TcInstDcls.lhs 50 KB
Newer Older
1
%
2
% (c) The University of Glasgow 2006
3
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
4
%
5
6

TcInstDecls: Typechecking instance declarations
7
8

\begin{code}
9
module TcInstDcls ( tcInstDecls1, tcInstDecls2 ) where
10

11
import HsSyn
12
13
14
import TcBinds
import TcTyClsDecls
import TcClassDcl
15
import TcPat( addInlinePrags )
Ian Lynagh's avatar
Ian Lynagh committed
16
import TcRnMonad
17
18
19
20
21
22
import TcMType
import TcType
import Inst
import InstEnv
import FamInst
import FamInstEnv
23
import MkCore	( nO_METHOD_BINDING_ERROR_ID )
24
25
import TcDeriv
import TcEnv
26
import RnSource ( addTcgDUs )
27
28
29
30
31
32
33
34
import TcHsType
import TcUnify
import Type
import Coercion
import TyCon
import DataCon
import Class
import Var
35
import VarSet
36
import CoreUtils  ( mkPiTypes )
37
import CoreUnfold ( mkDFunUnfolding )
38
import CoreSyn    ( Expr(Var), DFunArg(..), CoreExpr )
39
import Id
40
41
42
43
44
45
import MkId
import Name
import NameSet
import DynFlags
import SrcLoc
import Util
46
import Outputable
47
import Bag
48
49
import BasicTypes
import HscTypes
50
import FastString
51
import Maybes	( orElse )
52
import Data.Maybe
53
import Control.Monad
54
import Data.List
55
56

#include "HsVersions.h"
57
58
59
\end{code}

Typechecking instance declarations is done in two passes. The first
60
61
pass, made by @tcInstDecls1@, collects information to be used in the
second pass.
62
63
64
65
66
67
68

This pre-processed info includes the as-yet-unprocessed bindings
inside the instance declaration.  These are type-checked in the second
pass, when the class-instance envs and GVE contain all the info from
all the instance and value decls.  Indeed that's the reason we need
two passes over the instance decls.

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

Note [How instance declarations are translated]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Here is how we translation instance declarations into Core

Running example:
	class C a where
	   op1, op2 :: Ix b => a -> b -> b
	   op2 = <dm-rhs>

	instance C a => C [a]
	   {-# INLINE [2] op1 #-}
	   op1 = <rhs>
===>
	-- Method selectors
	op1,op2 :: forall a. C a => forall b. Ix b => a -> b -> b
	op1 = ...
	op2 = ...

	-- Default methods get the 'self' dictionary as argument
	-- so they can call other methods at the same type
	-- Default methods get the same type as their method selector
	$dmop2 :: forall a. C a => forall b. Ix b => a -> b -> b
	$dmop2 = /\a. \(d:C a). /\b. \(d2: Ix b). <dm-rhs>
	       -- NB: type variables 'a' and 'b' are *both* in scope in <dm-rhs>
	       -- Note [Tricky type variable scoping]

	-- A top-level definition for each instance method
	-- Here op1_i, op2_i are the "instance method Ids"
98
	-- The INLINE pragma comes from the user pragma
99
100
	{-# INLINE [2] op1_i #-}  -- From the instance decl bindings
	op1_i, op2_i :: forall a. C a => forall b. Ix b => [a] -> b -> b
101
	op1_i = /\a. \(d:C a). 
102
103
	       let this :: C [a]
		   this = df_i a d
104
	             -- Note [Subtle interaction of recursion and overlap]
105
106

		   local_op1 :: forall b. Ix b => [a] -> b -> b
107
108
109
110
111
	           local_op1 = <rhs>
	       	     -- Source code; run the type checker on this
		     -- NB: Type variable 'a' (but not 'b') is in scope in <rhs>
		     -- Note [Tricky type variable scoping]

112
	       in local_op1 a d
113
114
115
116

	op2_i = /\a \d:C a. $dmop2 [a] (df_i a d) 

	-- The dictionary function itself
117
	{-# NOINLINE CONLIKE df_i #-}	-- Never inline dictionary functions
118
	df_i :: forall a. C a -> C [a]
119
	df_i = /\a. \d:C a. MkC (op1_i a d) (op2_i a d)
120
		-- But see Note [Default methods in instances]
121
		-- We can't apply the type checker to the default-method call
122

123
124
125
126
        -- Use a RULE to short-circuit applications of the class ops
	{-# RULE "op1@C[a]" forall a, d:C a. 
                            op1 [a] (df_i d) = op1_i a d #-}

127
128
Note [Instances and loop breakers]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
129
130
131
132
133
134
135
136
137
138
139
140
141
* Note that df_i may be mutually recursive with both op1_i and op2_i.
  It's crucial that df_i is not chosen as the loop breaker, even 
  though op1_i has a (user-specified) INLINE pragma.

* Instead the idea is to inline df_i into op1_i, which may then select
  methods from the MkC record, and thereby break the recursion with
  df_i, leaving a *self*-recurisve op1_i.  (If op1_i doesn't call op at
  the same type, it won't mention df_i, so there won't be recursion in
  the first place.)  

* If op1_i is marked INLINE by the user there's a danger that we won't
  inline df_i in it, and that in turn means that (since it'll be a
  loop-breaker because df_i isn't), op1_i will ironically never be 
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
142
143
144
145
  inlined.  But this is OK: the recursion breaking happens by way of
  a RULE (the magic ClassOp rule above), and RULES work inside InlineRule
  unfoldings. See Note [RULEs enabled in SimplGently] in SimplUtils

146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
Note [ClassOp/DFun selection]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
One thing we see a lot is stuff like
    op2 (df d1 d2)
where 'op2' is a ClassOp and 'df' is DFun.  Now, we could inline *both*
'op2' and 'df' to get
     case (MkD ($cop1 d1 d2) ($cop2 d1 d2) ... of
       MkD _ op2 _ _ _ -> op2
And that will reduce to ($cop2 d1 d2) which is what we wanted.

But it's tricky to make this work in practice, because it requires us to 
inline both 'op2' and 'df'.  But neither is keen to inline without having
seen the other's result; and it's very easy to get code bloat (from the 
big intermediate) if you inline a bit too much.

Instead we use a cunning trick.
 * We arrange that 'df' and 'op2' NEVER inline.  

 * We arrange that 'df' is ALWAYS defined in the sylised form
      df d1 d2 = MkD ($cop1 d1 d2) ($cop2 d1 d2) ...

 * We give 'df' a magical unfolding (DFunUnfolding [$cop1, $cop2, ..])
   that lists its methods.

 * We make CoreUnfold.exprIsConApp_maybe spot a DFunUnfolding and return
   a suitable constructor application -- inlining df "on the fly" as it 
   were.

 * We give the ClassOp 'op2' a BuiltinRule that extracts the right piece
   iff its argument satisfies exprIsConApp_maybe.  This is done in
   MkId mkDictSelId

 * We make 'df' CONLIKE, so that shared uses stil match; eg
      let d = df d1 d2
      in ...(op2 d)...(op1 d)...

