SetLevels.lhs 32.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
%
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
%
\section{SetLevels}

		***************************
			Overview
		***************************

1. We attach binding levels to Core bindings, in preparation for floating
   outwards (@FloatOut@).

2. We also let-ify many expressions (notably case scrutinees), so they
   will have a fighting chance of being floated sensible.

3. We clone the binders of any floatable let-binding, so that when it is
   floated out it will be unique.  (This used to be done by the simplifier
   but the latter now only ensures that there's no shadowing; indeed, even 
   that may not be true.)

   NOTE: this can't be done using the uniqAway idea, because the variable
 	 must be unique in the whole program, not just its current scope,
	 because two variables in different scopes may float out to the
	 same top level place

   NOTE: Very tiresomely, we must apply this substitution to
	 the rules stored inside a variable too.

   We do *not* clone top-level bindings, because some of them must not change,
   but we *do* clone bindings that are heading for the top level

4. In the expression
	case x of wild { p -> ...wild... }
   we substitute x for wild in the RHS of the case alternatives:
	case x of wild { p -> ...x... }
   This means that a sub-expression involving x is not "trapped" inside the RHS.
   And it's not inconvenient because we already have a substitution.

  Note that this is EXACTLY BACKWARDS from the what the simplifier does.
  The simplifier tries to get rid of occurrences of x, in favour of wild,
  in the hope that there will only be one remaining occurrence of x, namely
  the scrutinee of the case, and we can inline it.  

\begin{code}
45
{-# OPTIONS -w #-}
46
47
48
-- The above warning supression flag is a temporary kludge.
-- While working on this module you are encouraged to remove it and fix
-- any warnings in the module. See
Ian Lynagh's avatar
Ian Lynagh committed
49
--     http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#Warnings
50
51
-- for details

52
module SetLevels (
53
	setLevels, 
54
55

	Level(..), tOP_LEVEL,
56
	LevelledBind, LevelledExpr,
57

58
	incMinorLvl, ltMajLvl, ltLvl, isTopLvl, isInlineCtxt
59
60
61
62
63
64
    ) where

#include "HsVersions.h"

import CoreSyn

65
import DynFlags	( FloatOutSwitches(..) )
66
import CoreUtils	( exprType, exprIsTrivial, mkPiTypes )
67
import CoreFVs		-- all of it
68
69
import CoreSubst	( Subst, emptySubst, extendInScope, extendIdSubst,
			  cloneIdBndr, cloneRecIdBndrs )
70
71
import Id		( Id, idType, mkSysLocal, isOneShotLambda,
			  zapDemandIdInfo,
72
73
			  idSpecialisation, idWorkerInfo, setIdInfo
			)
74
import IdInfo		( workerExists, vanillaIdInfo, isEmptySpecInfo )
75
import Var
76
77
78
import VarSet
import VarEnv
import Name		( getOccName )
79
import OccName		( occNameString )
80
81
82
import Type		( isUnLiftedType, Type )
import BasicTypes	( TopLevelFlag(..) )
import UniqSupply
83
import Util		( sortLe, isSingleton, count )
84
import Outputable
85
import FastString
86
87
88
89
90
91
92
93
94
\end{code}

%************************************************************************
%*									*
\subsection{Level numbers}
%*									*
%************************************************************************

\begin{code}
95
96
97
data Level = InlineCtxt	-- A level that's used only for
			-- the context parameter ctxt_lvl
	   | Level Int	-- Level number of enclosing lambdas
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
	  	   Int	-- Number of big-lambda and/or case expressions between
			-- here and the nearest enclosing lambda
\end{code}

The {\em level number} on a (type-)lambda-bound variable is the
nesting depth of the (type-)lambda which binds it.  The outermost lambda
has level 1, so (Level 0 0) means that the variable is bound outside any lambda.

On an expression, it's the maximum level number of its free
(type-)variables.  On a let(rec)-bound variable, it's the level of its
RHS.  On a case-bound variable, it's the number of enclosing lambdas.

Top-level variables: level~0.  Those bound on the RHS of a top-level
definition but ``before'' a lambda; e.g., the \tr{x} in (levels shown
as ``subscripts'')...
\begin{verbatim}
a_0 = let  b_? = ...  in
	   x_1 = ... b ... in ...
\end{verbatim}

The main function @lvlExpr@ carries a ``context level'' (@ctxt_lvl@).
That's meant to be the level number of the enclosing binder in the
final (floated) program.  If the level number of a sub-expression is
less than that of the context, then it might be worth let-binding the
122
123
124
125
sub-expression so that it will indeed float.  

If you can float to level @Level 0 0@ worth doing so because then your
allocation becomes static instead of dynamic.  We always start with
126
context @Level 0 0@.  
127

128

129
130
Note [FloatOut inside INLINE]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
@InlineCtxt@ very similar to @Level 0 0@, but is used for one purpose:
to say "don't float anything out of here".  That's exactly what we
want for the body of an INLINE, where we don't want to float anything
out at all.  See notes with lvlMFE below.

