Why? Because it allows the binds to be all -- mixed up, which is what happens in one rare case -- Namely, for an AbsBind with no tyvars and no dicts, -- but which does have dictionary bindings. -- See notes with TcSimplify.inferLoop [NO TYVARS] -- It turned out that wrapping a Rec here was the easiest solution -- -- NB The previous case dealt with unlifted bindings, so we -- only have to deal with lifted ones now; so Rec is ok \end{code} %************************************************************************ %* * \subsection[DsExpr-vars-and-cons]{Variables, constructors, literals} %* * %************************************************************************ \begin{code} dsLExpr :: LHsExpr Id -> DsM CoreExpr dsLExpr (L loc e) = putSrcSpanDs loc $ dsExpr e dsExpr :: HsExpr Id -> DsM CoreExpr dsExpr (HsPar e) = dsLExpr e dsExpr (ExprWithTySigOut e _) = dsLExpr e dsExpr (HsVar var) = returnDs (Var var) dsExpr (HsIPVar ip) = returnDs (Var (ipNameName ip)) dsExpr (HsLit lit) = dsLit lit -- HsOverLit has been gotten rid of by the type checker dsExpr expr@(HsLam a_Match) = matchWrapper LambdaExpr [a_Match] `thenDs` \ (binders, matching_code) -> returnDs (mkLams binders matching_code) dsExpr expr@(HsApp fun arg) = dsLExpr fun `thenDs` \ core_fun -> dsLExpr arg `thenDs` \ core_arg -> returnDs (core_fun `App` core_arg) \end{code} Operator sections. At first it looks as if we can convert \begin{verbatim} (expr op) \end{verbatim} to \begin{verbatim} \x -> op expr x \end{verbatim} But no! expr might be a redex, and we can lose laziness badly this way. Consider \begin{verbatim} map (expr op) xs \end{verbatim} for example. So we convert instead to \begin{verbatim} let y = expr in \x -> op y x \end{verbatim} If \tr{expr} is actually just a variable, say, then the simplifier will sort it out. \begin{code} dsExpr (OpApp e1 op _ e2) = dsLExpr op `thenDs` \ core_op -> -- for the type of y, we need the type of op's 2nd argument dsLExpr e1 `thenDs` \ x_core -> dsLExpr e2 `thenDs` \ y_core -> returnDs (mkApps core_op [x_core, y_core]) dsExpr (SectionL expr op) = dsLExpr op `thenDs` \ core_op -> -- for the type of y, we need the type of op's 2nd argument let (x_ty:y_ty:_, _) = splitFunTys (exprType core_op) -- Must look through an implicit-parameter type; -- newtype impossible; hence Type.splitFunTys in dsLExpr expr `thenDs` \ x_core -> newSysLocalDs x_ty `thenDs` \ x_id -> newSysLocalDs y_ty `thenDs` \ y_id -> returnDs (bindNonRec x_id x_core $ Lam y_id (mkApps core_op [Var x_id, Var y_id])) -- dsLExpr (SectionR op expr) -- \ x -> op x expr dsExpr (SectionR op expr) = dsLExpr op `thenDs` \ core_op -> -- for the type of x, we need the type of op's 2nd argument let (x_ty:y_ty:_, _) = splitFunTys (exprType core_op) -- See comment with SectionL in dsLExpr expr `thenDs` \ y_core -> newSysLocalDs x_ty `thenDs` \ x_id -> newSysLocalDs y_ty `thenDs` \ y_id -> returnDs (bindNonRec y_id y_core $ Lam x_id (mkApps core_op [Var x_id, Var y_id])) dsExpr (HsSCC cc expr) = dsLExpr expr `thenDs` \ core_expr -> getModuleDs `thenDs` \ mod_name -> returnDs (Note (SCC (mkUserCC cc mod_name)) core_expr) -- hdaume: core annotation dsExpr (HsCoreAnn fs expr) = dsLExpr expr `thenDs` \ core_expr -> returnDs (Note (CoreNote $ unpackFS fs) core_expr) -- special case to handle unboxed tuple patterns. dsExpr (HsCase discrim matches) | all ubx_tuple_match matches = dsLExpr discrim `thenDs` \ core_discrim -> matchWrapper CaseAlt matches `thenDs` \ ([discrim_var], matching_code) -> case matching_code of Case (Var x) bndr alts | x == discrim_var -> returnDs (Case core_discrim bndr alts) _ -> panic ("dsLExpr: tuple pattern:\n" ++ showSDoc (ppr matching_code)) where ubx_tuple_match (L _ (Match [L _ (TuplePat _ Unboxed)] _ _)) = True ubx_tuple_match _ = False dsExpr (HsCase discrim matches) = dsLExpr discrim `thenDs` \ core_discrim -> matchWrapper CaseAlt matches `thenDs` \ ([discrim_var], matching_code) -> returnDs (bindNonRec discrim_var core_discrim matching_code) dsExpr (HsLet binds body) = dsLExpr body `thenDs` \ body' -> dsLet binds body' -- We need the `ListComp' form to use `deListComp' (rather than the "do" form) -- because the interpretation of `stmts' depends on what sort of thing it is. -- dsExpr (HsDo ListComp stmts _ result_ty) = -- Special case for list comprehensions dsListComp stmts elt_ty where (_, [elt_ty]) = tcSplitTyConApp result_ty dsExpr (HsDo do_or_lc stmts ids result_ty) | isDoExpr do_or_lc = dsDo do_or_lc stmts ids result_ty dsExpr (HsDo PArrComp stmts _ result_ty) = -- Special case for array comprehensions dsPArrComp (map unLoc stmts) elt_ty where (_, [elt_ty]) = tcSplitTyConApp result_ty dsExpr (HsIf guard_expr then_expr else_expr) = dsLExpr guard_expr `thenDs` \ core_guard -> dsLExpr then_expr `thenDs` \ core_then -> dsLExpr else_expr `thenDs` \ core_else -> returnDs (mkIfThenElse core_guard core_then core_else) \end{code} \noindent \underline{\bf Type lambda and application} % ~~~~~~~~~~~~~~~~~~~~~~~~~~~ \begin{code} dsExpr (TyLam tyvars expr) = dsLExpr expr `thenDs` \ core_expr -> returnDs (mkLams tyvars core_expr) dsExpr (TyApp expr tys) = dsLExpr expr `thenDs` \ core_expr -> returnDs (mkTyApps core_expr tys) \end{code} \noindent \underline{\bf Various data construction things} % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ \begin{code} dsExpr (ExplicitList ty xs) = go xs where go [] = returnDs (mkNilExpr ty) go (x:xs) = dsLExpr x `thenDs` \ core_x -> go xs `thenDs` \ core_xs -> returnDs (mkConsExpr ty core_x core_xs) -- we create a list from the array elements and convert them into a list using -- `PrelPArr.toP' -- -- * the main disadvantage to this scheme is that `toP' traverses the list -- twice: once to determine the length and a second time to put to elements -- into the array; this inefficiency could be avoided by exposing some of -- the innards of `PrelPArr' to the compiler (ie, have a `PrelPArrBase') so -- that we can exploit the fact that we already know the length of the array -- here at compile time -- dsExpr (ExplicitPArr ty xs) = dsLookupGlobalId toPName `thenDs` \toP -> dsExpr (ExplicitList ty xs) `thenDs` \coreList -> returnDs (mkApps (Var toP) [Type ty, coreList]) dsExpr (ExplicitTuple expr_list boxity) = mappM dsLExpr expr_list `thenDs` \ core_exprs -> returnDs (mkConApp (tupleCon boxity (length expr_list)) (map (Type . exprType) core_exprs ++ core_exprs)) dsExpr (ArithSeqOut expr (From from)) = dsLExpr expr `thenDs` \ expr2 -> dsLExpr from `thenDs` \ from2 -> returnDs (App expr2 from2) dsExpr (ArithSeqOut expr (FromTo from two)) = dsLExpr expr `thenDs` \ expr2 -> dsLExpr from `thenDs` \ from2 -> dsLExpr two `thenDs` \ two2 -> returnDs (mkApps expr2 [from2, two2]) dsExpr (ArithSeqOut expr (FromThen from thn)) = dsLExpr expr `thenDs` \ expr2 -> dsLExpr from `thenDs` \ from2 -> dsLExpr thn `thenDs` \ thn2 -> returnDs (mkApps expr2 [from2, thn2]) dsExpr (ArithSeqOut expr (FromThenTo from thn two)) = dsLExpr expr `thenDs` \ expr2 -> dsLExpr from `thenDs` \ from2 -> dsLExpr thn `thenDs` \ thn2 -> dsLExpr two `thenDs` \ two2 -> returnDs (mkApps expr2 [from2, thn2, two2]) dsExpr (PArrSeqOut expr (FromTo from two)) = dsLExpr expr `thenDs` \ expr2 -> dsLExpr from `thenDs` \ from2 -> dsLExpr two `thenDs` \ two2 -> returnDs (mkApps expr2 [from2, two2]) dsExpr (PArrSeqOut expr (FromThenTo from thn two)) = dsLExpr expr `thenDs` \ expr2 -> dsLExpr from `thenDs` \ from2 -> dsLExpr thn `thenDs` \ thn2 -> dsLExpr two `thenDs` \ two2 -> returnDs (mkApps expr2 [from2, thn2, two2]) dsExpr (PArrSeqOut expr _) = panic "DsExpr.dsExpr: Infinite parallel array!" -- the parser shouldn't have generated it and the renamer and typechecker -- shouldn't have let it through \end{code} \noindent \underline{\bf Record construction and update} % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ For record construction we do this (assuming T has three arguments) \begin{verbatim} T { op2 = e } ==> let err = /\a -> recConErr a T (recConErr t1 "M.lhs/230/op1") e (recConErr t1 "M.lhs/230/op3") \end{verbatim} @recConErr@ then converts its arugment string into a proper message before printing it as \begin{verbatim} M.lhs, line 230: missing field op1 was evaluated \end{verbatim} We also handle @C{}@ as valid construction syntax for an unlabelled constructor @C@, setting all of @C@'s fields to bottom. \begin{code} dsExpr (RecordConOut data_con con_expr rbinds) = dsLExpr con_expr `thenDs` \ con_expr' -> let (arg_tys, _) = tcSplitFunTys (exprType con_expr') -- A newtype in the corner should be opaque; -- hence TcType.tcSplitFunTys mk_arg (arg_ty, lbl) = case [rhs | (L _ sel_id, rhs) <- rbinds, lbl == recordSelectorFieldLabel sel_id] of (rhs:rhss) -> ASSERT( null rhss ) dsLExpr rhs [] -> mkErrorAppDs rEC_CON_ERROR_ID arg_ty (showSDoc (ppr lbl)) unlabelled_bottom arg_ty = mkErrorAppDs rEC_CON_ERROR_ID arg_ty "" labels = dataConFieldLabels data_con in (if null labels then mappM unlabelled_bottom arg_tys else mappM mk_arg (zipEqual "dsExpr:RecordCon" arg_tys labels)) `thenDs` \ con_args -> returnDs (mkApps con_expr' con_args) \end{code} Record update is a little harder. Suppose we have the decl: \begin{verbatim} data T = T1 {op1, op2, op3 :: Int} | T2 {op4, op2 :: Int} | T3 \end{verbatim} Then we translate as follows: \begin{verbatim} r { op2 = e } ===> let op2 = e in case r of T1 op1 _ op3 -> T1 op1 op2 op3 T2 op4 _ -> T2 op4 op2 other -> recUpdError "M.lhs/230" \end{verbatim} It's important that we use the constructor Ids for @T1@, @T2@ etc on the RHSs, and do not generate a Core constructor application directly, because the constructor might do some argument-evaluation first; and may have to throw away some dictionaries. \begin{code} dsExpr (RecordUpdOut record_expr record_in_ty record_out_ty []) = dsLExpr record_expr dsExpr expr@(RecordUpdOut record_expr record_in_ty record_out_ty rbinds) = dsLExpr record_expr `thenDs` \ record_expr' -> -- Desugar the rbinds, and generate let-bindings