Note [Single-method classes]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
184
If the class has just one method (or, more accurately, just one element
185
of {superclasses + methods}), then we use a different strategy.
186
187
188
189

   class C a where op :: a -> a
   instance C a => C [a] where op = <blah>

190
191
192
We translate the class decl into a newtype, which just gives a
top-level axiom. The "constructor" MkC expands to a cast, as does the
class-op selector.
193
194
195
196
197
198

   axiom Co:C a :: C a ~ (a->a)

   op :: forall a. C a -> (a -> a)
   op a d = d |> (Co:C a)

199
200
201
   MkC :: forall a. (a->a) -> C a
   MkC = /\a.\op. op |> (sym Co:C a)

202
203
204
The clever RULE stuff doesn't work now, because ($df a d) isn't
a constructor application, so exprIsConApp_maybe won't return 
Just <blah>.
205

206
Instead, we simply rely on the fact that casts are cheap:
207

208
209
210
211
   $df :: forall a. C a => C [a]
   {-# INLINE df #}  -- NB: INLINE this
   $df = /\a. \d. MkC [a] ($cop_list a d)
       = $cop_list |> forall a. C a -> (sym (Co:C [a]))
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
212

213
214
   $cop_list :: forall a. C a => [a] -> [a]
   $cop_list = <blah>
215

216
217
218
219
So if we see
   (op ($df a d))
we'll inline 'op' and '$df', since both are simply casts, and
good things happen.
220

221
222
223
224
225
226
Why do we use this different strategy?  Because otherwise we
end up with non-inlined dictionaries that look like
    $df = $cop |> blah
which adds an extra indirection to every use, which seems stupid.  See
Trac #4138 for an example (although the regression reported there
wasn't due to the indirction).
227

228
229
There is an awkward wrinkle though: we want to be very 
careful when we have
230
231
232
    instance C a => C [a] where
      {-# INLINE op #-}
      op = ...
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
233
234
then we'll get an INLINE pragma on $cop_list but it's important that
$cop_list only inlines when it's applied to *two* arguments (the
235
236
237
238
239
240
241
242
243
244
245
246
dictionary and the list argument).  So we nust not eta-expand $df
above.  We ensure that this doesn't happen by putting an INLINE 
pragma on the dfun itself; after all, it ends up being just a cast.

There is one more dark corner to the INLINE story, even more deeply 
buried.  Consider this (Trac #3772):

    class DeepSeq a => C a where
      gen :: Int -> a

    instance C a => C [a] where
      gen n = ...
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
247

248
249
    class DeepSeq a where
      deepSeq :: a -> b -> b
250

251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
    instance DeepSeq a => DeepSeq [a] where
      {-# INLINE deepSeq #-}
      deepSeq xs b = foldr deepSeq b xs

That gives rise to these defns:

    $cdeepSeq :: DeepSeq a -> [a] -> b -> b
    -- User INLINE( 3 args )!
    $cdeepSeq a (d:DS a) b (x:[a]) (y:b) = ...

    $fDeepSeq[] :: DeepSeq a -> DeepSeq [a]
    -- DFun (with auto INLINE pragma)
    $fDeepSeq[] a d = $cdeepSeq a d |> blah

    $cp1 a d :: C a => DeepSep [a]
    -- We don't want to eta-expand this, lest
    -- $cdeepSeq gets inlined in it!
    $cp1 a d = $fDeepSep[] a (scsel a d)

    $fC[] :: C a => C [a]
    -- Ordinary DFun
    $fC[] a d = MkC ($cp1 a d) ($cgen a d)

Here $cp1 is the code that generates the superclass for C [a].  The
issue is this: we must not eta-expand $cp1 either, or else $fDeepSeq[]
and then $cdeepSeq will inline there, which is definitely wrong.  Like
on the dfun, we solve this by adding an INLINE pragma to $cp1.
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
278

279
280
281
282
283
284
285
Note [Subtle interaction of recursion and overlap]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider this
  class C a where { op1,op2 :: a -> a }
  instance C a => C [a] where
    op1 x = op2 x ++ op2 x
    op2 x = ...
286
  instance C [Int] where
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
    ...

When type-checking the C [a] instance, we need a C [a] dictionary (for
the call of op2).  If we look up in the instance environment, we find
an overlap.  And in *general* the right thing is to complain (see Note
[Overlapping instances] in InstEnv).  But in *this* case it's wrong to
complain, because we just want to delegate to the op2 of this same
instance.  

Why is this justified?  Because we generate a (C [a]) constraint in 
a context in which 'a' cannot be instantiated to anything that matches
other overlapping instances, or else we would not be excecuting this
version of op1 in the first place.

It might even be a bit disguised:

  nullFail :: C [a] => [a] -> [a]
  nullFail x = op2 x ++ op2 x

  instance C a => C [a] where
    op1 x = nullFail x

Precisely this is used in package 'regex-base', module Context.hs.
See the overlapping instances for RegexContext, and the fact that they
call 'nullFail' just like the example above.  The DoCon package also
does the same thing; it shows up in module Fraction.hs

314
315
316
317
318
319
Conclusion: when typechecking the methods in a C [a] instance, we want to
treat the 'a' as an *existential* type variable, in the sense described
by Note [Binding when looking up instances].  That is why isOverlappableTyVar
responds True to an InstSkol, which is the kind of skolem we use in
tcInstDecl2.

320

321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
Note [Tricky type variable scoping]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In our example
	class C a where
	   op1, op2 :: Ix b => a -> b -> b
	   op2 = <dm-rhs>

	instance C a => C [a]
	   {-# INLINE [2] op1 #-}
	   op1 = <rhs>

note that 'a' and 'b' are *both* in scope in <dm-rhs>, but only 'a' is
in scope in <rhs>.  In particular, we must make sure that 'b' is in
scope when typechecking <dm-rhs>.  This is achieved by subFunTys,
which brings appropriate tyvars into scope. This happens for both
<dm-rhs> and for <rhs>, but that doesn't matter: the *renamer* will have
complained if 'b' is mentioned in <rhs>.

339

340
341

%************************************************************************
Ian Lynagh's avatar
Ian Lynagh committed
342
%*                                                                      *
343
\subsection{Extracting instance decls}
Ian Lynagh's avatar
Ian Lynagh committed
344
%*                                                                      *
345
346
347
348
%************************************************************************

Gather up the instance declarations from their various sources

349
\begin{code}
Ian Lynagh's avatar
Ian Lynagh committed
350
351
352
353
354
tcInstDecls1    -- Deal with both source-code and imported instance decls
   :: [LTyClDecl Name]          -- For deriving stuff
   -> [LInstDecl Name]          -- Source code instance decls
   -> [LDerivDecl Name]         -- Source code stand-alone deriving decls
   -> TcM (TcGblEnv,            -- The full inst env
355
           [InstInfo Name],     -- Source-code instance decls to process;
Ian Lynagh's avatar
Ian Lynagh committed
356
357
                                -- contains all dfuns for this module
           HsValBinds Name)     -- Supporting bindings for derived instances
358