But, check this out:

-- At one time I tried the effect of not float anything out of an InlineMe,
-- but it sometimes works badly.  For example, consider PrelArr.done.  It
-- has the form 	__inline (\d. e)
-- where e doesn't mention d.  If we float this to 
--	__inline (let x = e in \d. x)
-- things are bad.  The inliner doesn't even inline it because it doesn't look
-- like a head-normal form.  So it seems a lesser evil to let things float.
-- In SetLevels we do set the context to (Level 0 0) when we get to an InlineMe
-- which discourages floating out.

So the conclusion is: don't do any floating at all inside an InlineMe.
(In the above example, don't float the {x=e} out of the \d.)

One particular case is that of workers: we don't want to float the
call to the worker outside the wrapper, otherwise the worker might get
inlined into the floated expression, and an importing module won't see
the worker at all.

156
157
158
159
\begin{code}
type LevelledExpr  = TaggedExpr Level
type LevelledBind  = TaggedBind Level

160
161
tOP_LEVEL   = Level 0 0
iNLINE_CTXT = InlineCtxt
162
163

incMajorLvl :: Level -> Level
164
-- For InlineCtxt we ignore any inc's; we don't want
165
-- to do any floating at all; see notes above
166
incMajorLvl InlineCtxt		= InlineCtxt
167
168
169
incMajorLvl (Level major minor) = Level (major+1) 0

incMinorLvl :: Level -> Level
170
incMinorLvl InlineCtxt		= InlineCtxt
171
172
173
incMinorLvl (Level major minor) = Level major (minor+1)

maxLvl :: Level -> Level -> Level
174
175
maxLvl InlineCtxt l2  = l2
maxLvl l1  InlineCtxt = l1
176
177
178
179
180
maxLvl l1@(Level maj1 min1) l2@(Level maj2 min2)
  | (maj1 > maj2) || (maj1 == maj2 && min1 > min2) = l1
  | otherwise					   = l2

ltLvl :: Level -> Level -> Bool
181
182
ltLvl any_lvl	 InlineCtxt  = False
ltLvl InlineCtxt (Level _ _) = True
183
184
185
186
187
ltLvl (Level maj1 min1) (Level maj2 min2)
  = (maj1 < maj2) || (maj1 == maj2 && min1 < min2)

ltMajLvl :: Level -> Level -> Bool
    -- Tells if one level belongs to a difft *lambda* level to another
188
189
ltMajLvl any_lvl	InlineCtxt     = False
ltMajLvl InlineCtxt	(Level maj2 _) = 0 < maj2
190
191
192
193
ltMajLvl (Level maj1 _) (Level maj2 _) = maj1 < maj2

isTopLvl :: Level -> Bool
isTopLvl (Level 0 0) = True
194
195
196
197
198
isTopLvl other	     = False

isInlineCtxt :: Level -> Bool
isInlineCtxt InlineCtxt = True
isInlineCtxt other	= False
199
200

instance Outputable Level where
201
  ppr InlineCtxt      = text "<INLINE>"
202
203
204
  ppr (Level maj min) = hcat [ char '<', int maj, char ',', int min, char '>' ]

instance Eq Level where
205
  InlineCtxt	    == InlineCtxt	 = True
206
  (Level maj1 min1) == (Level maj2 min2) = maj1==maj2 && min1==min2
207
  l1		    == l2		 = False
208
209
\end{code}

210

211
212
213
214
215
216
217
%************************************************************************
%*									*
\subsection{Main level-setting code}
%*									*
%************************************************************************

\begin{code}
218
setLevels :: FloatOutSwitches
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
	  -> [CoreBind]
	  -> UniqSupply
	  -> [LevelledBind]

setLevels float_lams binds us
  = initLvl us (do_them binds)
  where
    -- "do_them"'s main business is to thread the monad along
    -- It gives each top binding the same empty envt, because
    -- things unbound in the envt have level number zero implicitly
    do_them :: [CoreBind] -> LvlM [LevelledBind]

    do_them [] = returnLvl []
    do_them (b:bs)
      = lvlTopBind init_env b	`thenLvl` \ (lvld_bind, _) ->
	do_them bs		`thenLvl` \ lvld_binds ->
    	returnLvl (lvld_bind : lvld_binds)

    init_env = initialEnv float_lams

lvlTopBind env (NonRec binder rhs)
  = lvlBind TopLevel tOP_LEVEL env (AnnNonRec binder (freeVars rhs))
					-- Rhs can have no free vars!

lvlTopBind env (Rec pairs)
  = lvlBind TopLevel tOP_LEVEL env (AnnRec [(b,freeVars rhs) | (b,rhs) <- pairs])
\end{code}

%************************************************************************
%*									*
\subsection{Setting expression levels}
%*									*
%************************************************************************

\begin{code}
lvlExpr :: Level		-- ctxt_lvl: Level of enclosing expression
	-> LevelEnv		-- Level of in-scope names/tyvars
	-> CoreExprWithFVs	-- input expression
	-> LvlM LevelledExpr	-- Result expression
\end{code}

The @ctxt_lvl@ is, roughly, the level of the innermost enclosing
binder.  Here's an example

	v = \x -> ...\y -> let r = case (..x..) of
					..x..
			   in ..

