% % (c) The GRASP/AQUA Project, Glasgow University, 1992-1998 % \section[DsExpr]{Matching expressions (Exprs)} \begin{code} module DsExpr ( dsExpr, dsLExpr, dsLocalBinds, dsValBinds, dsLit ) where #include "HsVersions.h" #if defined(GHCI) && defined(BREAKPOINT) import Foreign.StablePtr ( newStablePtr, castStablePtrToPtr ) import GHC.Exts ( Ptr(..), Int(..), addr2Int# ) import IOEnv ( ioToIOEnv ) import PrelNames ( breakpointJumpName, breakpointCondJumpName ) import TysWiredIn ( unitTy ) import TypeRep ( Type(..) ) import TyCon ( isUnLiftedTyCon ) #endif import Match ( matchWrapper, matchSinglePat, matchEquations ) import MatchLit ( dsLit, dsOverLit ) import DsBinds ( dsLHsBinds, dsCoercion ) import DsGRHSs ( dsGuarded ) import DsListComp ( dsListComp, dsPArrComp ) import DsUtils ( mkErrorAppDs, mkStringExpr, mkConsExpr, mkNilExpr, extractMatchResult, cantFailMatchResult, matchCanFail, mkCoreTupTy, selectSimpleMatchVarL, lookupEvidence, selectMatchVar ) import DsArrows ( dsProcExpr ) import DsMonad #ifdef GHCI -- Template Haskell stuff iff bootstrapped import DsMeta ( dsBracket ) #endif import HsSyn import TcHsSyn ( hsPatType, mkVanillaTuplePat ) -- NB: The desugarer, which straddles the source and Core worlds, sometimes -- needs to see source types (newtypes etc), and sometimes not -- So WATCH OUT; check each use of split*Ty functions. -- Sigh. This is a pain. import TcType ( tcSplitAppTy, tcSplitFunTys, tcTyConAppTyCon, tcTyConAppArgs, isUnLiftedType, Type, mkAppTy ) import Type ( splitFunTys, isUnboxedTupleType, mkFunTy ) import CoreSyn import CoreUtils ( exprType, mkIfThenElse, bindNonRec ) import CostCentre ( mkUserCC ) import Id ( Id, idType, idName, idDataCon ) import PrelInfo ( rEC_CON_ERROR_ID ) import DataCon ( DataCon, dataConWrapId, dataConFieldLabels, dataConInstOrigArgTys ) import DataCon ( isVanillaDataCon ) import TyCon ( FieldLabel, tyConDataCons ) import TysWiredIn ( tupleCon ) import BasicTypes ( RecFlag(..), Boxity(..), ipNameName ) import PrelNames ( toPName, returnMName, bindMName, thenMName, failMName, mfixName ) import SrcLoc ( Located(..), unLoc, getLoc, noLoc ) import Util ( zipEqual, zipWithEqual ) import Bag ( bagToList ) import Outputable import FastString \end{code} %************************************************************************ %* * dsLocalBinds, dsValBinds %* * %************************************************************************ \begin{code} dsLocalBinds :: HsLocalBinds Id -> CoreExpr -> DsM CoreExpr dsLocalBinds EmptyLocalBinds body = return body dsLocalBinds (HsValBinds binds) body = dsValBinds binds body dsLocalBinds (HsIPBinds binds) body = dsIPBinds binds body ------------------------- dsValBinds :: HsValBinds Id -> CoreExpr -> DsM CoreExpr dsValBinds (ValBindsOut binds _) body = foldrDs ds_val_bind body binds ------------------------- dsIPBinds (IPBinds ip_binds dict_binds) body = do { prs <- dsLHsBinds dict_binds ; let inner = Let (Rec prs) body -- The dict bindings may not be in -- dependency order; hence Rec ; foldrDs ds_ip_bind inner ip_binds } where ds_ip_bind (L _ (IPBind n e)) body = dsLExpr e `thenDs` \ e' -> returnDs (Let (NonRec (ipNameName n) e') body) ------------------------- ds_val_bind :: (RecFlag, LHsBinds Id) -> CoreExpr -> DsM CoreExpr -- Special case for bindings which bind unlifted variables -- We need to do a case right away, rather than building -- a tuple and doing selections. -- Silently ignore INLINE and SPECIALISE pragmas... ds_val_bind (NonRecursive, hsbinds) body | [L _ (AbsBinds [] [] exports binds)] <- bagToList hsbinds, (L loc bind : null_binds) <- bagToList binds, isBangHsBind bind || isUnboxedTupleBind bind || or [isUnLiftedType (idType g) | (_, g, _, _) <- exports] = let body_w_exports = foldr bind_export body exports bind_export (tvs, g, l, _) body = ASSERT( null tvs ) bindNonRec g (Var l) body in ASSERT (null null_binds) -- Non-recursive, non-overloaded bindings only come in ones -- ToDo: in some bizarre case it's conceivable that there -- could be dict binds in the 'binds'. (See the notes -- below. Then pattern-match would fail. Urk.) putSrcSpanDs loc $ case bind of FunBind { fun_id = L _ fun, fun_matches = matches, fun_co_fn = co_fn } -> matchWrapper (FunRhs (idName fun)) matches `thenDs` \ (args, rhs) -> ASSERT( null args ) -- Functions aren't lifted ASSERT( isIdCoercion co_fn ) returnDs (bindNonRec fun rhs body_w_exports) PatBind {pat_lhs = pat, pat_rhs = grhss, pat_rhs_ty = ty } -> -- let C x# y# = rhs in body -- ==> case rhs of C x# y# -> body putSrcSpanDs loc $ do { rhs <- dsGuarded grhss ty ; let upat = unLoc pat eqn = EqnInfo { eqn_wrap = idWrapper, eqn_pats = [upat], eqn_rhs = cantFailMatchResult body_w_exports } ; var <- selectMatchVar upat ty ; result <- matchEquations PatBindRhs [var] [eqn] (exprType body) ; return (scrungleMatch var rhs result) } other -> pprPanic "dsLet: unlifted" (pprLHsBinds hsbinds $$ ppr body) -- Ordinary case for bindings; none should be unlifted ds_val_bind (is_rec, binds) body = do { prs <- dsLHsBinds binds ; ASSERT( not (any (isUnLiftedType . idType . fst) prs) ) case prs of [] -> return body other -> return (Let (Rec prs) body) } -- Use a Rec regardless of is_rec. -- Why? Because it allows the binds to be all -- mixed up, which is what happens in one rare case -- Namely, for an AbsBind with no tyvars and no dicts, -- but which does have dictionary bindings. -- See notes with TcSimplify.inferLoop [NO TYVARS] -- It turned out that wrapping a Rec here was the easiest solution -- -- NB The previous case dealt with unlifted bindings, so we -- only have to deal with lifted ones now; so Rec is ok isUnboxedTupleBind :: HsBind Id -> Bool isUnboxedTupleBind (PatBind { pat_rhs_ty = ty }) = isUnboxedTupleType ty isUnboxedTupleBind other = False scrungleMatch :: Id -> CoreExpr -> CoreExpr -> CoreExpr -- Returns something like (let var = scrut in body) -- but if var is an unboxed-tuple type, it inlines it in a fragile way -- Special case to handle unboxed tuple patterns; they can't appear nested -- The idea is that -- case e of (# p1, p2 #) -> rhs -- should desugar to -- case e of (# x1, x2 #) -> ... match p1, p2 ... -- NOT -- let x = e in case x of .... -- -- But there may be a big -- let fail = ... in case e of ... -- wrapping the whole case, which complicates