359
tcInstDecls1 tycl_decls inst_decls deriv_decls
360
  = checkNoErrs $
361
    do {        -- Stop if addInstInfos etc discovers any errors
Ian Lynagh's avatar
Ian Lynagh committed
362
363
                -- (they recover, so that we get more than one error each
                -- round)
364

Ian Lynagh's avatar
Ian Lynagh committed
365
                -- (1) Do class and family instance declarations
366
367
       ; idx_tycons        <- mapAndRecoverM (tcFamInstDecl TopLevel) $
       	 		      filter (isFamInstDecl . unLoc) tycl_decls 
368
       ; local_info_tycons <- mapAndRecoverM tcLocalInstDecl1  inst_decls
369

370
371
       ; let { (local_info,
                at_tycons_s)   = unzip local_info_tycons
372
             ; at_idx_tycons   = concat at_tycons_s ++ idx_tycons
373
             ; clas_decls      = filter (isClassDecl . unLoc) tycl_decls
374
             ; implicit_things = concatMap implicitTyThings at_idx_tycons
375
	     ; aux_binds       = mkRecSelBinds at_idx_tycons
Ian Lynagh's avatar
Ian Lynagh committed
376
377
378
379
             }

                -- (2) Add the tycons of indexed types and their implicit
                --     tythings to the global environment
380
       ; tcExtendGlobalEnv (at_idx_tycons ++ implicit_things) $ do {
381

Ian Lynagh's avatar
Ian Lynagh committed
382
                -- (3) Instances from generic class declarations
383
384
       ; generic_inst_info <- getGenericInstances clas_decls

Ian Lynagh's avatar
Ian Lynagh committed
385
386
                -- Next, construct the instance environment so far, consisting
                -- of
387
388
389
                --   (a) local instance decls
                --   (b) generic instances
                --   (c) local family instance decls
390
391
392
       ; addInsts local_info         $
         addInsts generic_inst_info  $
         addFamInsts at_idx_tycons   $ do {
393

Ian Lynagh's avatar
Ian Lynagh committed
394
395
396
                -- (4) Compute instances from "deriving" clauses;
                -- This stuff computes a context for the derived instance
                -- decl, so it needs to know about all the instances possible
397
398
                -- NB: class instance declarations can contain derivings as
                --     part of associated data type declarations
399
400
401
	 failIfErrsM		-- If the addInsts stuff gave any errors, don't
				-- try the deriving stuff, becuase that may give
				-- more errors still
402
403
       ; (deriv_inst_info, deriv_binds, deriv_dus) 
              <- tcDeriving tycl_decls inst_decls deriv_decls
404
       ; gbl_env <- addInsts deriv_inst_info getGblEnv
405
       ; return ( addTcgDUs gbl_env deriv_dus,
Ian Lynagh's avatar
Ian Lynagh committed
406
                  generic_inst_info ++ deriv_inst_info ++ local_info,
407
                  aux_binds `plusHsValBinds` deriv_binds)
408
    }}}
409

410
addInsts :: [InstInfo Name] -> TcM a -> TcM a
411
addInsts infos thing_inside
412
  = tcExtendLocalInstEnv (map iSpec infos) thing_inside
413
414
415

addFamInsts :: [TyThing] -> TcM a -> TcM a
addFamInsts tycons thing_inside
416
417
418
  = tcExtendLocalFamInstEnv (map mkLocalFamInstTyThing tycons) thing_inside
  where
    mkLocalFamInstTyThing (ATyCon tycon) = mkLocalFamInst tycon
Ian Lynagh's avatar
Ian Lynagh committed
419
420
    mkLocalFamInstTyThing tything        = pprPanic "TcInstDcls.addFamInsts"
                                                    (ppr tything)
421
\end{code}
422

423
\begin{code}
Ian Lynagh's avatar
Ian Lynagh committed
424
tcLocalInstDecl1 :: LInstDecl Name
425
                 -> TcM (InstInfo Name, [TyThing])
Ian Lynagh's avatar
Ian Lynagh committed
426
427
428
429
        -- A source-file instance declaration
        -- Type-check all the stuff before the "where"
        --
        -- We check for respectable instance type, and context
Ian Lynagh's avatar
Ian Lynagh committed
430
tcLocalInstDecl1 (L loc (InstDecl poly_ty binds uprags ats))
431
  = setSrcSpan loc		        $
Ian Lynagh's avatar
Ian Lynagh committed
432
433
434
435
436
437
    addErrCtxt (instDeclCtxt1 poly_ty)  $

    do  { is_boot <- tcIsHsBoot
        ; checkTc (not is_boot || (isEmptyLHsBinds binds && null uprags))
                  badBootDeclErr

438
439
        ; (tyvars, theta, clas, inst_tys) <- tcHsInstHead poly_ty
        ; checkValidInstance poly_ty tyvars theta clas inst_tys
440
441
442

        -- Next, process any associated types.
        ; idx_tycons <- recoverM (return []) $
443
444
	  	     do { idx_tycons <- checkNoErrs $ 
                                        mapAndRecoverM (tcFamInstDecl NotTopLevel) ats
445
446
447
		     	; checkValidAndMissingATs clas (tyvars, inst_tys)
                          			  (zip ats idx_tycons)
			; return idx_tycons }
Ian Lynagh's avatar
Ian Lynagh committed
448
449
450

        -- Finally, construct the Core representation of the instance.
        -- (This no longer includes the associated types.)
451
452
        ; dfun_name <- newDFunName clas inst_tys (getLoc poly_ty)
		-- Dfun location is that of instance *header*
Ian Lynagh's avatar
Ian Lynagh committed
453
454
        ; overlap_flag <- getOverlapFlag
        ; let (eq_theta,dict_theta) = partition isEqPred theta
455
456
              theta'         = eq_theta ++ dict_theta
              dfun           = mkDictFunId dfun_name tyvars theta' clas inst_tys
Ian Lynagh's avatar
Ian Lynagh committed
457
              ispec          = mkLocalInstance dfun overlap_flag
458

459
        ; return (InstInfo { iSpec  = ispec, iBinds = VanillaInst binds uprags False },
460
                  idx_tycons)
461
        }
462
  where
463
464
465
466
    -- We pass in the source form and the type checked form of the ATs.  We
    -- really need the source form only to be able to produce more informative
    -- error messages.
    checkValidAndMissingATs :: Class
Ian Lynagh's avatar
Ian Lynagh committed
467
468
                            -> ([TyVar], [TcType])     -- instance types
                            -> [(LTyClDecl Name,       -- source form of AT
469
                                 TyThing)]    	       -- Core form of AT
Ian Lynagh's avatar
Ian Lynagh committed
470
                            -> TcM ()
471
472
    checkValidAndMissingATs clas inst_tys ats
      = do { -- Issue a warning for each class AT that is not defined in this
Ian Lynagh's avatar
Ian Lynagh committed
473
474
             -- instance.
           ; let class_ats   = map tyConName (classATs clas)
475
                 defined_ats = listToNameSet . map (tcdName.unLoc.fst)  $ ats
Ian Lynagh's avatar
Ian Lynagh committed
476
477
478
479
480
481
482
483
484
485
486
                 omitted     = filterOut (`elemNameSet` defined_ats) class_ats
           ; warn <- doptM Opt_WarnMissingMethods
           ; mapM_ (warnTc warn . omittedATWarn) omitted

