1. 10 Oct, 2007 2 commits
    • Dan Licata's avatar
      View patterns, record wildcards, and record puns · 6a05ec5e
      Dan Licata authored
      This patch implements three new features:
      * view patterns (syntax: expression -> pat in a pattern)
      * working versions of record wildcards and record puns
      See the manual for detailed descriptions.
      
      Other minor observable changes:
      * There is a check prohibiting local fixity declarations
        when the variable being fixed is not defined in the same let
      * The warn-unused-binds option now reports warnings for do and mdo stmts
      
      Implementation notes: 
      
      * The pattern renamer is now in its own module, RnPat, and the
      implementation is now in a CPS style so that the correct context is
      delivered to pattern expressions.
      
      * These features required a fairly major upheaval to the renamer.
      Whereas the old version used to collect up all the bindings from a let
      (or top-level, or recursive do statement, ...) and put them into scope
      before renaming anything, the new version does the collection as it
      renames.  This allows us to do the right thing with record wildcard
      patterns (which need to be expanded to see what names should be
      collected), and it allows us to implement the desired semantics for view
      patterns in lets.  This change had a bunch of domino effects brought on
      by fiddling with the top-level renaming.
      
      * Prior to this patch, there was a tricky bug in mkRecordSelId in HEAD,
      which did not maintain the invariant necessary for loadDecl.  See note
      [Tricky iface loop] for details.
      6a05ec5e
    • simonpj@microsoft.com's avatar
      ce43dfc7
  2. 04 Sep, 2007 1 commit
  3. 03 Sep, 2007 1 commit
  4. 01 Sep, 2007 1 commit
  5. 22 Aug, 2007 1 commit
  6. 09 Aug, 2007 1 commit
  7. 21 Jun, 2007 1 commit
    • David Himmelstrup's avatar
      Add several new record features · 2eb04ca0
      David Himmelstrup authored
      1. Record disambiguation (-fdisambiguate-record-fields)
      
      In record construction and pattern matching (although not
      in record updates) it is clear which field name is intended
      even if there are several in scope.  This extension uses
      the constructor to disambiguate.  Thus
      	C { x=3 }
      uses the 'x' field from constructor C (assuming there is one)
      even if there are many x's in scope.
      
      
      2. Record punning (-frecord-puns)
      
      In a record construction or pattern match or update you can 
      omit the "=" part, thus
      	C { x, y }
      This is just syntactic sugar for
      	C { x=x, y=y }
      
      
      3.  Dot-dot notation for records (-frecord-dot-dot)
      
      In record construction or pattern match (but not update) 
      you can use ".." to mean "all the remaining fields".  So
      
      	C { x=v, .. }
      
      means to fill in the remaining fields to give
      
      	C { x=v, y=y }
      
      (assuming C has fields x and y).  This might reasonably
      considered very dodgy stuff.  For pattern-matching it brings
      into scope a bunch of things that are not explictly mentioned;
      and in record construction it just picks whatver 'y' is in
      scope for the 'y' field.   Still, Lennart Augustsson really
      wants it, and it's a feature that is extremely easy to explain.
      
      
      Implementation
      ~~~~~~~~~~~~~~
      I thought of using the "parent" field in the GlobalRdrEnv, but
      that's really used for import/export and just isn't right for this.
      For example, for import/export a field is a subordinate of the *type
      constructor* whereas here we need to know what fields belong to a
      particular *data* constructor.
      
      The main thing is that we need to map a data constructor to its
      fields, and we need to do so in the renamer.   For imported modules
      it's easy: just look in the imported TypeEnv.  For the module being
      compiled, we make a new field tcg_field_env in the TcGblEnv.
      The important functions are
      	RnEnv.lookupRecordBndr
      	RnEnv.lookupConstructorFields
      
      There is still a significant infelicity in the way the renamer
      works on patterns, which I'll tackle next.
      
      
      I also did quite a bit of refactoring in the representation of
      record fields (mainly in HsPat).***END OF DESCRIPTION***
      
      Place the long patch description above the ***END OF DESCRIPTION*** marker.
      The first line of this file will be the patch name.
      