matters slightly -- It all seems a bit fragile. Test is dsrun013. scrungleMatch var scrut body | isUnboxedTupleType (idType var) = scrungle body | otherwise = bindNonRec var scrut body where scrungle (Case (Var x) bndr ty alts) | x == var = Case scrut bndr ty alts scrungle (Let binds body) = Let binds (scrungle body) scrungle other = panic ("scrungleMatch: tuple pattern:\n" ++ showSDoc (ppr other)) \end{code} %************************************************************************ %* * \subsection[DsExpr-vars-and-cons]{Variables, constructors, literals} %* * %************************************************************************ \begin{code} dsLExpr :: LHsExpr Id -> DsM CoreExpr dsLExpr (L loc e) = putSrcSpanDs loc $ dsExpr e dsExpr :: HsExpr Id -> DsM CoreExpr dsExpr (HsPar e) = dsLExpr e dsExpr (ExprWithTySigOut e _) = dsLExpr e dsExpr (HsVar var) = returnDs (Var var) dsExpr (HsIPVar ip) = returnDs (Var (ipNameName ip)) dsExpr (HsLit lit) = dsLit lit dsExpr (HsOverLit lit) = dsOverLit lit dsExpr (NegApp expr neg_expr) = do { core_expr <- dsLExpr expr ; core_neg <- dsExpr neg_expr ; return (core_neg `App` core_expr) } dsExpr expr@(HsLam a_Match) = matchWrapper LambdaExpr a_Match `thenDs` \ (binders, matching_code) -> returnDs (mkLams binders matching_code) #if defined(GHCI) && defined(BREAKPOINT) dsExpr (HsApp (L _ (HsApp realFun@(L _ (HsCoerce _ fun)) (L loc arg))) _) | HsVar funId <- fun , idName funId `elem` [breakpointJumpName, breakpointCondJumpName] , ids <- filter (isValidType . idType) (extractIds arg) = do dsWarn (text "Extracted ids:" <+> ppr ids <+> ppr (map idType ids)) stablePtr <- ioToIOEnv $ newStablePtr ids -- Yes, I know... I'm gonna burn in hell. let Ptr addr# = castStablePtrToPtr stablePtr funCore <- dsLExpr realFun argCore <- dsLExpr (L loc (HsLit (HsInt (fromIntegral (I# (addr2Int# addr#)))))) hvalCore <- dsLExpr (L loc (extractHVals ids)) return ((funCore `App` argCore) `App` hvalCore) where extractIds :: HsExpr Id -> [Id] extractIds (HsApp fn arg) | HsVar argId <- unLoc arg = argId:extractIds (unLoc fn) | TyApp arg' ts <- unLoc arg , HsVar argId <- unLoc arg' = error (showSDoc (ppr ts)) -- argId:extractIds (unLoc fn) extractIds x = [] extractHVals ids = ExplicitList unitTy (map (L loc . HsVar) ids) -- checks for tyvars and unlifted kinds. isValidType (TyVarTy _) = False isValidType (FunTy a b) = isValidType a && isValidType b isValidType (NoteTy _ t) = isValidType t isValidType (AppTy a b) = isValidType a && isValidType b isValidType (TyConApp con ts) = not (isUnLiftedTyCon con) && all isValidType ts isValidType _ = True #endif dsExpr expr@(HsApp fun arg) = dsLExpr fun `thenDs` \ core_fun -> dsLExpr arg `thenDs` \ core_arg -> returnDs (core_fun `App` core_arg) \end{code} Operator sections. At first it looks as if we can convert \begin{verbatim} (expr op) \end{verbatim} to \begin{verbatim} \x -> op expr x \end{verbatim} But no! expr might be a redex, and we can lose laziness badly this way. Consider \begin{verbatim} map (expr op) xs \end{verbatim} for example. So we convert instead to \begin{verbatim} let y = expr in \x -> op y x \end{verbatim} If \tr{expr} is