             -- Ensure that all AT indexes that correspond to class parameters
             -- coincide with the types in the instance head.  All remaining
             -- AT arguments must be variables.  Also raise an error for any
             -- type instances that are not associated with this class.
           ; mapM_ (checkIndexes clas inst_tys) ats
           }

487
    checkIndexes clas inst_tys (hsAT, ATyCon tycon)
488
-- !!!TODO: check that this does the Right Thing for indexed synonyms, too!
489
490
491
      = checkIndexes' clas inst_tys hsAT
                      (tyConTyVars tycon,
                       snd . fromJust . tyConFamInst_maybe $ tycon)
492
493
494
495
    checkIndexes _ _ _ = panic "checkIndexes"

    checkIndexes' clas (instTvs, instTys) hsAT (atTvs, atTys)
      = let atName = tcdName . unLoc $ hsAT
Ian Lynagh's avatar
Ian Lynagh committed
496
497
498
499
500
        in
        setSrcSpan (getLoc hsAT)       $
        addErrCtxt (atInstCtxt atName) $
        case find ((atName ==) . tyConName) (classATs clas) of
          Nothing     -> addErrTc $ badATErr clas atName  -- not in this class
501
          Just atycon ->
Ian Lynagh's avatar
Ian Lynagh committed
502
503
504
505
506
507
508
                -- The following is tricky!  We need to deal with three
                -- complications: (1) The AT possibly only uses a subset of
                -- the class parameters as indexes and those it uses may be in
                -- a different order; (2) the AT may have extra arguments,
                -- which must be type variables; and (3) variables in AT and
                -- instance head will be different `Name's even if their
                -- source lexemes are identical.
509
510
511
512
513
514
515
		--
		-- e.g.    class C a b c where 
		-- 	     data D b a :: * -> *           -- NB (1) b a, omits c
		-- 	   instance C [x] Bool Char where 
		--	     data D Bool [x] v = MkD x [v]  -- NB (2) v
		--	     	  -- NB (3) the x in 'instance C...' have differnt
		--		  --        Names to x's in 'data D...'
Ian Lynagh's avatar
Ian Lynagh committed
516
517
518
519
520
521
522
523
524
525
526
527
528
                --
                -- Re (1), `poss' contains a permutation vector to extract the
                -- class parameters in the right order.
                --
                -- Re (2), we wrap the (permuted) class parameters in a Maybe
                -- type and use Nothing for any extra AT arguments.  (First
                -- equation of `checkIndex' below.)
                --
                -- Re (3), we replace any type variable in the AT parameters
                -- that has the same source lexeme as some variable in the
                -- instance types with the instance type variable sharing its
                -- source lexeme.
                --
529
530
531
532
533
534
535
536
537
538
539
540
541
                let poss :: [Int]
                    -- For *associated* type families, gives the position
                    -- of that 'TyVar' in the class argument list (0-indexed)
	   	    -- e.g.  class C a b c where { type F c a :: *->* }
           	    --       Then we get Just [2,0]
	            poss = catMaybes [ tv `elemIndex` classTyVars clas 
                                     | tv <- tyConTyVars atycon]
                       -- We will get Nothings for the "extra" type 
                       -- variables in an associated data type
                       -- e.g. class C a where { data D a :: *->* }
                       -- here D gets arity 2 and has two tyvars

                    relevantInstTys = map (instTys !!) poss
Ian Lynagh's avatar
Ian Lynagh committed
542
543
544
545
546
547
548
                    instArgs        = map Just relevantInstTys ++
                                      repeat Nothing  -- extra arguments
                    renaming        = substSameTyVar atTvs instTvs
                in
                zipWithM_ checkIndex (substTys renaming atTys) instArgs

    checkIndex ty Nothing
549
550
      | isTyVarTy ty         = return ()
      | otherwise            = addErrTc $ mustBeVarArgErr ty
Ian Lynagh's avatar
Ian Lynagh committed
551
    checkIndex ty (Just instTy)
552
553
554
      | ty `tcEqType` instTy = return ()
      | otherwise            = addErrTc $ wrongATArgErr ty instTy

Ian Lynagh's avatar
Ian Lynagh committed
555
    listToNameSet = addListToNameSet emptyNameSet
556
557

    substSameTyVar []       _            = emptyTvSubst
Ian Lynagh's avatar
Ian Lynagh committed
558
    substSameTyVar (tv:tvs) replacingTvs =
559
      let replacement = case find (tv `sameLexeme`) replacingTvs of
Ian Lynagh's avatar
Ian Lynagh committed
560
561
                        Nothing  -> mkTyVarTy tv
                        Just rtv -> mkTyVarTy rtv
562
          --
Ian Lynagh's avatar
Ian Lynagh committed
563
564
          tv1 `sameLexeme` tv2 =
            nameOccName (tyVarName tv1) == nameOccName (tyVarName tv2)
565
566
      in
      extendTvSubst (substSameTyVar tvs replacingTvs) tv replacement
567
568
\end{code}

569
570

%************************************************************************
Ian Lynagh's avatar
Ian Lynagh committed
571
%*                                                                      *
572
      Type-checking instance declarations, pass 2
Ian Lynagh's avatar
Ian Lynagh committed
573
%*                                                                      *
574
575
576
%************************************************************************

\begin{code}
577
tcInstDecls2 :: [LTyClDecl Name] -> [InstInfo Name]
578
             -> TcM (LHsBinds Id)
Ian Lynagh's avatar
Ian Lynagh committed
579
580
-- (a) From each class declaration,
--      generate any default-method bindings
581
-- (b) From each instance decl
Ian Lynagh's avatar
Ian Lynagh committed
582
--      generate the dfun binding
583
584

tcInstDecls2 tycl_decls inst_decls
Ian Lynagh's avatar
Ian Lynagh committed
585
  = do  { -- (a) Default methods from class decls
586
          let class_decls = filter (isClassDecl . unLoc) tycl_decls
587
        ; dm_binds_s <- mapM tcClassDecl2 class_decls
588
        ; let dm_binds = unionManyBags dm_binds_s
589
                                    
Ian Lynagh's avatar
Ian Lynagh committed
590
          -- (b) instance declarations
591
592
593
594
595
	; let dm_ids = collectHsBindsBinders dm_binds
	      -- Add the default method Ids (again)
	      -- See Note [Default methods and instances]
        ; inst_binds_s <- tcExtendIdEnv dm_ids $
                          mapM tcInstDecl2 inst_decls
Ian Lynagh's avatar
Ian Lynagh committed
596
597

          -- Done
598
        ; return (dm_binds `unionBags` unionManyBags inst_binds_s) }
599
600
\end{code}

601
602
603
604
605
606
607
608
609
610
611
612
See Note [Default methods and instances]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The default method Ids are already in the type environment (see Note
[Default method Ids and Template Haskell] in TcTyClsDcls), BUT they
don't have their InlinePragmas yet.  Usually that would not matter,
because the simplifier propagates information from binding site to
use.  But, unusually, when compiling instance decls we *copy* the
INLINE pragma from the default method to the method for that
particular operation (see Note [INLINE and default methods] below).