When looking at the rhs of @r@, @ctxt_lvl@ will be 1 because that's
the level of @r@, even though it's inside a level-2 @\y@.  It's
important that @ctxt_lvl@ is 1 and not 2 in @r@'s rhs, because we
don't want @lvlExpr@ to turn the scrutinee of the @case@ into an MFE
--- because it isn't a *maximal* free expression.

If there were another lambda in @r@'s rhs, it would get level-2 as well.

\begin{code}
lvlExpr _ _ (_, AnnType ty)   = returnLvl (Type ty)
lvlExpr _ env (_, AnnVar v)   = returnLvl (lookupVar env v)
lvlExpr _ env (_, AnnLit lit) = returnLvl (Lit lit)

lvlExpr ctxt_lvl env (_, AnnApp fun arg)
  = lvl_fun fun				`thenLvl` \ fun' ->
    lvlMFE  False ctxt_lvl env arg	`thenLvl` \ arg' ->
    returnLvl (App fun' arg')
  where
285
286
-- gaw 2004
    lvl_fun (_, AnnCase _ _ _ _) = lvlMFE True ctxt_lvl env fun
287
288
289
290
291
    lvl_fun other 	       = lvlExpr ctxt_lvl env fun
	-- We don't do MFE on partial applications generally,
	-- but we do if the function is big and hairy, like a case

lvlExpr ctxt_lvl env (_, AnnNote InlineMe expr)
292
293
-- Don't float anything out of an InlineMe; hence the iNLINE_CTXT
  = lvlExpr iNLINE_CTXT env expr 	`thenLvl` \ expr' ->
294
295
296
297
298
299
    returnLvl (Note InlineMe expr')

lvlExpr ctxt_lvl env (_, AnnNote note expr)
  = lvlExpr ctxt_lvl env expr 		`thenLvl` \ expr' ->
    returnLvl (Note note expr')

300
301
302
303
lvlExpr ctxt_lvl env (_, AnnCast expr co)
  = lvlExpr ctxt_lvl env expr		`thenLvl` \ expr' ->
    returnLvl (Cast expr' co)

304
305
306
307
308
309
310
311
312
-- We don't split adjacent lambdas.  That is, given
--	\x y -> (x+1,y)
-- we don't float to give 
--	\x -> let v = x+y in \y -> (v,y)
-- Why not?  Because partial applications are fairly rare, and splitting
-- lambdas makes them more expensive.

lvlExpr ctxt_lvl env expr@(_, AnnLam bndr rhs)
  = lvlMFE True new_lvl new_env body	`thenLvl` \ new_body ->
313
    returnLvl (mkLams new_bndrs new_body)
314
  where 
315
    (bndrs, body)	 = collectAnnBndrs expr
316
317
    (new_lvl, new_bndrs) = lvlLamBndrs ctxt_lvl bndrs
    new_env 		 = extendLvlEnv env new_bndrs
318
319
320
321
322
323
	-- At one time we called a special verion of collectBinders,
	-- which ignored coercions, because we don't want to split
	-- a lambda like this (\x -> coerce t (\s -> ...))
	-- This used to happen quite a bit in state-transformer programs,
	-- but not nearly so much now non-recursive newtypes are transparent.
	-- [See SetLevels rev 1.50 for a version with this approach.]
324

325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
lvlExpr ctxt_lvl env (_, AnnLet (AnnNonRec bndr rhs) body)
  | isUnLiftedType (idType bndr)
	-- Treat unlifted let-bindings (let x = b in e) just like (case b of x -> e)
	-- That is, leave it exactly where it is
	-- We used to float unlifted bindings too (e.g. to get a cheap primop
	-- outside a lambda (to see how, look at lvlBind in rev 1.58)
	-- but an unrelated change meant that these unlifed bindings
	-- could get to the top level which is bad.  And there's not much point;
	-- unlifted bindings are always cheap, and so hardly worth floating.
  = lvlExpr ctxt_lvl env rhs		`thenLvl` \ rhs' ->
    lvlExpr incd_lvl env' body		`thenLvl` \ body' ->
    returnLvl (Let (NonRec bndr' rhs') body')
  where
    incd_lvl = incMinorLvl ctxt_lvl
    bndr' = TB bndr incd_lvl
    env'  = extendLvlEnv env [bndr']

342
343
344
345
346
lvlExpr ctxt_lvl env (_, AnnLet bind body)
  = lvlBind NotTopLevel ctxt_lvl env bind	`thenLvl` \ (bind', new_env) ->
    lvlExpr ctxt_lvl new_env body		`thenLvl` \ body' ->
    returnLvl (Let bind' body')

347
lvlExpr ctxt_lvl env (_, AnnCase expr case_bndr ty alts)
348
349
350
351
352
  = lvlMFE True ctxt_lvl env expr	`thenLvl` \ expr' ->
    let
	alts_env = extendCaseBndrLvlEnv env expr' case_bndr incd_lvl
    in
    mapLvl (lvl_alt alts_env) alts	`thenLvl` \ alts' ->
353
    returnLvl (Case expr' (TB case_bndr incd_lvl) ty alts')
354
355
356
357
358
359
360
  where
      incd_lvl  = incMinorLvl ctxt_lvl

      lvl_alt alts_env (con, bs, rhs)
	= lvlMFE True incd_lvl new_env rhs	`thenLvl` \ rhs' ->
	  returnLvl (con, bs', rhs')
	where
361
	  bs'     = [ TB b incd_lvl | b <- bs ]
362
363
364
365
366
367
	  new_env = extendLvlEnv alts_env bs'
\end{code}

@lvlMFE@ is just like @lvlExpr@, except that it might let-bind
the expression, so that it can itself be floated.