      
      This patch contains the following changes:
      
      M ./compiler/deSugar/Check.lhs -3 +5
      M ./compiler/deSugar/Coverage.lhs -6 +7
      M ./compiler/deSugar/DsExpr.lhs -6 +13
      M ./compiler/deSugar/DsMeta.hs -8 +8
      M ./compiler/deSugar/DsUtils.lhs -1 +1
      M ./compiler/deSugar/MatchCon.lhs -2 +2
      M ./compiler/hsSyn/Convert.lhs -3 +3
      M ./compiler/hsSyn/HsDecls.lhs -9 +25
      M ./compiler/hsSyn/HsExpr.lhs -13 +3
      M ./compiler/hsSyn/HsPat.lhs -25 +63
      M ./compiler/hsSyn/HsUtils.lhs -3 +3
      M ./compiler/main/DynFlags.hs +6
      M ./compiler/parser/Parser.y.pp -13 +17
      M ./compiler/parser/RdrHsSyn.lhs -16 +18
      M ./compiler/rename/RnBinds.lhs -2 +2
      M ./compiler/rename/RnEnv.lhs -22 +82
      M ./compiler/rename/RnExpr.lhs -34 +12
      M ./compiler/rename/RnHsSyn.lhs -3 +2
      M ./compiler/rename/RnSource.lhs -50 +78
      M ./compiler/rename/RnTypes.lhs -50 +84
      M ./compiler/typecheck/TcExpr.lhs -18 +18
      M ./compiler/typecheck/TcHsSyn.lhs -20 +21
      M ./compiler/typecheck/TcPat.lhs -8 +6
      M ./compiler/typecheck/TcRnMonad.lhs -6 +15
      M ./compiler/typecheck/TcRnTypes.lhs -2 +11
      M ./compiler/typecheck/TcTyClsDecls.lhs -3 +4
      M ./docs/users_guide/flags.xml +7
      M ./docs/users_guide/glasgow_exts.xml +42
      2eb04ca0
  8. 05 May, 2007 3 commits
  9. 04 May, 2007 1 commit
  10. 02 May, 2007 1 commit
  11. 24 Apr, 2007 1 commit
    • Simon Marlow's avatar
      Breakpoints: get the names of the free variables right · 367b0590
      Simon Marlow authored
      Previously we relied on the names of the Ids attached to a tick being
      the same as the names of the original variables in the source code.
      Sometimes this worked, sometimes it didn't because the simplifier
      would inline away the Id.  So now we do this properly and retain the
      original OccNames from the source code for each breakpoint, and use
      these to construct the new Ids when we stop.
      
      Doing this involved moving the tracking of in-scope variables from the
      desugarer to the coverage pass.
      367b0590
  12. 22 Apr, 2007 1 commit
    • simonpj@microsoft.com's avatar
      Improve depth-cutoff for printing HsSyn in error messages · d38a30cb
      simonpj@microsoft.com authored
      	MERGE TO STABLE
      
      The "user style" in Outputable allows us to elide large expressions
      when printing HsSyn, printing "..." instead.  This is done by calling
      Outputable.pprDeeper.   
      
      But there was no mechanism for trimming very long lists, which 
      occur when using do-notation or explicit lists.  This patch fixes
      the problem, by adding Outputable.pprDeeperList.
      
      I also made some of the pretty-printing in HsExpr rather more
      vigorous about increasing the depth; in particular, pprParendExpr.
      This should make debug prints shorter.
      
      d38a30cb
  13. 04 Feb, 2007 1 commit
  14. 03 Jan, 2007 1 commit
  15. 29 Dec, 2006 1 commit
    • andy@galois.com's avatar
      Adding a GENERATED pragma · d386e0d2
      andy@galois.com authored
      Adding a {-# GENERATED "SourceFile" SourceSpan #-} <expr> pragma.
      This will be used to generate coverage for tool generated (or quoted) code.
      The pragma states the the expression was generated/quoted from the stated
      source file and source span.
      d386e0d2
  16. 24 Oct, 2006 1 commit
    • andy@galois.com's avatar
      Haskell Program Coverage · d5934bbb
      andy@galois.com authored
      This large checkin is the new ghc version of Haskell
      Program Coverage, an expression-level coverage tool for Haskell.
      
      Parts:
      
       - Hpc.[ch] - small runtime support for Hpc; reading/writing *.tix files.
       - Coverage.lhs - Annotates the HsSyn with coverage tickboxes.
        - New Note's in Core,
            - TickBox      -- ticked on entry to sub-expression
            - BinaryTickBox  -- ticked on exit to sub-expression, depending
      	       	     -- on the boolean result.
      