So right here in tcInstDecl2 we must re-extend the type envt with
the default method Ids replete with their INLINE pragmas.  Urk.
613

614
\begin{code}
615
616
617
618
619
620
621
622

tcInstDecl2 :: InstInfo Name -> TcM (LHsBinds Id)
            -- Returns a binding for the dfun
tcInstDecl2 (InstInfo { iSpec = ispec, iBinds = ibinds })
  = recoverM (return emptyLHsBinds)             $
    setSrcSpan loc                              $
    addErrCtxt (instDeclCtxt2 (idType dfun_id)) $ 
    do {  -- Instantiate the instance decl with skolem constants
623
       ; (inst_tyvars, dfun_theta, inst_head) <- tcSkolDFunType (idType dfun_id)
624
625
626
627
628
629
630
631
632
633
634
       ; let (clas, inst_tys) = tcSplitDFunHead inst_head
             (class_tyvars, sc_theta, _, op_items) = classBigSig clas
             sc_theta' = substTheta (zipOpenTvSubst class_tyvars inst_tys) sc_theta
             n_ty_args = length inst_tyvars
             n_silent  = dfunNSilent dfun_id
             (silent_theta, orig_theta) = splitAt n_silent dfun_theta

       ; silent_ev_vars <- mapM newSilentGiven silent_theta
       ; orig_ev_vars   <- newEvVars orig_theta
       ; let dfun_ev_vars = silent_ev_vars ++ orig_ev_vars

635
636
       ; (sc_dicts, sc_args)
             <- mapAndUnzipM (tcSuperClass n_ty_args dfun_ev_vars) sc_theta'
637
638
639
640
641

       -- Check that any superclasses gotten from a silent arguemnt
       -- can be deduced from the originally-specified dfun arguments
       ; ct_loc <- getCtLoc ScOrigin
       ; _ <- checkConstraints skol_info inst_tyvars orig_ev_vars $
642
643
              emitFlats $ listToBag $
              [ mkEvVarX sc ct_loc | sc <- sc_dicts, isSilentEvVar sc ]
644
645
646

       -- Deal with 'SPECIALISE instance' pragmas
       -- See Note [SPECIALISE instance pragmas]
647
       ; spec_info <- tcSpecInstPrags dfun_id ibinds
648
649

        -- Typecheck the methods
650
       ; (meth_ids, meth_binds) 
651
652
653
654
655
656
657
           <- tcExtendTyVarEnv inst_tyvars $
                -- The inst_tyvars scope over the 'where' part
                -- Those tyvars are inside the dfun_id's type, which is a bit
                -- bizarre, but OK so long as you realise it!
              tcInstanceMethods dfun_id clas inst_tyvars dfun_ev_vars
                                inst_tys spec_info
                                op_items ibinds
658

659
       -- Create the result bindings
660
661
662
663
664
665
666
667
       ; self_dict <- newEvVar (ClassP clas inst_tys)
       ; let class_tc      = classTyCon clas
             [dict_constr] = tyConDataCons class_tc
             dict_bind     = mkVarBind self_dict dict_rhs
             dict_rhs      = foldl mk_app inst_constr $
                             map HsVar sc_dicts ++ map (wrapId arg_wrapper) meth_ids
             inst_constr   = L loc $ wrapId (mkWpTyApps inst_tys)
                                            (dataConWrapId dict_constr)
668
669
670
671
                     -- We don't produce a binding for the dict_constr; instead we
                     -- rely on the simplifier to unfold this saturated application
                     -- We do this rather than generate an HsCon directly, because
                     -- it means that the special cases (e.g. dictionary with only one
672
673
                     -- member) are dealt with by the common MkId.mkDataConWrapId 
		     -- code rather than needing to be repeated here.
674

675
676
677
678
             mk_app :: LHsExpr Id -> HsExpr Id -> LHsExpr Id
             mk_app fun arg = L loc (HsApp fun (L loc arg))

             arg_wrapper = mkWpEvVarApps dfun_ev_vars <.> mkWpTyApps (mkTyVarTys inst_tyvars)
679
680
681
682

	        -- Do not inline the dfun; instead give it a magic DFunFunfolding
	        -- See Note [ClassOp/DFun selection]
		-- See also note [Single-method classes]
683
684
685
686
687
688
689
             dfun_id_w_fun
                | isNewTyCon class_tc
                = dfun_id `setInlinePragma` alwaysInlinePragma { inl_sat = Just 0 }
                | otherwise
                = dfun_id `setIdUnfolding`  mkDFunUnfolding dfun_ty (sc_args ++ meth_args)
                          `setInlinePragma` dfunInlinePragma
             meth_args = map (DFunPolyArg . Var) meth_ids
690

691
             main_bind = AbsBinds { abs_tvs = inst_tyvars
692
                                  , abs_ev_vars = dfun_ev_vars
693
694
                                  , abs_exports = [(inst_tyvars, dfun_id_w_fun, self_dict,
                                                    SpecPrags [] {- spec_inst_prags -})]
695
696
                                  , abs_ev_binds = emptyTcEvBinds
                                  , abs_binds = unitBag dict_bind }
697

698
699
       ; return (unitBag (L loc main_bind) `unionBags`
                 listToBag meth_binds)
700
       }
701
702
703
704
705
706
707
 where
   skol_info = InstSkol         -- See Note [Subtle interaction of recursion and overlap]
   dfun_ty   = idType dfun_id
   dfun_id   = instanceDFunId ispec
   loc       = getSrcSpan dfun_id

------------------------------
708
709
710
711
tcSuperClass :: Int -> [EvVar] -> PredType -> TcM (EvVar, DFunArg CoreExpr)
-- All superclasses should be either
--   (a) be one of the arguments to the dfun, of
--   (b) be a constant, soluble at top level
712
713
tcSuperClass n_ty_args ev_vars pred
  | Just (ev, i) <- find n_ty_args ev_vars
714
  = return (ev, DFunLamArg i)
715
  | otherwise
716
717
718
  = ASSERT2( isEmptyVarSet (tyVarsOfPred pred), ppr pred)       -- Constant!
    do { sc_dict  <- emitWanted ScOrigin pred
       ; return (sc_dict, DFunConstArg (Var sc_dict)) }
719
720
721
722
  where
    find _ [] = Nothing
    find i (ev:evs) | pred `tcEqPred` evVarPred ev = Just (ev, i)
                    | otherwise                    = find (i+1) evs
723

724
------------------------------
725
tcSpecInstPrags :: DFunId -> InstBindings Name
726
727
728
729
730
731
732
733
                -> TcM ([Located TcSpecPrag], PragFun)
tcSpecInstPrags _ (NewTypeDerived {})
  = return ([], \_ -> [])
tcSpecInstPrags dfun_id (VanillaInst binds uprags _)
  = do { spec_inst_prags <- mapM (wrapLocM (tcSpecInst dfun_id)) $
                            filter isSpecInstLSig uprags
	     -- The filter removes the pragmas for methods
       ; return (spec_inst_prags, mkPragFun uprags binds) }
734
\end{code}
735

736
737
738
739
740
741
742
743
Note [Silent Superclass Arguments]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider the following (extreme) situation:
        class C a => D a where ...
        instance D [a] => D [a] where ...
Although this looks wrong (assume D [a] to prove D [a]), it is only a
more extreme case of what happens with recursive dictionaries.

