HeapStackCheck.cmm 18.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* -----------------------------------------------------------------------------
 *
 * (c) The GHC Team, 1998-2004
 *
 * Canned Heap-Check and Stack-Check sequences.
 *
 * This file is written in a subset of C--, extended with various
 * features specific to GHC.  It is compiled by GHC directly.  For the
 * syntax of .cmm files, see the parser in ghc/compiler/cmm/CmmParse.y.
 *
 * ---------------------------------------------------------------------------*/

#include "Cmm.h"

15
#ifdef __PIC__
16
import pthread_mutex_unlock;
17
#endif
18 19
import EnterCriticalSection;
import LeaveCriticalSection;
20

21 22 23 24 25
/* Stack/Heap Check Failure
 * ------------------------
 *
 * On discovering that a stack or heap check has failed, we do the following:
 *
26 27 28
 *    - If HpLim==0, indicating that we should context-switch, we yield
 *      to the scheduler (return ThreadYielding).
 *
29 30 31 32 33 34 35 36 37 38 39
 * Note that we must leave no slop in the heap (this is a requirement
 * for LDV profiling, at least), so if we just had a heap-check
 * failure, then we must retract Hp by HpAlloc.  How do we know
 * whether there was a heap-check failure?  HpLim might be zero, and
 * yet we got here as a result of a stack-check failure.  Hence, we
 * require that HpAlloc is only non-zero if there was a heap-check
 * failure, otherwise it is zero, so we can always safely subtract
 * HpAlloc from Hp.
 *
 * Hence, HpAlloc is zeroed in LOAD_THREAD_STATE().
 *
40 41
 *    - If the context_switch flag is set (the backup plan if setting HpLim
 *      to 0 didn't trigger a context switch), we yield to the scheduler
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
 *	(return ThreadYielding).
 *
 *    - If Hp > HpLim, we've had a heap check failure.  This means we've
 *	come to the end of the current heap block, so we try to chain
 *	another block on with ExtendNursery().  
 *
 *	     - If this succeeds, we carry on without returning to the 
 *	       scheduler.  
 *
 *	     - If it fails, we return to the scheduler claiming HeapOverflow
 *	       so that a garbage collection can be performed.
 *
 *    - If Hp <= HpLim, it must have been a stack check that failed.  In
 *	which case, we return to the scheduler claiming StackOverflow, the
 *	scheduler will either increase the size of our stack, or raise
 *	an exception if the stack is already too big.
 *
 * The effect of checking for context switch only in the heap/stack check
 * failure code is that we'll switch threads after the current thread has
 * reached the end of its heap block.  If a thread isn't allocating
 * at all, it won't yield.  Hopefully this won't be a problem in practice.
 */
 
65 66 67 68 69
#define PRE_RETURN(why,what_next)			\
  StgTSO_what_next(CurrentTSO) = what_next::I16;	\
  StgRegTable_rRet(BaseReg) = why;           	        \
  R1 = BaseReg;

70 71 72 73 74 75 76
/* Remember that the return address is *removed* when returning to a
 * ThreadRunGHC thread.
 */

#define GC_GENERIC						\
    DEBUG_ONLY(foreign "C" heapCheckFail());			\
    if (Hp > HpLim) {						\
77
        Hp = Hp - HpAlloc/*in bytes*/;				\
78 79 80 81
        if (HpLim == 0) { \
                R1 = ThreadYielding;				\
                goto sched;					\
        }						\
82 83
        if (HpAlloc <= BLOCK_SIZE				\
            && bdescr_link(CurrentNursery) != NULL) {		\
84
            HpAlloc = 0;                                        \
85 86 87
            CLOSE_NURSERY();					\
            CurrentNursery = bdescr_link(CurrentNursery);	\
            OPEN_NURSERY();					\
88
            if (Capability_context_switch(MyCapability()) != 0 :: CInt) { \
89 90 91 92 93 94 95 96 97 98 99 100 101
                R1 = ThreadYielding;				\
                goto sched;					\
            } else {						\
                jump %ENTRY_CODE(Sp(0));			\
            }							\
	} else {						\
            R1 = HeapOverflow;					\
            goto sched;						\
        }							\
    } else {							\
        R1 = StackOverflow;					\
    }								\
  sched:							\
102
    PRE_RETURN(R1,ThreadRunGHC);				\
103
    jump stg_returnToSched;
104