368
369
370
371
372
373
374
[NOTE: unlifted MFEs]
We don't float unlifted MFEs, which potentially loses big opportunites.
For example:
	\x -> f (h y)
where h :: Int -> Int# is expensive. We'd like to float the (h y) outside
the \x, but we don't because it's unboxed.  Possible solution: box it.

375
376
377
378
379
380
381
382
383
384
\begin{code}
lvlMFE ::  Bool			-- True <=> strict context [body of case or let]
	-> Level		-- Level of innermost enclosing lambda/tylam
	-> LevelEnv		-- Level of in-scope names/tyvars
	-> CoreExprWithFVs	-- input expression
	-> LvlM LevelledExpr	-- Result expression

lvlMFE strict_ctxt ctxt_lvl env (_, AnnType ty)
  = returnLvl (Type ty)

385

386
lvlMFE strict_ctxt ctxt_lvl env ann_expr@(fvs, _)
387
  |  isUnLiftedType ty			-- Can't let-bind it; see [NOTE: unlifted MFEs]
388
  || isInlineCtxt ctxt_lvl		-- Don't float out of an __inline__ context
389
  || exprIsTrivial expr			-- Never float if it's trivial
390
391
392
393
394
395
396
  || not good_destination
  = 	-- Don't float it out
    lvlExpr ctxt_lvl env ann_expr

  | otherwise	-- Float it out!
  = lvlFloatRhs abs_vars dest_lvl env ann_expr	`thenLvl` \ expr' ->
    newLvlVar "lvl" abs_vars ty			`thenLvl` \ var ->
397
    returnLvl (Let (NonRec (TB var dest_lvl) expr') 
398
399
400
401
402
403
404
405
406
		   (mkVarApps (Var var) abs_vars))
  where
    expr     = deAnnotate ann_expr
    ty       = exprType expr
    dest_lvl = destLevel env fvs (isFunction ann_expr)
    abs_vars = abstractVars dest_lvl env fvs

	-- A decision to float entails let-binding this thing, and we only do 
	-- that if we'll escape a value lambda, or will go to the top level.
407
408
    good_destination 
	| dest_lvl `ltMajLvl` ctxt_lvl		-- Escapes a value lambda
409
410
411
	= True
	-- OLD CODE: not (exprIsCheap expr) || isTopLvl dest_lvl
	-- 	     see Note [Escaping a value lambda]
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428

	| otherwise		-- Does not escape a value lambda
	= isTopLvl dest_lvl 	-- Only float if we are going to the top level
	&& floatConsts env	--   and the floatConsts flag is on
	&& not strict_ctxt	-- Don't float from a strict context	
	  -- We are keen to float something to the top level, even if it does not
	  -- escape a lambda, because then it needs no allocation.  But it's controlled
	  -- by a flag, because doing this too early loses opportunities for RULES
	  -- which (needless to say) are important in some nofib programs
	  -- (gcd is an example).
	  --
	  -- Beware:
	  --	concat = /\ a -> foldr ..a.. (++) []
	  -- was getting turned into
	  --	concat = /\ a -> lvl a
	  --	lvl    = /\ a -> foldr ..a.. (++) []
	  -- which is pretty stupid.  Hence the strict_ctxt test
429
430
\end{code}

431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
Note [Escaping a value lambda]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We want to float even cheap expressions out of value lambdas, 
because that saves allocation.  Consider
	f = \x.  .. (\y.e) ...
Then we'd like to avoid allocating the (\y.e) every time we call f,
(assuming e does not mention x).   

An example where this really makes a difference is simplrun009.

Another reason it's good is because it makes SpecContr fire on functions.
Consider
	f = \x. ....(f (\y.e))....
After floating we get
	lvl = \y.e
	f = \x. ....(f lvl)...
and that is much easier for SpecConstr to generate a robust specialisation for.

The OLD CODE (given where this Note is referred to) prevents floating
of the example above, so I just don't understand the old code.  I
don't understand the old comment either (which appears below).  I
measured the effect on nofib of changing OLD CODE to 'True', and got
zeros everywhere, but a 4% win for 'puzzle'.  Very small 0.5% loss for
'cse'; turns out to be because our arity analysis isn't good enough
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
455
yet (mentioned in Simon-nofib-notes).
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472

OLD comment was:
	 Even if it escapes a value lambda, we only
	 float if it's not cheap (unless it'll get all the
	 way to the top).  I've seen cases where we
	 float dozens of tiny free expressions, which cost
	 more to allocate than to evaluate.
	 NB: exprIsCheap is also true of bottom expressions, which
	     is good; we don't want to share them

	It's only Really Bad to float a cheap expression out of a
	strict context, because that builds a thunk that otherwise
	would never be built.  So another alternative would be to
	add 
		|| (strict_ctxt && not (exprIsBottom expr))
	to the condition above. We should really try this out.