        - New Stg level TickBox (no BinaryTickBoxes, though) 
      
      You can run the coverage tool with -fhpc at compile time. 
      Main must be compiled with -fhpc. 
      				      
      d5934bbb
  17. 11 Oct, 2006 1 commit
  18. 29 Sep, 2006 2 commits
  19. 20 Sep, 2006 3 commits
    • chak@cse.unsw.edu.au.'s avatar
      fix bugs, add boolean flag to identify coercion variables · 0b86bc9b
      chak@cse.unsw.edu.au. authored
      Mon Sep 18 16:41:32 EDT 2006  Manuel M T Chakravarty <chak@cse.unsw.edu.au>
        * fix bugs, add boolean flag to identify coercion variables
        Sun Aug  6 17:04:02 EDT 2006  Manuel M T Chakravarty <chak@cse.unsw.edu.au>
          * fix bugs, add boolean flag to identify coercion variables
          Tue Jul 25 06:20:05 EDT 2006  kevind@bu.edu
      0b86bc9b
    • chak@cse.unsw.edu.au.'s avatar
      Complete the evidence generation for GADTs · 15cb792d
      chak@cse.unsw.edu.au. authored
      Mon Sep 18 14:43:22 EDT 2006  Manuel M T Chakravarty <chak@cse.unsw.edu.au>
        * Complete the evidence generation for GADTs
        Sat Aug  5 21:39:51 EDT 2006  Manuel M T Chakravarty <chak@cse.unsw.edu.au>
          * Complete the evidence generation for GADTs
          Thu Jul 13 17:18:07 EDT 2006  simonpj@microsoft.com
            
            This patch completes FC evidence generation for GADTs.
            
            It doesn't work properly yet, because part of the compiler thinks
            	(t1 :=: t2) => t3
            is represented with FunTy/PredTy, while the rest thinks it's represented
            using ForAllTy.  Once that's done things should start to work.
      15cb792d
    • chak@cse.unsw.edu.au.'s avatar
      some bug-fixes, newtype deriving might work now · 44ba24dc
      chak@cse.unsw.edu.au. authored
      Mon Sep 18 14:33:01 EDT 2006  Manuel M T Chakravarty <chak@cse.unsw.edu.au>
        * some bug-fixes, newtype deriving might work now
        Sat Aug  5 21:29:28 EDT 2006  Manuel M T Chakravarty <chak@cse.unsw.edu.au>
          * some bug-fixes, newtype deriving might work now
          Tue Jul 11 12:16:13 EDT 2006  kevind@bu.edu
      44ba24dc
  20. 15 Sep, 2006 1 commit
    • chak@cse.unsw.edu.au.'s avatar
      Massive patch for the first months work adding System FC to GHC #14 · 108361d0
      chak@cse.unsw.edu.au. authored
      Fri Aug  4 15:59:09 EDT 2006  Manuel M T Chakravarty <chak@cse.unsw.edu.au>
        * Massive patch for the first months work adding System FC to GHC #14
        
        Broken up massive patch -=chak
        Original log message:  
        This is (sadly) all done in one patch to avoid Darcs bugs.
        It's not complete work... more FC stuff to come.  A compiler
        using just this patch will fail dismally.
      108361d0
  21. 04 Sep, 2006 1 commit
  22. 07 Apr, 2006 1 commit
    • Simon Marlow's avatar
      Reorganisation of the source tree · 0065d5ab
      Simon Marlow authored
      Most of the other users of the fptools build system have migrated to
      Cabal, and with the move to darcs we can now flatten the source tree
      without losing history, so here goes.
      
      The main change is that the ghc/ subdir is gone, and most of what it
      contained is now at the top level.  The build system now makes no
      pretense at being multi-project, it is just the GHC build system.
      
      No doubt this will break many things, and there will be a period of
      instability while we fix the dependencies.  A straightforward build
      should work, but I haven't yet fixed binary/source distributions.
      Changes to the Building Guide will follow, too.
      0065d5ab
  23. 25 Jan, 2006 1 commit
    • simonpj@microsoft.com's avatar
      Simon's big boxy-type commit · ac10f840
      simonpj@microsoft.com authored
      This very large commit adds impredicativity to GHC, plus
      numerous other small things.
        
      *** WARNING: I have compiled all the libraries, and
      ***	     a stage-2 compiler, and everything seems
      ***	     fine.  But don't grab this patch if you 
      ***	     can't tolerate a hiccup if something is
      ***	     broken.
        