105 106
#define HP_GENERIC				\
   PRE_RETURN(HeapOverflow, ThreadRunGHC)	\
107 108
  jump stg_returnToSched;

109 110 111 112 113 114 115 116 117
#define BLOCK_GENERIC				\
   PRE_RETURN(ThreadBlocked,  ThreadRunGHC)	\
  jump stg_returnToSched;

#define YIELD_GENERIC				\
  PRE_RETURN(ThreadYielding, ThreadRunGHC)	\
  jump stg_returnToSched;

#define BLOCK_BUT_FIRST(c)			\
118
  PRE_RETURN(ThreadBlocked, ThreadRunGHC)	\
119
  R2 = c;					\
120
  jump stg_returnToSchedButFirst;
121

122 123 124
#define YIELD_TO_INTERPRETER			\
  PRE_RETURN(ThreadYielding, ThreadInterpret)	\
  jump stg_returnToSchedNotPaused;
125 126 127 128 129 130 131 132 133 134 135

/* -----------------------------------------------------------------------------
   Heap checks in thunks/functions.

   In these cases, node always points to the function closure.  This gives
   us an easy way to return to the function: just leave R1 on the top of
   the stack, and have the scheduler enter it to return.

   There are canned sequences for 'n' pointer values in registers.
   -------------------------------------------------------------------------- */

136
INFO_TABLE_RET( stg_enter, RET_SMALL, P_ unused)
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
{
    R1 = Sp(1);
    Sp_adj(2);
    ENTER();
}

__stg_gc_enter_1
{
    Sp_adj(-2);
    Sp(1) = R1;
    Sp(0) = stg_enter_info;
    GC_GENERIC
}

/* -----------------------------------------------------------------------------
   Heap checks in Primitive case alternatives

   A primitive case alternative is entered with a value either in 
   R1, FloatReg1 or D1 depending on the return convention.  All the
   cases are covered below.
   -------------------------------------------------------------------------- */

/*-- No Registers live ------------------------------------------------------ */

stg_gc_noregs
{
    GC_GENERIC
}

/*-- void return ------------------------------------------------------------ */

168
INFO_TABLE_RET( stg_gc_void, RET_SMALL)
169 170 171 172 173 174 175
{
    Sp_adj(1);
    jump %ENTRY_CODE(Sp(0));
}

/*-- R1 is boxed/unpointed -------------------------------------------------- */

176
INFO_TABLE_RET( stg_gc_unpt_r1, RET_SMALL, P_ unused)
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
{
    R1 = Sp(1);
    Sp_adj(2);
    jump %ENTRY_CODE(Sp(0));
}

stg_gc_unpt_r1
{
    Sp_adj(-2);
    Sp(1) = R1;
    Sp(0) = stg_gc_unpt_r1_info;
    GC_GENERIC
}

/*-- R1 is unboxed -------------------------------------------------- */

/* the 1 is a bitmap - i.e. 1 non-pointer word on the stack. */
194
INFO_TABLE_RET(	stg_gc_unbx_r1, RET_SMALL, W_ unused )
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
{
    R1 = Sp(1);
    Sp_adj(2);
    jump %ENTRY_CODE(Sp(0));
}

stg_gc_unbx_r1
{
    Sp_adj(-2);
    Sp(1) = R1;
    Sp(0) = stg_gc_unbx_r1_info;
    GC_GENERIC
}

/*-- F1 contains a float ------------------------------------------------- */

211
INFO_TABLE_RET(	stg_gc_f1, RET_SMALL, F_ unused )
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
{
    F1 = F_[Sp+WDS(1)];
    Sp_adj(2);
    jump %ENTRY_CODE(Sp(0));
}

stg_gc_f1
{
    Sp_adj(-2);
    F_[Sp + WDS(1)] = F1;
    Sp(0) = stg_gc_f1_info;
    GC_GENERIC
}