473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490

%************************************************************************
%*									*
\subsection{Bindings}
%*									*
%************************************************************************

The binding stuff works for top level too.

\begin{code}
lvlBind :: TopLevelFlag		-- Used solely to decide whether to clone
	-> Level		-- Context level; might be Top even for bindings nested in the RHS
				-- of a top level binding
	-> LevelEnv
	-> CoreBindWithFVs
	-> LvlM (LevelledBind, LevelEnv)

lvlBind top_lvl ctxt_lvl env (AnnNonRec bndr rhs@(rhs_fvs,_))
491
  | isInlineCtxt ctxt_lvl		-- Don't do anything inside InlineMe
492
  = lvlExpr ctxt_lvl env rhs			`thenLvl` \ rhs' ->
493
    returnLvl (NonRec (TB bndr ctxt_lvl) rhs', env)
494

495
496
497
498
  | null abs_vars
  =	-- No type abstraction; clone existing binder
    lvlExpr dest_lvl env rhs			`thenLvl` \ rhs' ->
    cloneVar top_lvl env bndr ctxt_lvl dest_lvl	`thenLvl` \ (env', bndr') ->
499
    returnLvl (NonRec (TB bndr' dest_lvl) rhs', env') 
500
501
502
503
504

  | otherwise
  = -- Yes, type abstraction; create a new binder, extend substitution, etc
    lvlFloatRhs abs_vars dest_lvl env rhs	`thenLvl` \ rhs' ->
    newPolyBndrs dest_lvl env abs_vars [bndr]	`thenLvl` \ (env', [bndr']) ->
505
    returnLvl (NonRec (TB bndr' dest_lvl) rhs', env')
506
507
508
509

  where
    bind_fvs = rhs_fvs `unionVarSet` idFreeVars bndr
    abs_vars = abstractVars dest_lvl env bind_fvs
510
    dest_lvl = destLevel env bind_fvs (isFunction rhs)
511
512
513
514
515
\end{code}


\begin{code}
lvlBind top_lvl ctxt_lvl env (AnnRec pairs)
516
517
  | isInlineCtxt ctxt_lvl	-- Don't do anything inside InlineMe
  = mapLvl (lvlExpr ctxt_lvl env) rhss			`thenLvl` \ rhss' ->
518
    returnLvl (Rec ([TB b ctxt_lvl | b <- bndrs] `zip` rhss'), env)
519

520
521
522
  | null abs_vars
  = cloneRecVars top_lvl env bndrs ctxt_lvl dest_lvl	`thenLvl` \ (new_env, new_bndrs) ->
    mapLvl (lvlExpr ctxt_lvl new_env) rhss		`thenLvl` \ new_rhss ->
523
    returnLvl (Rec ([TB b dest_lvl | b <- new_bndrs] `zip` new_rhss), new_env)
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542

  | isSingleton pairs && count isId abs_vars > 1
  = 	-- Special case for self recursion where there are
	-- several variables carried around: build a local loop:	
	--	poly_f = \abs_vars. \lam_vars . letrec f = \lam_vars. rhs in f lam_vars
	-- This just makes the closures a bit smaller.  If we don't do
	-- this, allocation rises significantly on some programs
	--
	-- We could elaborate it for the case where there are several
	-- mutually functions, but it's quite a bit more complicated
	-- 
	-- This all seems a bit ad hoc -- sigh
    let
	(bndr,rhs) = head pairs
	(rhs_lvl, abs_vars_w_lvls) = lvlLamBndrs dest_lvl abs_vars
	rhs_env = extendLvlEnv env abs_vars_w_lvls
    in
    cloneVar NotTopLevel rhs_env bndr rhs_lvl rhs_lvl	`thenLvl` \ (rhs_env', new_bndr) ->
    let
543
	(lam_bndrs, rhs_body)     = collectAnnBndrs rhs
544
545
546
547
548
        (body_lvl, new_lam_bndrs) = lvlLamBndrs rhs_lvl lam_bndrs
	body_env 		  = extendLvlEnv rhs_env' new_lam_bndrs
    in
    lvlExpr body_lvl body_env rhs_body		`thenLvl` \ new_rhs_body ->
    newPolyBndrs dest_lvl env abs_vars [bndr]	`thenLvl` \ (poly_env, [poly_bndr]) ->
549
550
551
552
553
    returnLvl (Rec [(TB poly_bndr dest_lvl, 
	       mkLams abs_vars_w_lvls $
	       mkLams new_lam_bndrs $
	       Let (Rec [(TB new_bndr rhs_lvl, mkLams new_lam_bndrs new_rhs_body)]) 
		   (mkVarApps (Var new_bndr) lam_bndrs))],
554
555
	       poly_env)