actually just a variable, say, then the simplifier will sort it out. \begin{code} dsExpr (OpApp e1 op _ e2) = dsLExpr op `thenDs` \ core_op -> -- for the type of y, we need the type of op's 2nd argument dsLExpr e1 `thenDs` \ x_core -> dsLExpr e2 `thenDs` \ y_core -> returnDs (mkApps core_op [x_core, y_core]) dsExpr (SectionL expr op) = dsLExpr op `thenDs` \ core_op -> -- for the type of y, we need the type of op's 2nd argument let (x_ty:y_ty:_, _) = splitFunTys (exprType core_op) -- Must look through an implicit-parameter type; -- newtype impossible; hence Type.splitFunTys in dsLExpr expr `thenDs` \ x_core -> newSysLocalDs x_ty `thenDs` \ x_id -> newSysLocalDs y_ty `thenDs` \ y_id -> returnDs (bindNonRec x_id x_core $ Lam y_id (mkApps core_op [Var x_id, Var y_id])) -- dsLExpr (SectionR op expr) -- \ x -> op x expr dsExpr (SectionR op expr) = dsLExpr op `thenDs` \ core_op -> -- for the type of x, we need the type of op's 2nd argument let (x_ty:y_ty:_, _) = splitFunTys (exprType core_op) -- See comment with SectionL in dsLExpr expr `thenDs` \ y_core -> newSysLocalDs x_ty `thenDs` \ x_id -> newSysLocalDs y_ty `thenDs` \ y_id -> returnDs (bindNonRec y_id y_core $ Lam x_id (mkApps core_op [Var x_id, Var y_id])) dsExpr (HsSCC cc expr) = dsLExpr expr `thenDs` \ core_expr -> getModuleDs `thenDs` \ mod_name -> returnDs (Note (SCC (mkUserCC cc mod_name)) core_expr) -- hdaume: core annotation dsExpr (HsCoreAnn fs expr) = dsLExpr expr `thenDs` \ core_expr -> returnDs (Note (CoreNote $ unpackFS fs) core_expr) dsExpr (HsCase discrim matches) = dsLExpr discrim `thenDs` \ core_discrim -> matchWrapper CaseAlt matches `thenDs` \ ([discrim_var], matching_code) -> returnDs (scrungleMatch discrim_var core_discrim matching_code) dsExpr (HsLet binds body) = dsLExpr body `thenDs` \ body' -> dsLocalBinds binds body' -- We need the `ListComp' form to use `deListComp' (rather than the "do" form) -- because the interpretation of `stmts' depends on what sort of thing it is. -- dsExpr (HsDo ListComp stmts body result_ty) = -- Special case for list comprehensions dsListComp stmts body elt_ty where [elt_ty] = tcTyConAppArgs result_ty dsExpr (HsDo DoExpr stmts body result_ty) = dsDo stmts body result_ty dsExpr (HsDo (MDoExpr tbl) stmts body result_ty) = dsMDo tbl stmts body result_ty dsExpr (HsDo PArrComp stmts body result_ty) = -- Special case for array comprehensions dsPArrComp (map unLoc stmts) body elt_ty where [elt_ty] = tcTyConAppArgs result_ty dsExpr (HsIf guard_expr then_expr else_expr) = dsLExpr guard_expr `thenDs` \ core_guard -> dsLExpr then_expr `thenDs` \ core_then -> dsLExpr else_expr `thenDs` \ core_else -> returnDs (mkIfThenElse core_guard core_then core_else) \end{code} \noindent \underline{\bf Type lambda and application} % ~~~~~~~~~~~~~~~~~~~~~~~~~~~ \begin{code} dsExpr (TyLam tyvars expr) = dsLExpr expr `thenDs` \ core_expr -> returnDs (mkLams tyvars core_expr) dsExpr (TyApp expr tys) = dsLExpr expr `thenDs` \ core_expr -> returnDs (mkTyApps core_expr tys) \end{code} \noindent \underline{\bf Various data construction things} % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ \begin{code} dsExpr (ExplicitList ty xs) = go xs where go [] = returnDs (mkNilExpr ty) go (x:xs) = dsLExpr x `thenDs` \ core_x -> go xs `thenDs` \ core_xs -> returnDs (mkConsExpr ty core_x core_xs) -- we create a list from the array elements and convert them into a list using -- `PrelPArr.toP' -- -- * the main disadvantage to this scheme is that `toP' traverses the list -- twice: once to determine the length and a second time to put to elements -- into the array; this inefficiency could be avoided by exposing some of -- the innards of `PrelPArr' to the compiler (ie, have a `PrelPArrBase') so -- that we can exploit the fact that we already know the length of the array -- here at compile time -- dsExpr (ExplicitPArr ty xs) = dsLookupGlobalId toPName `thenDs` \toP -> dsExpr (ExplicitList ty xs) `thenDs` \coreList -> returnDs (mkApps (Var toP) [Type ty, coreList]) dsExpr (ExplicitTuple expr_list boxity) = mappM dsLExpr expr_list `thenDs` \ core_exprs -> returnDs (mkConApp (tupleCon boxity (length expr_list)) (map (Type . exprType) core_exprs ++ core_exprs)) dsExpr (ArithSeq expr (From from)) = dsExpr expr `thenDs` \ expr2 -> dsLExpr from `thenDs` \ from2 -> returnDs (App expr2 from2) dsExpr (ArithSeq expr (FromTo from two)) = dsExpr expr `thenDs` \ expr2 -> dsLExpr from `thenDs` \ from2 -> dsLExpr two `thenDs` \ two2 -> returnDs (mkApps expr2 [from2, two2]) dsExpr (ArithSeq expr (FromThen from thn)) = dsExpr expr `thenDs` \ expr2 -> dsLExpr from `thenDs` \ from2 -> dsLExpr thn `thenDs` \ thn2 -> returnDs (mkApps expr2 [from2, thn2]) dsExpr (ArithSeq expr (FromThenTo from thn two)) = dsExpr expr `thenDs` \ expr2 -> dsLExpr from `thenDs` \ from2 -> dsLExpr thn `thenDs` \ thn2 -> dsLExpr two `thenDs` \ two2 -> returnDs (mkApps expr2 [from2, thn2, two2]) dsExpr (PArrSeq expr (FromTo from two)) = dsExpr expr `thenDs` \ expr2 -> dsLExpr from `thenDs` \ from2 -> dsLExpr two `thenDs` \ two2 -> returnDs (mkApps expr2 [from2, two2]) dsExpr (PArrSeq expr (FromThenTo from thn two)) = dsExpr expr `thenDs` \ expr2 -> dsLExpr from `thenDs` \ from2 -> dsLExpr thn `thenDs` \ thn2 -> dsLExpr two `thenDs` \ two2 -> returnDs (mkApps expr2 [from2, thn2, two2]) dsExpr (PArrSeq expr _) = panic "DsExpr.dsExpr: Infinite parallel array!" -- the parser shouldn't have generated it and the renamer and typechecker -- shouldn't have let it through \end{code} \noindent \underline{\bf Record construction and update} % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ For record construction we do this (assuming T has three arguments) \begin{verbatim} T { op2 = e } ==> let err = /\a -> recConErr a T (recConErr t1 "M.lhs/230/op1") e (recConErr t1 "M.lhs/230/op3") \end{verbatim} @recConErr@ then converts its arugment string into a proper message before printing it as \begin{verbatim} M.lhs, line 230: missing field op1 was evaluated \end{verbatim} We also handle @C{}@ as valid construction syntax for an unlabelled constructor @C@, setting all of @C@'s fields to bottom. \begin{code} dsExpr (RecordCon (L _ data_con_id) con_expr rbinds) = dsExpr con_expr `thenDs` \ con_expr' -> let (arg_tys, _) = tcSplitFunTys (exprType con_expr') -- A newtype in the corner