744
745
746
747
748
To implement the dfun we must generate code for the superclass C [a],
which we can get by superclass selection from the supplied argument!
So we’d generate:
       dfun :: forall a. D [a] -> D [a]
       dfun = \d::D [a] -> MkD (scsel d) ..
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806

However this means that if we later encounter a situation where
we have a [Wanted] dw::D [a] we could solve it thus:
     dw := dfun dw
Although recursive, this binding would pass the TcSMonadisGoodRecEv
check because it appears as guarded.  But in reality, it will make a
bottom superclass. The trouble is that isGoodRecEv can't "see" the
superclass-selection inside dfun.

Our solution to this problem is to change the way ‘dfuns’ are created
for instances, so that we pass as first arguments to the dfun some
``silent superclass arguments’’, which are the immediate superclasses
of the dictionary we are trying to construct. In our example:
       dfun :: forall a. (C [a], D [a] -> D [a]
       dfun = \(dc::C [a]) (dd::D [a]) -> DOrd dc ...

This gives us:

     -----------------------------------------------------------
     DFun Superclass Invariant
     ~~~~~~~~~~~~~~~~~~~~~~~~
     In the body of a DFun, every superclass argument to the
     returned dictionary is
       either   * one of the arguments of the DFun,
       or       * constant, bound at top level
     -----------------------------------------------------------

This means that no superclass is hidden inside a dfun application, so
the counting argument in isGoodRecEv (more dfun calls than superclass
selections) works correctly.

The extra arguments required to satisfy the DFun Superclass Invariant
always come first, and are called the "silent" arguments.  DFun types
are built (only) by MkId.mkDictFunId, so that is where we decide
what silent arguments are to be added.

This net effect is that it is safe to treat a dfun application as
wrapping a dictionary constructor around its arguments (in particular,
a dfun never picks superclasses from the arguments under the dictionary
constructor).

In our example, if we had  [Wanted] dw :: D [a] we would get via the instance:
    dw := dfun d1 d2
    [Wanted] (d1 :: C [a])
    [Wanted] (d2 :: D [a])
    [Derived] (d :: D [a])
    [Derived] (scd :: C [a])   scd  := scsel d
    [Derived] (scd2 :: C [a])  scd2 := scsel d2

And now, though we *can* solve: 
     d2 := dw
we will get an isGoodRecEv failure when we try to solve:
    d1 := scsel d 
 or
    d1 := scsel d2 

Test case SCLoop tests this fix. 
         
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
Note [SPECIALISE instance pragmas]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider

   instance (Ix a, Ix b) => Ix (a,b) where
     {-# SPECIALISE instance Ix (Int,Int) #-}
     range (x,y) = ...

We do *not* want to make a specialised version of the dictionary
function.  Rather, we want specialised versions of each method.
Thus we should generate something like this:

  $dfIx :: (Ix a, Ix x) => Ix (a,b)
  {- DFUN [$crange, ...] -}
  $dfIx da db = Ix ($crange da db) (...other methods...)

  $dfIxPair :: (Ix a, Ix x) => Ix (a,b)
  {- DFUN [$crangePair, ...] -}
  $dfIxPair = Ix ($crangePair da db) (...other methods...)

  $crange :: (Ix a, Ix b) -> ((a,b),(a,b)) -> [(a,b)]
  {-# SPECIALISE $crange :: ((Int,Int),(Int,Int)) -> [(Int,Int)] #-}
  $crange da db = <blah>

  {-# RULE  range ($dfIx da db) = $crange da db #-}

Note that  

  * The RULE is unaffected by the specialisation.  We don't want to
    specialise $dfIx, because then it would need a specialised RULE
    which is a pain.  The single RULE works fine at all specialisations.
    See Note [How instance declarations are translated] above

  * Instead, we want to specialise the *method*, $crange

In practice, rather than faking up a SPECIALISE pragama for each
method (which is painful, since we'd have to figure out its
specialised type), we call tcSpecPrag *as if* were going to specialise
$dfIx -- you can see that in the call to tcSpecInst.  That generates a
SpecPrag which, as it turns out, can be used unchanged for each method.
The "it turns out" bit is delicate, but it works fine!

\begin{code}
850
tcSpecInst :: Id -> Sig Name -> TcM TcSpecPrag
851
852
853
tcSpecInst dfun_id prag@(SpecInstSig hs_ty) 
  = addErrCtxt (spec_ctxt prag) $
    do  { let name = idName dfun_id
854
855
856
        ; (tyvars, theta, clas, tys) <- tcHsInstHead hs_ty
        ; let (_, spec_dfun_ty) = mkDictFunTy tyvars theta clas tys

857
        ; co_fn <- tcSubType (SpecPragOrigin name) SpecInstCtxt
858
                             (idType dfun_id) spec_dfun_ty
859
        ; return (SpecPrag dfun_id co_fn defaultInlinePragma) }
860
861
862
863
864
  where
    spec_ctxt prag = hang (ptext (sLit "In the SPECIALISE pragma")) 2 (ppr prag)

tcSpecInst _  _ = panic "tcSpecInst"
\end{code}
865

866
867
868
869
870
%************************************************************************
%*                                                                      *
      Type-checking an instance method
%*                                                                      *
%************************************************************************
871

872
873
874
875
876
877
878
tcInstanceMethod
- Make the method bindings, as a [(NonRec, HsBinds)], one per method
- Remembering to use fresh Name (the instance method Name) as the binder
- Bring the instance method Ids into scope, for the benefit of tcInstSig
- Use sig_fn mapping instance method Name -> instance tyvars
- Ditto prag_fn
- Use tcValBinds to do the checking
Ian Lynagh's avatar
Ian Lynagh committed
879

880
\begin{code}
881
882
883
tcInstanceMethods :: DFunId -> Class -> [TcTyVar]
                  -> [EvVar]
	 	  -> [TcType]
884
                  -> ([Located TcSpecPrag], PragFun)
885
886
887
	  	  -> [(Id, DefMeth)]
                  -> InstBindings Name 
          	  -> TcM ([Id], [LHsBind Id])
888
889
	-- The returned inst_meth_ids all have types starting
	--	forall tvs. theta => ...
890
tcInstanceMethods dfun_id clas tyvars dfun_ev_vars inst_tys 
891
                  (spec_inst_prags, prag_fn)
892
893
                  op_items (VanillaInst binds _ standalone_deriv)
  = mapAndUnzipM tc_item op_items
894
  where
895
896
897
898
899
900
901
902
903
904
    ----------------------
    tc_item :: (Id, DefMeth) -> TcM (Id, LHsBind Id)
    tc_item (sel_id, dm_info)
      = case findMethodBind (idName sel_id) binds of
  	    Just user_bind -> tc_body sel_id standalone_deriv user_bind
  	    Nothing	   -> tc_default sel_id dm_info