556
  | otherwise	-- Non-null abs_vars
557
558
  = newPolyBndrs dest_lvl env abs_vars bndrs		`thenLvl` \ (new_env, new_bndrs) ->
    mapLvl (lvlFloatRhs abs_vars dest_lvl new_env) rhss `thenLvl` \ new_rhss ->
559
    returnLvl (Rec ([TB b dest_lvl | b <- new_bndrs] `zip` new_rhss), new_env)
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591

  where
    (bndrs,rhss) = unzip pairs

	-- Finding the free vars of the binding group is annoying
    bind_fvs	    = (unionVarSets [ idFreeVars bndr `unionVarSet` rhs_fvs
				    | (bndr, (rhs_fvs,_)) <- pairs])
		      `minusVarSet`
		      mkVarSet bndrs

    dest_lvl = destLevel env bind_fvs (all isFunction rhss)
    abs_vars = abstractVars dest_lvl env bind_fvs

----------------------------------------------------
-- Three help functons for the type-abstraction case

lvlFloatRhs abs_vars dest_lvl env rhs
  = lvlExpr rhs_lvl rhs_env rhs	`thenLvl` \ rhs' ->
    returnLvl (mkLams abs_vars_w_lvls rhs')
  where
    (rhs_lvl, abs_vars_w_lvls) = lvlLamBndrs dest_lvl abs_vars
    rhs_env = extendLvlEnv env abs_vars_w_lvls
\end{code}


%************************************************************************
%*									*
\subsection{Deciding floatability}
%*									*
%************************************************************************

\begin{code}
592
lvlLamBndrs :: Level -> [CoreBndr] -> (Level, [TaggedBndr Level])
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
-- Compute the levels for the binders of a lambda group
-- The binders returned are exactly the same as the ones passed,
-- but they are now paired with a level
lvlLamBndrs lvl [] 
  = (lvl, [])

lvlLamBndrs lvl bndrs
  = go  (incMinorLvl lvl)
	False 	-- Havn't bumped major level in this group
	[] bndrs
  where
    go old_lvl bumped_major rev_lvld_bndrs (bndr:bndrs)
	| isId bndr && 			-- Go to the next major level if this is a value binder,
	  not bumped_major && 		-- and we havn't already gone to the next level (one jump per group)
	  not (isOneShotLambda bndr)	-- and it isn't a one-shot lambda
608
	= go new_lvl True (TB bndr new_lvl : rev_lvld_bndrs) bndrs
609
610

	| otherwise
611
	= go old_lvl bumped_major (TB bndr old_lvl : rev_lvld_bndrs) bndrs
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660

	where
	  new_lvl = incMajorLvl old_lvl

    go old_lvl _ rev_lvld_bndrs []
	= (old_lvl, reverse rev_lvld_bndrs)
	-- a lambda like this (\x -> coerce t (\s -> ...))
	-- This happens quite a bit in state-transformer programs
\end{code}

\begin{code}
  -- Destintion level is the max Id level of the expression
  -- (We'll abstract the type variables, if any.)
destLevel :: LevelEnv -> VarSet -> Bool -> Level
destLevel env fvs is_function
  |  floatLams env
  && is_function = tOP_LEVEL		-- Send functions to top level; see
					-- the comments with isFunction
  | otherwise    = maxIdLevel env fvs

isFunction :: CoreExprWithFVs -> Bool
-- The idea here is that we want to float *functions* to
-- the top level.  This saves no work, but 
--	(a) it can make the host function body a lot smaller, 
--		and hence inlinable.  
--	(b) it can also save allocation when the function is recursive:
--	    h = \x -> letrec f = \y -> ...f...y...x...
--		      in f x
--     becomes
--	    f = \x y -> ...(f x)...y...x...
--	    h = \x -> f x x
--     No allocation for f now.
-- We may only want to do this if there are sufficiently few free 
-- variables.  We certainly only want to do it for values, and not for
-- constructors.  So the simple thing is just to look for lambdas
isFunction (_, AnnLam b e) | isId b    = True
			   | otherwise = isFunction e
isFunction (_, AnnNote n e)            = isFunction e
isFunction other 		       = False
\end{code}


%************************************************************************
%*									*
\subsection{Free-To-Level Monad}
%*									*
%************************************************************************

\begin{code}
661
type LevelEnv = (FloatOutSwitches,
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
		 VarEnv Level, 			-- Domain is *post-cloned* TyVars and Ids
	         Subst, 			-- Domain is pre-cloned Ids; tracks the in-scope set
						-- 	so that subtitution is capture-avoiding
	         IdEnv ([Var], LevelledExpr))	-- Domain is pre-cloned Ids
	-- We clone let-bound variables so that they are still
	-- distinct when floated out; hence the SubstEnv/IdEnv.
        -- (see point 3 of the module overview comment).
	-- We also use these envs when making a variable polymorphic
	-- because we want to float it out past a big lambda.
	--
	-- The SubstEnv and IdEnv always implement the same mapping, but the
	-- SubstEnv maps to CoreExpr and the IdEnv to LevelledExpr
	-- Since the range is always a variable or type application,
	-- there is never any difference between the two, but sadly
	-- the types differ.  The SubstEnv is used when substituting in
	-- a variable's IdInfo; the IdEnv when we find a Var.
	--
	-- In addition the IdEnv records a list of tyvars free in the
	-- type application, just so we don't have to call freeVars on
	-- the type application repeatedly.
	--
	-- The domain of the both envs is *pre-cloned* Ids, though
	--
	-- The domain of the VarEnv Level is the *post-cloned* Ids