if -- necessary so that we don't lose sharing let in_inst_tys = tcTyConAppArgs record_in_ty -- Newtype opaque out_inst_tys = tcTyConAppArgs record_out_ty -- Newtype opaque mk_val_arg field old_arg_id = case [rhs | (L _ sel_id, rhs) <- rbinds, field == recordSelectorFieldLabel sel_id] of (rhs:rest) -> ASSERT(null rest) rhs [] -> nlHsVar old_arg_id mk_alt con = newSysLocalsDs (dataConInstOrigArgTys con in_inst_tys) `thenDs` \ arg_ids -> -- This call to dataConArgTys won't work for existentials let val_args = zipWithEqual "dsExpr:RecordUpd" mk_val_arg (dataConFieldLabels con) arg_ids rhs = foldl (\a b -> nlHsApp a b) (noLoc $ TyApp (nlHsVar (dataConWrapId con)) out_inst_tys) val_args in returnDs (mkSimpleMatch [noLoc $ ConPatOut con (PrefixCon (map nlVarPat arg_ids)) record_in_ty [] []] rhs record_out_ty) in -- Record stuff doesn't work for existentials -- The type checker checks for this, but we need -- worry only about the constructors that are to be updated ASSERT2( all (not . isExistentialDataCon) cons_to_upd, ppr expr ) -- It's important to generate the match with matchWrapper, -- and the right hand sides with applications of the wrapper Id -- so that everything works when we are doing fancy unboxing on the -- constructor aguments. mappM mk_alt cons_to_upd `thenDs` \ alts -> matchWrapper RecUpd alts `thenDs` \ ([discrim_var], matching_code) -> returnDs (bindNonRec discrim_var record_expr' matching_code) where updated_fields :: [FieldLabel] updated_fields = [ recordSelectorFieldLabel sel_id | (L _ sel_id,_) <- rbinds] -- Get the type constructor from the first field label, -- so that we are sure it'll have all its DataCons -- (In GHCI, it's possible that some TyCons may not have all -- their constructors, in a module-loop situation.) tycon = fieldLabelTyCon (head updated_fields) data_cons = tyConDataCons tycon cons_to_upd = filter has_all_fields data_cons has_all_fields :: DataCon -> Bool has_all_fields con_id = all (`elem` con_fields) updated_fields where con_fields = dataConFieldLabels con_id \end{code} \noindent \underline{\bf Dictionary lambda and application} % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ @DictLam@ and @DictApp@ turn into the regular old things. (OLD:) @DictFunApp@ also becomes a curried application, albeit slightly more complicated; reminiscent of fully-applied constructors. \begin{code} dsExpr (DictLam dictvars expr) = dsLExpr expr `thenDs` \ core_expr -> returnDs (mkLams dictvars core_expr) ------------------ dsExpr (DictApp expr dicts) -- becomes a curried application = dsLExpr expr `thenDs` \ core_expr -> returnDs (foldl (\f d -> f `App` (Var d)) core_expr dicts) \end{code} Here is where we desugar the Template Haskell brackets and escapes \begin{code} -- Template Haskell stuff #ifdef GHCI /* Only if bootstrapping */ dsExpr (HsBracketOut x ps) = dsBracket x ps dsExpr (HsSpliceE s) = pprPanic "dsExpr:splice" (ppr s) #endif -- Arrow notation extension dsExpr (HsProc pat cmd) = dsProcExpr pat cmd \end{code} \begin{code} #ifdef DEBUG -- HsSyn constructs that just shouldn't be here: dsExpr (ExprWithTySig _ _) = panic "dsExpr:ExprWithTySig" dsExpr (ArithSeqIn _) = panic "dsExpr:ArithSeqIn" dsExpr (PArrSeqIn _) = panic "dsExpr:PArrSeqIn" #endif \end{code} %-------------------------------------------------------------------- Desugar 