    ----------------------
    tc_body :: Id -> Bool -> LHsBind Name -> TcM (TcId, LHsBind Id)
    tc_body sel_id generated_code rn_bind 
905
      = add_meth_ctxt sel_id generated_code rn_bind $
906
907
        do { (meth_id, local_meth_id) <- mkMethIds clas tyvars dfun_ev_vars 
                                                   inst_tys sel_id
908
           ; let prags = prag_fn (idName sel_id)
909
910
           ; meth_id1 <- addInlinePrags meth_id prags
           ; spec_prags <- tcSpecPrags meth_id1 prags
911
           ; bind <- tcInstanceMethodBody InstSkol
912
                          tyvars dfun_ev_vars
913
914
                          meth_id1 local_meth_id meth_sig_fn 
                          (mk_meth_spec_prags meth_id1 spec_prags)
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
                          rn_bind 
           ; return (meth_id1, bind) }

    ----------------------
    tc_default :: Id -> DefMeth -> TcM (TcId, LHsBind Id)
    tc_default sel_id GenDefMeth    -- Derivable type classes stuff
      = do { meth_bind <- mkGenericDefMethBind clas inst_tys sel_id
           ; tc_body sel_id False {- Not generated code? -} meth_bind }
    	  
    tc_default sel_id NoDefMeth	    -- No default method at all
      = do { warnMissingMethod sel_id
    	   ; (meth_id, _) <- mkMethIds clas tyvars dfun_ev_vars 
                                         inst_tys sel_id
           ; return (meth_id, mkVarBind meth_id $ 
                              mkLHsWrap lam_wrapper error_rhs) }
      where
    	error_rhs    = L loc $ HsApp error_fun error_msg
    	error_fun    = L loc $ wrapId (WpTyApp meth_tau) nO_METHOD_BINDING_ERROR_ID
    	error_msg    = L loc (HsLit (HsStringPrim (mkFastString error_string)))
    	meth_tau     = funResultTy (applyTys (idType sel_id) inst_tys)
    	error_string = showSDoc (hcat [ppr loc, text "|", ppr sel_id ])
        lam_wrapper  = mkWpTyLams tyvars <.> mkWpLams dfun_ev_vars

    tc_default sel_id (DefMeth dm_name)	-- A polymorphic default method
      = do {   -- Build the typechecked version directly, 
    		 -- without calling typecheck_method; 
    		 -- see Note [Default methods in instances]
942
943
                 -- Generate   /\as.\ds. let self = df as ds
                 --                      in $dm inst_tys self
944
945
946
    		 -- The 'let' is necessary only because HsSyn doesn't allow
    		 -- you to apply a function to a dictionary *expression*.

947
948
949
950
           ; self_dict <- newEvVar (ClassP clas inst_tys)
           ; let self_ev_bind = EvBind self_dict $
                                EvDFunApp dfun_id (mkTyVarTys tyvars) dfun_ev_vars

951
952
953
954
955
956
957
958
959
           ; (meth_id, local_meth_id) <- mkMethIds clas tyvars dfun_ev_vars 
                                                   inst_tys sel_id
           ; dm_id <- tcLookupId dm_name
           ; let dm_inline_prag = idInlinePragma dm_id
                 rhs = HsWrap (mkWpEvVarApps [self_dict] <.> mkWpTyApps inst_tys) $
    		         HsVar dm_id 

    	         meth_bind = L loc $ VarBind { var_id = local_meth_id
                                             , var_rhs = L loc rhs 
960
                                             , var_inline = False }
961
962
963
964
965
966
                 meth_id1 = meth_id `setInlinePragma` dm_inline_prag
    		   	    -- Copy the inline pragma (if any) from the default
    			    -- method to this version. Note [INLINE and default methods]
    			    
                 bind = AbsBinds { abs_tvs = tyvars, abs_ev_vars =  dfun_ev_vars
                                 , abs_exports = [( tyvars, meth_id1, local_meth_id
967
                                                  , mk_meth_spec_prags meth_id1 [])]
968
                                 , abs_ev_binds = EvBinds (unitBag self_ev_bind)
969
970
971
972
973
974
975
976
977
                                 , abs_binds    = unitBag meth_bind }
    	     -- Default methods in an instance declaration can't have their own 
    	     -- INLINE or SPECIALISE pragmas. It'd be possible to allow them, but
    	     -- currently they are rejected with 
    	     --		  "INLINE pragma lacks an accompanying binding"

           ; return (meth_id1, L loc bind) } 

    ----------------------
978
979
980
981
982
983
984
985
986
987
988
989
    mk_meth_spec_prags :: Id -> [LTcSpecPrag] -> TcSpecPrags
	-- Adapt the SPECIALISE pragmas to work for this method Id
        -- There are two sources: 
        --   * spec_inst_prags: {-# SPECIALISE instance :: <blah> #-}
        --     These ones have the dfun inside, but [perhaps surprisingly] 
        --     the correct wrapper
        --   * spec_prags_for_me: {-# SPECIALISE op :: <blah> #-}
    mk_meth_spec_prags meth_id spec_prags_for_me
      = SpecPrags (spec_prags_for_me ++ 
                   [ L loc (SpecPrag meth_id wrap inl)
        	   | L loc (SpecPrag _ wrap inl) <- spec_inst_prags])
   
990
991
    loc = getSrcSpan dfun_id
    meth_sig_fn _ = Just ([],loc)	-- The 'Just' says "yes, there's a type sig"
992
993
994
995
996
997
998
	-- But there are no scoped type variables from local_method_id
	-- Only the ones from the instance decl itself, which are already
	-- in scope.  Example:
	--	class C a where { op :: forall b. Eq b => ... }
	-- 	instance C [c] where { op = <rhs> }
	-- In <rhs>, 'c' is scope but 'b' is not!

999
        -- For instance decls that come from standalone deriving clauses
1000
1001
	-- we want to print out the full source code if there's an error
	-- because otherwise the user won't see the code at all
1002
1003
    add_meth_ctxt sel_id generated_code rn_bind thing 
      | generated_code = addLandmarkErrCtxt (derivBindCtxt sel_id clas inst_tys rn_bind) thing
1004
1005
1006
1007
      | otherwise      = thing


tcInstanceMethods dfun_id clas tyvars dfun_ev_vars inst_tys 
1008
                  _ op_items (NewTypeDerived coi _)
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035

-- Running example:
--   class Show b => Foo a b where
--     op :: a -> b -> b
--   newtype N a = MkN (Tree [a]) 
--   deriving instance (Show p, Foo Int p) => Foo Int (N p)
--		 -- NB: standalone deriving clause means
--		 --     that the contex is user-specified
-- Hence op :: forall a b. Foo a b => a -> b -> b
--
-- We're going to make an instance like
--   instance (Show p, Foo Int p) => Foo Int (N p)
--      op = $copT
--
--   $copT :: forall p. (Show p, Foo Int p) => Int -> N p -> N p
--   $copT p (d1:Show p) (d2:Foo Int p) 
--     = op Int (Tree [p]) rep_d |> op_co
--     where 
--       rep_d :: Foo Int (Tree [p]) = ...d1...d2...
--       op_co :: (Int -> Tree [p] -> Tree [p]) ~ (Int -> T p -> T p)
-- We get op_co by substituting [Int/a] and [co/b] in type for op
-- where co : [p] ~ T p
--
-- Notice that the dictionary bindings "..d1..d2.." must be generated
-- by the constraint solver, since the <context> may be
-- user-specified.