687
initialEnv :: FloatOutSwitches -> LevelEnv
688
689
690
initialEnv float_lams = (float_lams, emptyVarEnv, emptySubst, emptyVarEnv)

floatLams :: LevelEnv -> Bool
691
692
693
694
floatLams (FloatOutSw float_lams _, _, _, _) = float_lams

floatConsts :: LevelEnv -> Bool
floatConsts (FloatOutSw _ float_consts, _, _, _) = float_consts
695

696
extendLvlEnv :: LevelEnv -> [TaggedBndr Level] -> LevelEnv
697
698
699
700
701
702
703
-- Used when *not* cloning
extendLvlEnv (float_lams, lvl_env, subst, id_env) prs
  = (float_lams,
     foldl add_lvl lvl_env prs,
     foldl del_subst subst prs,
     foldl del_id id_env prs)
  where
704
705
706
    add_lvl   env (TB v l) = extendVarEnv env v l
    del_subst env (TB v _) = extendInScope env v
    del_id    env (TB v _) = delVarEnv env v
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
  -- We must remove any clone for this variable name in case of
  -- shadowing.  This bit me in the following case
  -- (in nofib/real/gg/Spark.hs):
  -- 
  --   case ds of wild {
  --     ... -> case e of wild {
  --              ... -> ... wild ...
  --            }
  --   }
  -- 
  -- The inside occurrence of @wild@ was being replaced with @ds@,
  -- incorrectly, because the SubstEnv was still lying around.  Ouch!
  -- KSW 2000-07.

-- extendCaseBndrLvlEnv adds the mapping case-bndr->scrut-var if it can
-- (see point 4 of the module overview comment)
extendCaseBndrLvlEnv (float_lams, lvl_env, subst, id_env) (Var scrut_var) case_bndr lvl
  = (float_lams,
     extendVarEnv lvl_env case_bndr lvl,
726
     extendIdSubst subst case_bndr (Var scrut_var),
727
728
729
     extendVarEnv id_env case_bndr ([scrut_var], Var scrut_var))
     
extendCaseBndrLvlEnv env scrut case_bndr lvl
730
  = extendLvlEnv          env [TB case_bndr lvl]
731
732
733
734
735
736
737
738

extendPolyLvlEnv dest_lvl (float_lams, lvl_env, subst, id_env) abs_vars bndr_pairs
  = (float_lams,
     foldl add_lvl   lvl_env bndr_pairs,
     foldl add_subst subst   bndr_pairs,
     foldl add_id    id_env  bndr_pairs)
  where
     add_lvl   env (v,v') = extendVarEnv env v' dest_lvl
739
     add_subst env (v,v') = extendIdSubst env v (mkVarApps (Var v') abs_vars)
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
     add_id    env (v,v') = extendVarEnv env v ((v':abs_vars), mkVarApps (Var v') abs_vars)

extendCloneLvlEnv lvl (float_lams, lvl_env, _, id_env) new_subst bndr_pairs
  = (float_lams,
     foldl add_lvl   lvl_env bndr_pairs,
     new_subst,
     foldl add_id    id_env  bndr_pairs)
  where
     add_lvl   env (v,v') = extendVarEnv env v' lvl
     add_id    env (v,v') = extendVarEnv env v ([v'], Var v')


maxIdLevel :: LevelEnv -> VarSet -> Level
maxIdLevel (_, lvl_env,_,id_env) var_set
  = foldVarSet max_in tOP_LEVEL var_set
  where
    max_in in_var lvl = foldr max_out lvl (case lookupVarEnv id_env in_var of
						Just (abs_vars, _) -> abs_vars
						Nothing		   -> [in_var])

    max_out out_var lvl 
	| isId out_var = case lookupVarEnv lvl_env out_var of
				Just lvl' -> maxLvl lvl' lvl
				Nothing   -> lvl 
	| otherwise    = lvl	-- Ignore tyvars in *maxIdLevel*

lookupVar :: LevelEnv -> Id -> LevelledExpr
lookupVar (_, _, _, id_env) v = case lookupVarEnv id_env v of
				       Just (_, expr) -> expr
				       other	      -> Var v

771
772
773
774
abstractVars :: Level -> LevelEnv -> VarSet -> [Var]
	-- Find the variables in fvs, free vars of the target expresion,
	-- whose level is greater than the destination level
	-- These are the ones we are going to abstract out
775
abstractVars dest_lvl (_, lvl_env, _, id_env) fvs
776
777
778
779
  = map zap $ uniq $ sortLe le 
    [var | fv <- varSetElems fvs
	 , var <- absVarsOf id_env fv
	 , abstract_me var]
780
  where
781
782
783
784
785
	-- Sort the variables so the true type variables come first;
	-- the tyvars scope over Ids and coercion vars
    v1 `le` v2 = case (is_tv v1, is_tv v2) of
		   (True, False) -> True
		   (False, True) -> False
786
		   other	 -> v1 <= v2	-- Same family
787

788
789
    is_tv v = isTyVar v && not (isCoVar v)

790
791
792
793
794
795
    uniq :: [Var] -> [Var]
	-- Remove adjacent duplicates; the sort will have brought them together
    uniq (v1:v2:vs) | v1 == v2  = uniq (v2:vs)
		    | otherwise = v1 : uniq (v2:vs)
    uniq vs = vs