      The big picture is this:
      
      a) GHC handles impredicative polymorphism, as described in the
         "Boxy types: type inference for higher-rank types and
         impredicativity" paper
      
      b) GHC handles GADTs in the new simplified (and very sligtly less
         epxrssive) way described in the
         "Simple unification-based type inference for GADTs" paper
      
        
      But there are lots of smaller changes, and since it was pre-Darcs
      they are not individually recorded.
        
      Some things to watch out for:
        
      c)   The story on lexically-scoped type variables has changed, as per
           my email.  I append the story below for completeness, but I 
           am still not happy with it, and it may change again.  In particular,
           the new story does not allow a pattern-bound scoped type variable
           to be wobbly, so (\(x::[a]) -> ...) is usually rejected.  This is
           more restrictive than before, and we might loosen up again.
        
      d)   A consequence of adding impredicativity is that GHC is a bit less
           gung ho about converting automatically between
        	(ty1 -> forall a. ty2)    and    (forall a. ty1 -> ty2)
           In particular, you may need to eta-expand some functions to make
           typechecking work again.
         
           Furthermore, functions are now invariant in their argument types,
           rather than being contravariant.  Again, the main consequence is
           that you may occasionally need to eta-expand function arguments when
           using higher-rank polymorphism.
        
      
      Please test, and let me know of any hiccups
      
      
      Scoped type variables in GHC
      ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
      	January 2006
      
      0) Terminology.
         
         A *pattern binding* is of the form
      	pat = rhs
      
         A *function binding* is of the form
      	f pat1 .. patn = rhs
      
         A binding of the formm
      	var = rhs
         is treated as a (degenerate) *function binding*.
      
      
         A *declaration type signature* is a separate type signature for a
         let-bound or where-bound variable:
      	f :: Int -> Int
      
         A *pattern type signature* is a signature in a pattern: 
      	\(x::a) -> x
      	f (x::a) = x
      
         A *result type signature* is a signature on the result of a
         function definition:
      	f :: forall a. [a] -> a
      	head (x:xs) :: a = x
      
         The form
      	x :: a = rhs
         is treated as a (degnerate) function binding with a result
         type signature, not as a pattern binding.
      
      1) The main invariants:
      
           A) A lexically-scoped type variable always names a (rigid)
       	type variable (not an arbitrary type).  THIS IS A CHANGE.
              Previously, a scoped type variable named an arbitrary *type*.
      
           B) A type signature always describes a rigid type (since
      	its free (scoped) type variables name rigid type variables).
      	This is also a change, a consequence of (A).
      
           C) Distinct lexically-scoped type variables name distinct
      	rigid type variables.  This choice is open; 
      
      2) Scoping
      
      2(a) If a declaration type signature has an explicit forall, those type
         variables are brought into scope in the right hand side of the 
         corresponding binding (plus, for function bindings, the patterns on
         the LHS).  
      	f :: forall a. a -> [a]
      	f (x::a) = [x :: a, x]
         Both occurences of 'a' in the second line are bound by 
         the 'forall a' in the first line
      
         A declaration type signature *without* an explicit top-level forall
         is implicitly quantified over all the type variables that are
         mentioned in the type but not already in scope.  GHC's current
         rule is that this implicit quantification does *not* bring into scope
         any new scoped type variables.
      	f :: a -> a
      	f x = ...('a' is not in scope here)...
         This gives compatibility with Haskell 98
      
      2(b) A pattern type signature implicitly brings into scope any type
         variables mentioned in the type that are not already into scope.
         These are called *pattern-bound type variables*.
      	g :: a -> a -> [a]
      	g (x::a) (y::a) = [y :: a, x]
         The pattern type signature (x::a) brings 'a' into scope.
         The 'a' in the pattern (y::a) is bound, as is the occurrence on 
         the RHS.  
      