should be opaque; -- hence TcType.tcSplitFunTys mk_arg (arg_ty, lbl) -- Selector id has the field label as its name = case [rhs | (L _ sel_id, rhs) <- rbinds, lbl == idName sel_id] of (rhs:rhss) -> ASSERT( null rhss ) dsLExpr rhs [] -> mkErrorAppDs rEC_CON_ERROR_ID arg_ty (showSDoc (ppr lbl)) unlabelled_bottom arg_ty = mkErrorAppDs rEC_CON_ERROR_ID arg_ty "" labels = dataConFieldLabels (idDataCon data_con_id) -- The data_con_id is guaranteed to be the wrapper id of the constructor in (if null labels then mappM unlabelled_bottom arg_tys else mappM mk_arg (zipEqual "dsExpr:RecordCon" arg_tys labels)) `thenDs` \ con_args -> returnDs (mkApps con_expr' con_args) \end{code} Record update is a little harder. Suppose we have the decl: \begin{verbatim} data T = T1 {op1, op2, op3 :: Int} | T2 {op4, op2 :: Int} | T3 \end{verbatim} Then we translate as follows: \begin{verbatim} r { op2 = e } ===> let op2 = e in case r of T1 op1 _ op3 -> T1 op1 op2 op3 T2 op4 _ -> T2 op4 op2 other -> recUpdError "M.lhs/230" \end{verbatim} It's important that we use the constructor Ids for @T1@, @T2@ etc on the RHSs, and do not generate a Core constructor application directly, because the constructor might do some argument-evaluation first; and may have to throw away some dictionaries. \begin{code} dsExpr (RecordUpd record_expr [] record_in_ty record_out_ty) = dsLExpr record_expr dsExpr expr@(RecordUpd record_expr rbinds record_in_ty record_out_ty) = dsLExpr record_expr `thenDs` \ record_expr' -> -- Desugar the rbinds, and generate let-bindings if -- necessary so that we don't lose sharing let in_inst_tys = tcTyConAppArgs record_in_ty -- Newtype opaque out_inst_tys = tcTyConAppArgs record_out_ty -- Newtype opaque in_out_ty = mkFunTy record_in_ty record_out_ty mk_val_arg field old_arg_id = case [rhs | (L _ sel_id, rhs) <- rbinds, field == idName sel_id] of (rhs:rest) -> ASSERT(null rest) rhs [] -> nlHsVar old_arg_id mk_alt con = newSysLocalsDs (dataConInstOrigArgTys con in_inst_tys) `thenDs` \ arg_ids -> -- This call to dataConInstOrigArgTys won't work for existentials -- but existentials don't have record types anyway let val_args = zipWithEqual "dsExpr:RecordUpd" mk_val_arg (dataConFieldLabels con) arg_ids rhs = foldl (\a b -> nlHsApp a b) (noLoc $ TyApp (nlHsVar (dataConWrapId con)) out_inst_tys) val_args in returnDs (mkSimpleMatch [noLoc $ ConPatOut (noLoc con) [] [] emptyLHsBinds (PrefixCon (map nlVarPat arg_ids)) record_in_ty] rhs) in -- Record stuff doesn't work for existentials -- The type checker checks for this, but we need -- worry only about the constructors that are to be updated ASSERT2( all isVanillaDataCon cons_to_upd, ppr expr ) -- It's important to generate the match with matchWrapper, -- and the right hand sides with applications of the wrapper Id -- so that everything works when we are doing fancy unboxing on the -- constructor aguments. mappM mk_alt cons_to_upd `thenDs` \ alts -> matchWrapper RecUpd (MatchGroup alts in_out_ty) `thenDs` \ ([discrim_var], matching_code) -> returnDs (bindNonRec discrim_var record_expr' matching_code) where updated_fields :: [FieldLabel] updated_fields = [ idName sel_id | (L _ sel_id,_) <- rbinds] -- Get the type constructor from the record_in_ty -- so that we are sure it'll have all its DataCons -- (In GHCI, it's possible that some TyCons may not have all -- their constructors, in a module-loop situation.) tycon = tcTyConAppTyCon record_in_ty data_cons = tyConDataCons tycon cons_to_upd = filter has_all_fields data_cons has_all_fields :: DataCon -> Bool has_all_fields con_id = all (`elem` con_fields) updated_fields where con_fields = dataConFieldLabels con_id \end{code} \noindent \underline{\bf Dictionary lambda and application} % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ @DictLam@ and @DictApp@ turn into the regular old things. (OLD:) @DictFunApp@ also becomes a curried application, albeit slightly more complicated; reminiscent of fully-applied constructors. \begin{code} dsExpr (DictLam dictvars expr) = dsLExpr expr `thenDs` \ core_expr -> returnDs (mkLams dictvars core_expr) ------------------ dsExpr (DictApp expr dicts) -- becomes a curried application = dsLExpr expr `thenDs` \ core_expr -> returnDs (foldl (\f d -> f `App` (Var d)) core_expr dicts) dsExpr (HsCoerce co_fn e) = dsCoercion co_fn (dsExpr e) \end{code} Here is where we desugar the Template Haskell brackets and escapes \begin{code} -- Template Haskell stuff #ifdef GHCI /* Only if bootstrapping */ dsExpr (HsBracketOut x ps) = dsBracket x ps dsExpr (HsSpliceE s) = pprPanic "dsExpr:splice" (ppr s) #endif -- Arrow notation extension dsExpr (HsProc pat cmd) = dsProcExpr pat cmd \end{code} \begin{code} #ifdef DEBUG -- HsSyn constructs that just shouldn't be here: dsExpr (ExprWithTySig _ _) = panic "dsExpr:ExprWithTySig" #endif \end{code} %-------------------------------------------------------------------- Desugar 'do' and 'mdo' expressions (NOT list comprehensions, they're handled in DsListComp). Basically does the translation given in the Haskell 98 report: \begin{code} dsDo :: [LStmt Id] -> LHsExpr Id -> Type -- Type of the whole expression -> DsM CoreExpr dsDo stmts body result_ty = go (map unLoc stmts) where go [] = dsLExpr body go (ExprStmt rhs then_expr _ : stmts) = do { rhs2 <- dsLExpr rhs ; then_expr2 <- dsExpr then_expr ; rest <- go stmts ; returnDs (mkApps then_expr2 [rhs2, rest]) } go (LetStmt binds : stmts) = do { rest <- go stmts ; dsLocalBinds binds rest } go (BindStmt pat rhs bind_op fail_op : stmts) = do { body <- go stmts ; var <- selectSimpleMatchVarL pat ; match <- matchSinglePat (Var var) (StmtCtxt DoExpr) pat result_ty (cantFailMatchResult body) ; match_code <- handle_failure pat match fail_op ; rhs' <- dsLExpr rhs ; bind_op' <- dsExpr bind_op ; returnDs (mkApps bind_op' [rhs', Lam var match_code]) } -- In a do expression, pattern-match failure just calls -- the monadic 'fail' rather than throwing an exception handle_failure pat match fail_op | matchCanFail match = do { fail_op' <- dsExpr fail_op ; fail_msg <- mkStringExpr (mk_fail_msg pat) ; extractMatchResult match (App fail_op' fail_msg) } | otherwise = extractMatchResult match (error "It can't fail") mk_fail_msg pat = "Pattern match failure in do expression at " ++ showSDoc (ppr (getLoc pat)) \end{code} Translation