796
797
798
799
    abstract_me v = case lookupVarEnv lvl_env v of
			Just lvl -> dest_lvl `ltLvl` lvl
			Nothing  -> False

800
801
802
803
804
805
806
807
	-- We are going to lambda-abstract, so nuke any IdInfo,
	-- and add the tyvars of the Id (if necessary)
    zap v | isId v = WARN( workerExists (idWorkerInfo v) ||
		           not (isEmptySpecInfo (idSpecialisation v)),
		           text "absVarsOf: discarding info on" <+> ppr v )
		     setIdInfo v vanillaIdInfo
	  | otherwise = v

808
absVarsOf :: IdEnv ([Var], LevelledExpr) -> Var -> [Var]
809
	-- If f is free in the expression, and f maps to poly_f a b c in the
810
811
	-- current substitution, then we must report a b c as candidate type
	-- variables
812
813
814
815
	--
	-- Also, if x::a is an abstracted variable, then so is a; that is,
	--	we must look in x's type
	-- And similarly if x is a coercion variable.
816
absVarsOf id_env v 
817
818
  | isId v    = [av2 | av1 <- lookup_avs v
		     , av2 <- add_tyvars av1]
819
820
  | isCoVar v = add_tyvars v
  | otherwise = [v]
821
822
823
824
825
826

  where
    lookup_avs v = case lookupVarEnv id_env v of
			Just (abs_vars, _) -> abs_vars
			Nothing	           -> [v]

827
    add_tyvars v = v : varSetElems (varTypeTyVars v)
828
829
830
831
832
833
834
835
836
837
838
839
840
\end{code}

\begin{code}
type LvlM result = UniqSM result

initLvl		= initUs_
thenLvl		= thenUs
returnLvl	= returnUs
mapLvl		= mapUs
\end{code}

\begin{code}
newPolyBndrs dest_lvl env abs_vars bndrs
841
  = getUniquesUs 		`thenLvl` \ uniqs ->
842
843
844
845
846
    let
	new_bndrs = zipWith mk_poly_bndr bndrs uniqs
    in
    returnLvl (extendPolyLvlEnv dest_lvl env abs_vars (bndrs `zip` new_bndrs), new_bndrs)
  where
847
    mk_poly_bndr bndr uniq = mkSysLocal (mkFastString str) uniq poly_ty
848
			   where
849
			     str     = "poly_" ++ occNameString (getOccName bndr)
850
			     poly_ty = mkPiTypes abs_vars (idType bndr)
851
852
853
854
855
856
857
	

newLvlVar :: String 
	  -> [CoreBndr] -> Type 	-- Abstract wrt these bndrs
	  -> LvlM Id
newLvlVar str vars body_ty 	
  = getUniqueUs	`thenLvl` \ uniq ->
858
    returnUs (mkSysLocal (mkFastString str) uniq (mkPiTypes vars body_ty))
859
860
861
862
863
864
865
866
867
868
869
    
-- The deeply tiresome thing is that we have to apply the substitution
-- to the rules inside each Id.  Grr.  But it matters.

cloneVar :: TopLevelFlag -> LevelEnv -> Id -> Level -> Level -> LvlM (LevelEnv, Id)
cloneVar TopLevel env v ctxt_lvl dest_lvl
  = returnUs (env, v)	-- Don't clone top level things
cloneVar NotTopLevel env@(_,_,subst,_) v ctxt_lvl dest_lvl
  = ASSERT( isId v )
    getUs	`thenLvl` \ us ->
    let
870
      (subst', v1) = cloneIdBndr subst us v
871
872
873
874
875
876
877
878
879
880
881
882
      v2	   = zap_demand ctxt_lvl dest_lvl v1
      env'	   = extendCloneLvlEnv dest_lvl env subst' [(v,v2)]
    in
    returnUs (env', v2)

cloneRecVars :: TopLevelFlag -> LevelEnv -> [Id] -> Level -> Level -> LvlM (LevelEnv, [Id])
cloneRecVars TopLevel env vs ctxt_lvl dest_lvl 
  = returnUs (env, vs)	-- Don't clone top level things
cloneRecVars NotTopLevel env@(_,_,subst,_) vs ctxt_lvl dest_lvl
  = ASSERT( all isId vs )
    getUs 			`thenLvl` \ us ->
    let
883
      (subst', vs1) = cloneRecIdBndrs subst us vs
884
885
886
887
888
889
      vs2	    = map (zap_demand ctxt_lvl dest_lvl) vs1
      env'	    = extendCloneLvlEnv dest_lvl env subst' (vs `zip` vs2)
    in
    returnUs (env', vs2)

	-- VERY IMPORTANT: we must zap the demand info 
890
891
	-- if the thing is going to float out past a lambda,
	-- or if it's going to top level (where things can't be strict)
892
zap_demand dest_lvl ctxt_lvl id
893
894
895
  | ctxt_lvl == dest_lvl,
    not (isTopLvl dest_lvl) = id	-- Stays, and not going to top level
  | otherwise		    = zapDemandIdInfo id	-- Floats out
896
897
\end{code}