         A pattern type siganture is the only way you can bring existentials 
         into scope.
      	data T where
      	  MkT :: forall a. a -> (a->Int) -> T
      
      	f x = case x of
      		MkT (x::a) f -> f (x::a)
      
      2a) QUESTION
      	class C a where
      	  op :: forall b. b->a->a
      
      	instance C (T p q) where
      	  op = <rhs>
          Clearly p,q are in scope in <rhs>, but is 'b'?  Not at the moment.
          Nor can you add a type signature for op in the instance decl.
          You'd have to say this:
      	instance C (T p q) where
      	  op = let op' :: forall b. ...
      	           op' = <rhs>
      	       in op'
      
      3) A pattern-bound type variable is allowed only if the pattern's
         expected type is rigid.  Otherwise we don't know exactly *which*
         skolem the scoped type variable should be bound to, and that means
         we can't do GADT refinement.  This is invariant (A), and it is a 
         big change from the current situation.
      
      	f (x::a) = x	-- NO; pattern type is wobbly
      	
      	g1 :: b -> b
      	g1 (x::b) = x	-- YES, because the pattern type is rigid
      
      	g2 :: b -> b
      	g2 (x::c) = x	-- YES, same reason
      
      	h :: forall b. b -> b
      	h (x::b) = x	-- YES, but the inner b is bound
      
      	k :: forall b. b -> b
      	k (x::c) = x	-- NO, it can't be both b and c
      
      3a) You cannot give different names for the same type variable in the same scope
          (Invariant (C)):
      
      	f1 :: p -> p -> p		-- NO; because 'a' and 'b' would be
      	f1 (x::a) (y::b) = (x::a)	--     bound to the same type variable
      
      	f2 :: p -> p -> p		-- OK; 'a' is bound to the type variable
      	f2 (x::a) (y::a) = (x::a)	--     over which f2 is quantified
      					-- NB: 'p' is not lexically scoped
      
      	f3 :: forall p. p -> p -> p	-- NO: 'p' is now scoped, and is bound to
      	f3 (x::a) (y::a) = (x::a)	--     to the same type varialble as 'a'
      
      	f4 :: forall p. p -> p -> p	-- OK: 'p' is now scoped, and its occurences
      	f4 (x::p) (y::p) = (x::p)	--     in the patterns are bound by the forall
      
      
      3b) You can give a different name to the same type variable in different
          disjoint scopes, just as you can (if you want) give diferent names to 
          the same value parameter
      
      	g :: a -> Bool -> Maybe a
      	g (x::p) True  = Just x  :: Maybe p
      	g (y::q) False = Nothing :: Maybe q
      
      3c) Scoped type variables respect alpha renaming. For example, 
          function f2 from (3a) above could also be written:
      	f2' :: p -> p -> p
      	f2' (x::b) (y::b) = x::b
         where the scoped type variable is called 'b' instead of 'a'.
      
      
      4) Result type signatures obey the same rules as pattern types signatures.
         In particular, they can bind a type variable only if the result type is rigid
      
      	f x :: a = x	-- NO
      
      	g :: b -> b
      	g x :: b = x	-- YES; binds b in rhs
      
      5) A *pattern type signature* in a *pattern binding* cannot bind a 
         scoped type variable
      
      	(x::a, y) = ...		-- Legal only if 'a' is already in scope
      
         Reason: in type checking, the "expected type" of the LHS pattern is
         always wobbly, so we can't bind a rigid type variable.  (The exception
         would be for an existential type variable, but existentials are not
         allowed in pattern bindings either.)
       
         Even this is illegal
      	f :: forall a. a -> a
      	f x = let ((y::b)::a, z) = ... 
      	      in 
         Here it looks as if 'b' might get a rigid binding; but you can't bind
         it to the same skolem as a.
      
      6) Explicitly-forall'd type variables in the *declaration type signature(s)*
         for a *pattern binding* do not scope AT ALL.
      
      	x :: forall a. a->a	  -- NO; the forall a does 
      	Just (x::a->a) = Just id  --     not scope at all
      
      	y :: forall a. a->a
      	Just y = Just (id :: a->a)  -- NO; same reason
      
         THIS IS A CHANGE, but one I bet that very few people will notice.
         Here's why:
      
      	strange :: forall b. (b->b,b->b)
      	strange = (id,id)
      
      	x1 :: forall a. a->a
      	y1 :: forall b. b->b
      	(x1,y1) = strange
      
          This is legal Haskell 98 (modulo the forall). If both 'a' and 'b'
          both scoped over the RHS, they'd get unified and so cannot stand
          for distinct type variables. One could *imagine* allowing this:
         
      	x2 :: forall a. a->a
      	y2 :: forall a. a->a
      	(x2,y2) = strange
      
          using the very same type variable 'a' in both signatures, so that
          a single 'a' scopes over the RHS.  That seems defensible, but odd,
          because though there are two type signatures, they introduce just
          *one* scoped type variable, a.
      