for RecStmt's: ----------------------------- We turn (RecStmt [v1,..vn] stmts) into: (v1,..,vn) <- mfix (\~(v1,..vn). do stmts return (v1,..vn)) \begin{code} dsMDo :: PostTcTable -> [LStmt Id] -> LHsExpr Id -> Type -- Type of the whole expression -> DsM CoreExpr dsMDo tbl stmts body result_ty = go (map unLoc stmts) where (m_ty, b_ty) = tcSplitAppTy result_ty -- result_ty must be of the form (m b) mfix_id = lookupEvidence tbl mfixName return_id = lookupEvidence tbl returnMName bind_id = lookupEvidence tbl bindMName then_id = lookupEvidence tbl thenMName fail_id = lookupEvidence tbl failMName ctxt = MDoExpr tbl go [] = dsLExpr body go (LetStmt binds : stmts) = do { rest <- go stmts ; dsLocalBinds binds rest } go (ExprStmt rhs _ rhs_ty : stmts) = do { rhs2 <- dsLExpr rhs ; rest <- go stmts ; returnDs (mkApps (Var then_id) [Type rhs_ty, Type b_ty, rhs2, rest]) } go (BindStmt pat rhs _ _ : stmts) = do { body <- go stmts ; var <- selectSimpleMatchVarL pat ; match <- matchSinglePat (Var var) (StmtCtxt ctxt) pat result_ty (cantFailMatchResult body) ; fail_msg <- mkStringExpr (mk_fail_msg pat) ; let fail_expr = mkApps (Var fail_id) [Type b_ty, fail_msg] ; match_code <- extractMatchResult match fail_expr ; rhs' <- dsLExpr rhs ; returnDs (mkApps (Var bind_id) [Type (hsPatType pat), Type b_ty, rhs', Lam var match_code]) } go (RecStmt rec_stmts later_ids rec_ids rec_rets binds : stmts) = ASSERT( length rec_ids > 0 ) ASSERT( length rec_ids == length rec_rets ) go (new_bind_stmt : let_stmt : stmts) where new_bind_stmt = mkBindStmt (mk_tup_pat later_pats) mfix_app let_stmt = LetStmt (HsValBinds (ValBindsOut [(Recursive, binds)] [])) -- Remove the later_ids that appear (without fancy coercions) -- in rec_rets, because there's no need to knot-tie them separately -- See Note [RecStmt] in HsExpr later_ids' = filter (`notElem` mono_rec_ids) later_ids mono_rec_ids = [ id | HsVar id <- rec_rets ] mfix_app = nlHsApp (noLoc $ TyApp (nlHsVar mfix_id) [tup_ty]) mfix_arg mfix_arg = noLoc $ HsLam (MatchGroup [mkSimpleMatch [mfix_pat] body] (mkFunTy tup_ty body_ty)) -- The rec_tup_pat must bind the rec_ids only; remember that the -- trimmed_laters may share the same Names -- Meanwhile, the later_pats must bind the later_vars rec_tup_pats = map mk_wild_pat later_ids' ++ map nlVarPat rec_ids later_pats = map nlVarPat later_ids' ++ map mk_later_pat rec_ids rets = map nlHsVar later_ids' ++ map noLoc rec_rets mfix_pat = noLoc $ LazyPat $ mk_tup_pat rec_tup_pats body = noLoc $ HsDo ctxt rec_stmts return_app body_ty body_ty = mkAppTy m_ty tup_ty tup_ty = mkCoreTupTy (map idType (later_ids' ++ rec_ids)) -- mkCoreTupTy deals with singleton case return_app = nlHsApp (noLoc $ TyApp (nlHsVar return_id) [tup_ty]) (mk_ret_tup rets) mk_wild_pat :: Id -> LPat Id mk_wild_pat v = noLoc $ WildPat $ idType v mk_later_pat :: Id -> LPat Id mk_later_pat v | v `elem` later_ids' = mk_wild_pat v | otherwise = nlVarPat v mk_tup_pat :: [LPat Id] -> LPat Id mk_tup_pat [p] = p mk_tup_pat ps = noLoc $ mkVanillaTuplePat ps Boxed mk_ret_tup :: [LHsExpr Id] -> LHsExpr Id mk_ret_tup [r] = r mk_ret_tup rs = noLoc $ ExplicitTuple rs Boxed \end{code}