'do' and 'mdo' expressions (NOT list comprehensions, they're handled in DsListComp). Basically does the translation given in the Haskell 98 report: \begin{code} dsDo :: HsStmtContext Name -> [LStmt Id] -> ReboundNames Id -- id for: [return,fail,>>=,>>] and possibly mfixName -> Type -- Element type; the whole expression has type (m t) -> DsM CoreExpr dsDo do_or_lc stmts ids result_ty = dsReboundNames ids `thenDs` \ (meth_binds, ds_meths) -> let fail_id = lookupReboundName ds_meths failMName bind_id = lookupReboundName ds_meths bindMName then_id = lookupReboundName ds_meths thenMName (m_ty, b_ty) = tcSplitAppTy result_ty -- result_ty must be of the form (m b) -- For ExprStmt, see the comments near HsExpr.Stmt about -- exactly what ExprStmts mean! -- -- In dsDo we can only see DoStmt and ListComp (no guards) go [ResultStmt expr] = dsLExpr expr go (ExprStmt expr a_ty : stmts) = dsLExpr expr `thenDs` \ expr2 -> go stmts `thenDs` \ rest -> returnDs (mkApps then_id [Type a_ty, Type b_ty, expr2, rest]) go (LetStmt binds : stmts) = go stmts `thenDs` \ rest -> dsLet binds rest go (BindStmt pat expr : stmts) = go stmts `thenDs` \ body -> dsLExpr expr `thenDs` \ rhs -> mkStringLit (mk_msg (getLoc pat)) `thenDs` \ core_msg -> let -- In a do expression, pattern-match failure just calls -- the monadic 'fail' rather than throwing an exception fail_expr = mkApps fail_id [Type b_ty, core_msg] a_ty = hsPatType pat in selectMatchVarL pat `thenDs` \ var -> matchSimply (Var var) (StmtCtxt do_or_lc) pat body fail_expr `thenDs` \ match_code -> returnDs (mkApps bind_id [Type a_ty, Type b_ty, rhs, Lam var match_code]) go (RecStmt rec_stmts later_vars rec_vars rec_rets : stmts) = go (bind_stmt : stmts) where bind_stmt = dsRecStmt m_ty ds_meths rec_stmts later_vars rec_vars rec_rets in go (map unLoc stmts) `thenDs` \ stmts_code -> returnDs (foldr Let stmts_code meth_binds) where mk_msg locn = "Pattern match failure in do expression at " ++ showSDoc (ppr locn) \end{code} Translation for RecStmt's: ----------------------------- We turn (RecStmt [v1,..vn] stmts) into: (v1,..,vn) <- mfix (\~(v1,..vn). do stmts return (v1,..vn)) \begin{code} dsRecStmt :: Type -- Monad type constructor :: * -> * -> [(Name,Id)] -- Rebound Ids -> [LStmt Id] -> [Id] -> [Id] -> [LHsExpr Id] -> Stmt Id dsRecStmt m_ty ds_meths stmts later_vars rec_vars rec_rets = ASSERT( length vars == length rets ) BindStmt tup_pat mfix_app where vars@(var1:rest) = later_vars ++ rec_vars -- Always at least one rets@(ret1:_) = map nlHsVar later_vars ++ rec_rets one_var = null rest mfix_app = nlHsApp (noLoc $ TyApp (nlHsVar mfix_id) [tup_ty]) mfix_arg mfix_arg = noLoc $ HsLam (mkSimpleMatch [tup_pat] body tup_ty) tup_expr | one_var = ret1 | otherwise = noLoc $ ExplicitTuple rets Boxed tup_ty = mkCoreTupTy (map idType vars) -- Deals with singleton case tup_pat | one_var = nlVarPat var1 | otherwise = noLoc $ LazyPat (noLoc $ TuplePat (map nlVarPat vars) Boxed) body = noLoc $ HsDo DoExpr (stmts ++ [return_stmt]) [(n, HsVar id) | (n,id) <- ds_meths] -- A bit of a hack (mkAppTy m_ty tup_ty) Var return_id = lookupReboundName ds_meths returnMName Var mfix_id = lookupReboundName ds_meths mfixName return_stmt = noLoc $ ResultStmt return_app return_app = nlHsApp (noLoc $ TyApp (nlHsVar return_id) [tup_ty]) tup_expr \end{code}