/*-- D1 contains a double ------------------------------------------------- */

228
INFO_TABLE_RET(	stg_gc_d1, RET_SMALL, D_ unused )
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
{
    D1 = D_[Sp + WDS(1)];
    Sp = Sp + WDS(1) + SIZEOF_StgDouble;
    jump %ENTRY_CODE(Sp(0));
}

stg_gc_d1
{
    Sp = Sp - WDS(1) - SIZEOF_StgDouble;
    D_[Sp + WDS(1)] = D1;
    Sp(0) = stg_gc_d1_info;
    GC_GENERIC
}


/*-- L1 contains an int64 ------------------------------------------------- */

246
INFO_TABLE_RET( stg_gc_l1, RET_SMALL, L_ unused )
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
{
    L1 = L_[Sp + WDS(1)];
    Sp_adj(1) + SIZEOF_StgWord64;
    jump %ENTRY_CODE(Sp(0));
}

stg_gc_l1
{
    Sp_adj(-1) - SIZEOF_StgWord64;
    L_[Sp + WDS(1)] = L1;
    Sp(0) = stg_gc_l1_info;
    GC_GENERIC
}

/*-- Unboxed tuple return, one pointer (unregisterised build only) ---------- */

263
INFO_TABLE_RET( stg_ut_1_0_unreg, RET_SMALL, P_ unused )
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
{
    Sp_adj(1);
    // one ptr is on the stack (Sp(0))
    jump %ENTRY_CODE(Sp(1));
}

/* -----------------------------------------------------------------------------
   Generic function entry heap check code.

   At a function entry point, the arguments are as per the calling convention,
   i.e. some in regs and some on the stack.  There may or may not be 
   a pointer to the function closure in R1 - if there isn't, then the heap
   check failure code in the function will arrange to load it.

   The function's argument types are described in its info table, so we
   can just jump to this bit of generic code to save away all the
   registers and return to the scheduler.

   This code arranges the stack like this:
	 
         |        ....         |
         |        args         |
	 +---------------------+
         |      f_closure      |
	 +---------------------+
         |        size         |
	 +---------------------+
         |   stg_gc_fun_info   |
	 +---------------------+

   The size is the number of words of arguments on the stack, and is cached
   in the frame in order to simplify stack walking: otherwise the size of
   this stack frame would have to be calculated by looking at f's info table.

   -------------------------------------------------------------------------- */

__stg_gc_fun
{
    W_ size;
    W_ info;
    W_ type;

Simon Marlow's avatar
Simon Marlow committed
306
    info = %GET_FUN_INFO(UNTAG(R1));
307 308 309 310 311 312 313

    // cache the size
    type = TO_W_(StgFunInfoExtra_fun_type(info));
    if (type == ARG_GEN) {
	size = BITMAP_SIZE(StgFunInfoExtra_bitmap(info));
    } else { 
	if (type == ARG_GEN_BIG) {
314 315 316
#ifdef TABLES_NEXT_TO_CODE
            // bitmap field holds an offset
            size = StgLargeBitmap_size( StgFunInfoExtra_bitmap(info)
Simon Marlow's avatar
Simon Marlow committed
317
                                        + %GET_ENTRY(UNTAG(R1)) /* ### */ );
318
#else
319
	    size = StgLargeBitmap_size( StgFunInfoExtra_bitmap(info) );
320
#endif
321 322 323 324 325 326 327 328
	} else {
	    size = BITMAP_SIZE(W_[stg_arg_bitmaps + WDS(type)]);
	}
    }
    