      7) Possible extension.  We might consider allowing
      	\(x :: [ _ ]) -> <expr>
          where "_" is a wild card, to mean "x has type list of something", without
          naming the something.
      ac10f840
  24. 19 Jul, 2005 1 commit
    • simonpj's avatar
      [project @ 2005-07-19 16:44:50 by simonpj] · a7ecdf96
      simonpj authored
      WARNING: this is a big commit.  You might want 
      	to wait a few days before updating, in case I've 
      	broken something.
      
      	However, if any of the changes are what you wanted,
      	please check it out and test!
      
      This commit does three main things:
      
      1. A re-organisation of the way that GHC handles bindings in HsSyn.
         This has been a bit of a mess for quite a while.  The key new
         types are
      
      	-- Bindings for a let or where clause
      	data HsLocalBinds id
      	  = HsValBinds (HsValBinds id)
      	  | HsIPBinds  (HsIPBinds id)
      	  | EmptyLocalBinds
      
      	-- Value bindings (not implicit parameters)
      	data HsValBinds id
      	  = ValBindsIn  -- Before typechecking
      		(LHsBinds id) [LSig id]	-- Not dependency analysed
      					-- Recursive by default
      
      	  | ValBindsOut	-- After typechecking
      		[(RecFlag, LHsBinds id)]-- Dependency analysed
      
      2. Implement Mark Jones's idea of increasing polymoprhism
         by using type signatures to cut the strongly-connected components
         of a recursive group.  As a consequence, GHC no longer insists
         on the contexts of the type signatures of a recursive group
         being identical.
      
         This drove a significant change: the renamer no longer does dependency
         analysis.  Instead, it attaches a free-variable set to each binding,
         so that the type checker can do the dep anal.  Reason: the typechecker
         needs to do *two* analyses:
      	one to find the true mutually-recursive groups
      		(which we need so we can build the right CoreSyn)
      	one to find the groups in which to typecheck, taking
      		account of type signatures
      
      3. Implement non-ground SPECIALISE pragmas, as promised, and as
         requested by Remi and Ross.  Certainly, this should fix the 
         current problem with GHC, namely that if you have
      	g :: Eq a => a -> b -> b
         then you can now specialise thus
      	SPECIALISE g :: Int -> b -> b
          (This didn't use to work.)
      
         However, it goes further than that.  For example:
      	f :: (Eq a, Ix b) => a -> b -> b
         then you can make a partial specialisation
      	SPECIALISE f :: (Eq a) => a -> Int -> Int
      
          In principle, you can specialise f to *any* type that is
          "less polymorphic" (in the sense of subsumption) than f's 
          actual type.  Such as
      	SPECIALISE f :: Eq a => [a] -> Int -> Int
          But I haven't tested that.
      
          I implemented this by doing the specialisation in the typechecker
          and desugarer, rather than leaving around the strange SpecPragmaIds,
          for the specialiser to find.  Indeed, SpecPragmaIds have vanished 
          altogether (hooray).
      
          Pragmas in general are handled more tidily.  There's a new
          data type HsBinds.Prag, which lives in an AbsBinds, and carries
          pragma info from the typechecker to the desugarer.
      
      
      Smaller things
      
      - The loop in the renamer goes via RnExpr, instead of RnSource.
        (That makes it more like the type checker.)
      
      - I fixed the thing that was causing 'check_tc' warnings to be 
        emitted.
      a7ecdf96
  25. 11 Jul, 2005 2 commits
    • simonpj's avatar
      [project @ 2005-07-11 10:47:20 by simonpj] · 65785a09
      simonpj authored
      Wibbles to unifyFunTy error messages
      65785a09
    • simonpj's avatar
      [project @ 2005-07-11 09:54:43 by simonpj] · 9fe510d1
      simonpj authored
      Improve the error message from unifyFunTys.  Previously we got a really
      horrible message from this:
      	  t = ((\Just x -> x) :: Maybe a -> a) (Just 1)
          
      Try.hs:1:6:
          Couldn't match the rigid variable `a' against `t -> t1'
            Expected type: a
            Inferred type: t -> t1
      
      Now it's much better:
      
      Try.hs:14:6:
          The lambda expression `\ Just x -> ...' has two arguments,
          but its type `Maybe a -> a' has only one
          In the expression: (\ Just x -> x) :: Maybe a -> a
      
      
      tcfail140 tests some cases
      9fe510d1
  26. 20 May, 2005 1 commit
  27. 05 Apr, 2005 1 commit
  28. 04 Apr, 2005 1 commit
    • simonpj's avatar
      [project @ 2005-04-04 11:55:11 by simonpj] · d551dbfe
      simonpj authored
      This commit combines three overlapping things:
      