#ifdef NO_ARG_REGS
    // we don't have to save any registers away
    Sp_adj(-3);
329 330
    Sp(2) = R1;
    Sp(1) = size;
331 332 333 334 335 336 337 338 339
    Sp(0) = stg_gc_fun_info;
    GC_GENERIC
#else
    W_ type;
    type = TO_W_(StgFunInfoExtra_fun_type(info));
    // cache the size
    if (type == ARG_GEN || type == ARG_GEN_BIG) {
        // regs already saved by the heap check code
        Sp_adj(-3);
340 341
        Sp(2) = R1;
        Sp(1) = size;
342
        Sp(0) = stg_gc_fun_info;
343
        // DEBUG_ONLY(foreign "C" debugBelch("stg_fun_gc_gen(ARG_GEN)"););
344 345 346 347 348
        GC_GENERIC
    } else { 
	jump W_[stg_stack_save_entries + WDS(type)];
	    // jumps to stg_gc_noregs after saving stuff
    }
349
#endif /* !NO_ARG_REGS */
350 351 352 353 354 355 356 357 358 359
}

/* -----------------------------------------------------------------------------
   Generic Apply (return point)

   The dual to stg_fun_gc_gen (above): this fragment returns to the
   function, passing arguments in the stack and in registers
   appropriately.  The stack layout is given above.
   -------------------------------------------------------------------------- */

360
INFO_TABLE_RET( stg_gc_fun, RET_FUN )
361
{
362
    R1 = Sp(2);
363 364 365 366
    Sp_adj(3);
#ifdef NO_ARG_REGS
    // Minor optimisation: there are no argument registers to load up,
    // so we can just jump straight to the function's entry point.
Simon Marlow's avatar
Simon Marlow committed
367
    jump %GET_ENTRY(UNTAG(R1));
368 369 370 371
#else
    W_ info;
    W_ type;
    
Simon Marlow's avatar
Simon Marlow committed
372
    info = %GET_FUN_INFO(UNTAG(R1));
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
    type = TO_W_(StgFunInfoExtra_fun_type(info));
    if (type == ARG_GEN || type == ARG_GEN_BIG) {
	jump StgFunInfoExtra_slow_apply(info);
    } else { 
	if (type == ARG_BCO) {
	    // cover this case just to be on the safe side
	    Sp_adj(-2);
	    Sp(1) = R1;
	    Sp(0) = stg_apply_interp_info;
	    jump stg_yield_to_interpreter;
	} else {
	    jump W_[stg_ap_stack_entries + WDS(type)];
	}
    }
#endif
}

/* -----------------------------------------------------------------------------
   Generic Heap Check Code.

   Called with Liveness mask in R9,  Return address in R10.
   Stack must be consistent (containing all necessary info pointers
   to relevant SRTs).

   See StgMacros.h for a description of the RET_DYN stack frame.

   We also define an stg_gen_yield here, because it's very similar.
   -------------------------------------------------------------------------- */

// For simplicity, we assume that SIZEOF_DOUBLE == 2*SIZEOF_VOID_P
// on a 64-bit machine, we'll end up wasting a couple of words, but
// it's not a big deal.

#define RESTORE_EVERYTHING			\
    L1   = L_[Sp + WDS(19)];			\
    D2   = D_[Sp + WDS(17)];			\
    D1   = D_[Sp + WDS(15)];			\
    F4   = F_[Sp + WDS(14)];			\
    F3   = F_[Sp + WDS(13)];			\
    F2   = F_[Sp + WDS(12)];			\
    F1   = F_[Sp + WDS(11)];			\
    R8 = Sp(10);				\
    R7 = Sp(9);					\
    R6 = Sp(8);					\
    R5 = Sp(7);					\
    R4 = Sp(6);					\
    R3 = Sp(5);					\
    R2 = Sp(4);					\
    R1 = Sp(3);					\
    Sp_adj(21);

#define RET_OFFSET (-19)

#define SAVE_EVERYTHING				\
    Sp_adj(-21);				\
    L_[Sp + WDS(19)] = L1;			\
    D_[Sp + WDS(17)] = D2;			\
    D_[Sp + WDS(15)] = D1;			\
    F_[Sp + WDS(14)] = F4;			\
    F_[Sp + WDS(13)] = F3;			\
    F_[Sp + WDS(12)] = F2;			\
    F_[Sp + WDS(11)] = F1;			\
    Sp(10) = R8;				\
    Sp(9) = R7;					\
    Sp(8) = R6;					\
    Sp(7) = R5;					\
    Sp(6) = R4;					\
    Sp(5) = R3;					\
    Sp(4) = R2;					\
    Sp(3) = R1;					\
443
    Sp(2) = R10;    /* return address */	\
444 445 446
    Sp(1) = R9;     /* liveness mask  */	\
    Sp(0) = stg_gc_gen_info;

447
INFO_TABLE_RET( stg_gc_gen, RET_DYN )
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
/* bitmap in the above info table is unused, the real one is on the stack. */
{
    RESTORE_EVERYTHING;
    jump Sp(RET_OFFSET); /* No %ENTRY_CODE( - this is an actual code ptr */
}

stg_gc_gen
{
    SAVE_EVERYTHING;
    GC_GENERIC
}	  

// A heap check at an unboxed tuple return point.  The return address
// is on the stack, and we can find it by using the offsets given
// to us in the liveness mask.
stg_gc_ut
{
    R10 = %ENTRY_CODE(Sp(RET_DYN_NONPTRS(R9) + RET_DYN_PTRS(R9)));
    SAVE_EVERYTHING;
    GC_GENERIC
}

/*
 * stg_gen_hp is used by MAYBE_GC, where we can't use GC_GENERIC
 * because we've just failed doYouWantToGC(), not a standard heap
 * check.  GC_GENERIC would end up returning StackOverflow.
 */
stg_gc_gen_hp
{
    SAVE_EVERYTHING;
    HP_GENERIC
}	  

/* -----------------------------------------------------------------------------
   Yields
   -------------------------------------------------------------------------- */

stg_gen_yield
{
    SAVE_EVERYTHING;
    YIELD_GENERIC
}

stg_yield_noregs
{
    YIELD_GENERIC;
}

/* -----------------------------------------------------------------------------
   Yielding to the interpreter... top of stack says what to do next.
   -------------------------------------------------------------------------- */

stg_yield_to_interpreter
{
    YIELD_TO_INTERPRETER;
}

/* -----------------------------------------------------------------------------
   Blocks
   -------------------------------------------------------------------------- */

stg_gen_block
{
    SAVE_EVERYTHING;
    BLOCK_GENERIC;
}

stg_block_noregs
{
    BLOCK_GENERIC;
}

stg_block_1
{
    Sp_adj(-2);
    Sp(1) = R1;
    Sp(0) = stg_enter_info;
    BLOCK_GENERIC;
}

/* -----------------------------------------------------------------------------
 * takeMVar/putMVar-specific blocks
 *
 * Stack layout for a thread blocked in takeMVar:
 *      
 *       ret. addr
 *       ptr to MVar   (R1)
 *       stg_block_takemvar_info
 *
 * Stack layout for a thread blocked in putMVar:
 *      
 *       ret. addr
 *       ptr to Value  (R2)
 *       ptr to MVar   (R1)
 *       stg_block_putmvar_info
 *
 * See PrimOps.hc for a description of the workings of take/putMVar.
 * 
 * -------------------------------------------------------------------------- */

548
INFO_TABLE_RET( stg_block_takemvar, RET_SMALL, P_ unused )
549 550 551
{
    R1 = Sp(1);
    Sp_adj(2);
552
    jump stg_takeMVarzh;
553 554
}

555 556 557
// code fragment executed just before we return to the scheduler
stg_block_takemvar_finally
{
558
#ifdef THREADED_RTS
559 560 561
    unlockClosure(R3, stg_MVAR_DIRTY_info);
#else
    SET_INFO(R3, stg_MVAR_DIRTY_info);
562 563 564 565
#endif
    jump StgReturn;
}

566 567 568 569 570
stg_block_takemvar
{
    Sp_adj(-2);
    Sp(1) = R1;
    Sp(0) = stg_block_takemvar_info;
571 572
    R3 = R1;
    BLOCK_BUT_FIRST(stg_block_takemvar_finally);
573 574
}

575
INFO_TABLE_RET( stg_block_putmvar, RET_SMALL, P_ unused1, P_ unused2 )
576 577 578 579
{
    R2 = Sp(2);
    R1 = Sp(1);
    Sp_adj(3);
580
    jump stg_putMVarzh;
581 582
}