      1.  Make rebindable syntax work for do-notation. The idea
          here is that, in particular, (>>=) can have a type that
          has class constraints on its argument types, e.g.
             (>>=) :: (Foo m, Baz a) => m a -> (a -> m b) -> m b
          The consequence is that a BindStmt and ExprStmt must have
          individual evidence attached -- previously it was one
          batch of evidence for the entire Do
          
          Sadly, we can't do this for MDo, because we use bind at
          a polymorphic type (to tie the knot), so we still use one
          blob of evidence (now in the HsStmtContext) for MDo.
          
          For arrow syntax, the evidence is in the HsCmd.
          
          For list comprehensions, it's all built-in anyway.
          
          So the evidence on a BindStmt is only used for ordinary
          do-notation.
      
      2.  Tidy up HsSyn.  In particular:
      
      	- Eliminate a few "Out" forms, which we can manage
      	without (e.g. 
      
      	- It ought to be the case that the type checker only
      	decorates the syntax tree, but doesn't change one
      	construct into another.  That wasn't true for NPat,
      	LitPat, NPlusKPat, so I've fixed that.
      
      	- Eliminate ResultStmts from Stmt.  They always had
      	to be the last Stmt, which led to awkward pattern
      	matching in some places; and the benefits didn't seem
      	to outweigh the costs.  Now each construct that uses
      	[Stmt] has a result expression too (e.g. GRHS).
      
      
      3.  Make 'deriving( Ix )' generate a binding for unsafeIndex,
          rather than for index.  This is loads more efficient.
      
          (This item only affects TcGenDeriv, but some of point (2)
          also affects TcGenDeriv, so it has to be in one commit.)
      d551dbfe
  29. 31 Mar, 2005 1 commit
    • simonmar's avatar
      [project @ 2005-03-31 10:16:33 by simonmar] · 853e20a3
      simonmar authored
      Tweaks to get the GHC sources through Haddock.  Doesn't quite work
      yet, because Haddock complains about the recursive modules.  Haddock
      needs to understand SOURCE imports (it can probably just ignore them
      as a first attempt).
      853e20a3
  30. 04 Jan, 2005 1 commit
    • simonpj's avatar
      [project @ 2005-01-04 16:26:55 by simonpj] · a27f7c87
      simonpj authored
      ------------------
                Fix an mdo bug
        	------------------
      
      Embarassingly, this bug makes GHC either panic (for some programs) or
      go into a loop (on others) in a recursive mdo that involves a
      polymorphic function.  Urk!
      
      The fix is twofold:
        a) add a missing bindInstsOfLocalFuns to tcStmtAndThen (RecStmt case)
        b) bind the correct set of variables in dsRecStmt
      
      I added some explanatory comments about RecStmt in HsExpr too.
      
      The tests is mdo/should_compile/mdo006
      a27f7c87
  31. 30 Sep, 2004 1 commit
    • simonpj's avatar
      [project @ 2004-09-30 10:35:15 by simonpj] · 23f40f0e
      simonpj authored
      ------------------------------------
      	Add Generalised Algebraic Data Types
      	------------------------------------
      
      This rather big commit adds support for GADTs.  For example,
      
          data Term a where
       	  Lit :: Int -> Term Int
      	  App :: Term (a->b) -> Term a -> Term b
      	  If  :: Term Bool -> Term a -> Term a
      	  ..etc..
      
          eval :: Term a -> a
          eval (Lit i) = i
          eval (App a b) = eval a (eval b)
          eval (If p q r) | eval p    = eval q
          		    | otherwise = eval r
      
      
      Lots and lots of of related changes throughout the compiler to make
      this fit nicely.
      
      One important change, only loosely related to GADTs, is that skolem
      constants in the typechecker are genuinely immutable and constant, so
      we often get better error messages from the type checker.  See
      TcType.TcTyVarDetails.
      
      There's a new module types/Unify.lhs, which has purely-functional
      unification and matching for Type. This is used both in the typechecker
      (for type refinement of GADTs) and in Core Lint (also for type refinement).
      23f40f0e
  32. 02 Sep, 2004 1 commit
  33. 22 Jun, 2004 1 commit