583 584 585
// code fragment executed just before we return to the scheduler
stg_block_putmvar_finally
{
586
#ifdef THREADED_RTS
587 588 589
    unlockClosure(R3, stg_MVAR_DIRTY_info);
#else
    SET_INFO(R3, stg_MVAR_DIRTY_info);
590 591 592 593
#endif
    jump StgReturn;
}

594 595 596 597 598 599
stg_block_putmvar
{
    Sp_adj(-3);
    Sp(2) = R2;
    Sp(1) = R1;
    Sp(0) = stg_block_putmvar_info;
600 601
    R3 = R1;
    BLOCK_BUT_FIRST(stg_block_putmvar_finally);
602 603
}

604 605 606
// code fragment executed just before we return to the scheduler
stg_block_blackhole_finally
{
607
#if defined(THREADED_RTS)
608 609 610
    // The last thing we do is release sched_lock, which is
    // preventing other threads from accessing blackhole_queue and
    // picking up this thread before we are finished with it.
611
    RELEASE_LOCK(sched_mutex "ptr");
612 613 614 615 616 617 618 619 620 621 622 623
#endif
    jump StgReturn;
}

stg_block_blackhole
{
    Sp_adj(-2);
    Sp(1) = R1;
    Sp(0) = stg_enter_info;
    BLOCK_BUT_FIRST(stg_block_blackhole_finally);
}

624
INFO_TABLE_RET( stg_block_throwto, RET_SMALL, P_ unused, P_ unused )
625 626 627 628
{
    R2 = Sp(2);
    R1 = Sp(1);
    Sp_adj(3);
629
    jump stg_killThreadzh;
630 631 632 633
}

stg_block_throwto_finally
{
634 635
    // unlock the throwto message
    unlockClosure(StgTSO_block_info(CurrentTSO), stg_MSG_THROWTO_info);
636 637 638 639 640 641 642 643 644 645 646 647
    jump StgReturn;
}

stg_block_throwto
{
    Sp_adj(-3);
    Sp(2) = R2;
    Sp(1) = R1;
    Sp(0) = stg_block_throwto_info;
    BLOCK_BUT_FIRST(stg_block_throwto_finally);
}

648
#ifdef mingw32_HOST_OS
649
INFO_TABLE_RET( stg_block_async, RET_SMALL )
650 651 652 653 654 655
{
    W_ ares;
    W_ len, errC;

    ares = StgTSO_block_info(CurrentTSO);
    len = StgAsyncIOResult_len(ares);
656
    errC = StgAsyncIOResult_errCode(ares);
657
    StgTSO_block_info(CurrentTSO) = NULL;
658
    foreign "C" free(ares "ptr");
659 660 661 662 663 664 665 666 667 668 669 670
    R1 = len;
    Sp(0) = errC;
    jump %ENTRY_CODE(Sp(1));
}

stg_block_async
{
    Sp_adj(-1);
    Sp(0) = stg_block_async_info;
    BLOCK_GENERIC;
}

sof's avatar
sof committed
671 672 673
/* Used by threadDelay implementation; it would be desirable to get rid of
 * this free()'ing void return continuation.
 */
674
INFO_TABLE_RET( stg_block_async_void, RET_SMALL )
sof's avatar
sof committed
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
{
    W_ ares;

    ares = StgTSO_block_info(CurrentTSO);
    StgTSO_block_info(CurrentTSO) = NULL;
    foreign "C" free(ares "ptr");
    Sp_adj(1);
    jump %ENTRY_CODE(Sp(0));
}

stg_block_async_void
{
    Sp_adj(-1);
    Sp(0) = stg_block_async_void_info;
    BLOCK_GENERIC;
}

692
#endif
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707

/* -----------------------------------------------------------------------------
   STM-specific waiting
   -------------------------------------------------------------------------- */

stg_block_stmwait_finally
{
    foreign "C" stmWaitUnlock(MyCapability() "ptr", R3 "ptr");
    jump StgReturn;
}

stg_block_stmwait
{
    BLOCK_BUT_FIRST(stg_block_stmwait_finally);
}