1036
  = do { rep_d_stuff <- checkConstraints InstSkol tyvars dfun_ev_vars $
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
                        emitWanted ScOrigin rep_pred
                         
       ; mapAndUnzipM (tc_item rep_d_stuff) op_items }
  where
     loc = getSrcSpan dfun_id

     inst_tvs = fst (tcSplitForAllTys (idType dfun_id))
     Just (init_inst_tys, _) = snocView inst_tys
     rep_ty   = fst (coercionKind co)  -- [p]
     rep_pred = mkClassPred clas (init_inst_tys ++ [rep_ty])

     -- co : [p] ~ T p
     co = substTyWith inst_tvs (mkTyVarTys tyvars) $
          case coi of { IdCo ty -> ty ;
                        ACo co  -> mkSymCoercion co }

     ----------------
     tc_item :: (TcEvBinds, EvVar) -> (Id, DefMeth) -> TcM (TcId, LHsBind TcId)
     tc_item (rep_ev_binds, rep_d) (sel_id, _)
       = do { (meth_id, local_meth_id) <- mkMethIds clas tyvars dfun_ev_vars 
                                                    inst_tys sel_id

            ; let meth_rhs  = wrapId (mk_op_wrapper sel_id rep_d) sel_id
                  meth_bind = VarBind { var_id = local_meth_id
                                      , var_rhs = L loc meth_rhs
    				      , var_inline = False }

	          bind = AbsBinds { abs_tvs = tyvars, abs_ev_vars = dfun_ev_vars
                                   , abs_exports = [(tyvars, meth_id, 
                                                     local_meth_id, noSpecPrags)]
				   , abs_ev_binds = rep_ev_binds
                                   , abs_binds = unitBag $ L loc meth_bind }

            ; return (meth_id, L loc bind) }

     ----------------
     mk_op_wrapper :: Id -> EvVar -> HsWrapper
     mk_op_wrapper sel_id rep_d 
       = WpCast (substTyWith sel_tvs (init_inst_tys ++ [co]) local_meth_ty)
         <.> WpEvApp (EvId rep_d)
         <.> mkWpTyApps (init_inst_tys ++ [rep_ty]) 
       where
         (sel_tvs, sel_rho) = tcSplitForAllTys (idType sel_id)
         (_, local_meth_ty) = tcSplitPredFunTy_maybe sel_rho
                              `orElse` pprPanic "tcInstanceMethods" (ppr sel_id)

----------------------
mkMethIds :: Class -> [TcTyVar] -> [EvVar] -> [TcType] -> Id -> TcM (TcId, TcId)
mkMethIds clas tyvars dfun_ev_vars inst_tys sel_id
  = do  { uniq <- newUnique
  	; let meth_name = mkDerivedInternalName mkClassOpAuxOcc uniq sel_name
  	; local_meth_name <- newLocalName sel_name
  		  -- Base the local_meth_name on the selector name, becuase
  		  -- type errors from tcInstanceMethodBody come from here

  	; let meth_id       = mkLocalId meth_name meth_ty
  	      local_meth_id = mkLocalId local_meth_name local_meth_ty
        ; return (meth_id, local_meth_id) }
  where
    local_meth_ty = instantiateMethod clas sel_id inst_tys
    meth_ty = mkForAllTys tyvars $ mkPiTypes dfun_ev_vars local_meth_ty
    sel_name = idName sel_id
1099

1100
----------------------
1101
1102
wrapId :: HsWrapper -> id -> HsExpr id
wrapId wrapper id = mkHsWrap wrapper (HsVar id)
1103

1104
1105
derivBindCtxt :: Id -> Class -> [Type ] -> LHsBind Name -> SDoc
derivBindCtxt sel_id clas tys _bind
1106
   = vcat [ ptext (sLit "When typechecking the code for ") <+> quotes (ppr sel_id)
1107
1108
1109
1110
1111
1112
          , nest 2 (ptext (sLit "in a standalone derived instance for")
	  	    <+> quotes (pprClassPred clas tys) <> colon)
          , nest 2 $ ptext (sLit "To see the code I am typechecking, use -ddump-deriv") ]

-- Too voluminous
--	  , nest 2 $ pprSetDepth AllTheWay $ ppr bind ]
1113
1114
1115
1116
1117
1118
1119
1120
1121

warnMissingMethod :: Id -> TcM ()
warnMissingMethod sel_id
  = do { warn <- doptM Opt_WarnMissingMethods		
       ; warnTc (warn  -- Warn only if -fwarn-missing-methods
                 && not (startsWithUnderscore (getOccName sel_id)))
					-- Don't warn about _foo methods
		(ptext (sLit "No explicit method nor default method for")
                 <+> quotes (ppr sel_id)) }
1122
1123
\end{code}

1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
Note [Export helper functions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We arrange to export the "helper functions" of an instance declaration,
so that they are not subject to preInlineUnconditionally, even if their
RHS is trivial.  Reason: they are mentioned in the DFunUnfolding of
the dict fun as Ids, not as CoreExprs, so we can't substitute a 
non-variable for them.

We could change this by making DFunUnfoldings have CoreExprs, but it
seems a bit simpler this way.

1135
1136
1137
Note [Default methods in instances]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider this
1138

1139
1140
   class Baz v x where
      foo :: x -> x
1141
      foo y = <blah>
1142

1143
   instance Baz Int Int
1144

1145
From the class decl we get
1146

1147
   $dmfoo :: forall v x. Baz v x => x -> x
1148
   $dmfoo y = <blah>
1149

1150
1151
Notice that the type is ambiguous.  That's fine, though. The instance
decl generates
1152

1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
   $dBazIntInt = MkBaz fooIntInt
   fooIntInt = $dmfoo Int Int $dBazIntInt

BUT this does mean we must generate the dictionary translation of
fooIntInt directly, rather than generating source-code and
type-checking it.  That was the bug in Trac #1061. In any case it's
less work to generate the translated version!

Note [INLINE and default methods]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1163
1164
1165
Default methods need special case.  They are supposed to behave rather like
macros.  For exmample

1166
1167
1168
1169
1170
1171
1172
  class Foo a where
    op1, op2 :: Bool -> a -> a

    {-# INLINE op1 #-}
    op1 b x = op2 (not b) x

  instance Foo Int where
1173
    -- op1 via default method
1174
    op2 b x = <blah>
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
   
The instance declaration should behave

   just as if 'op1' had been defined with the
   code, and INLINE pragma, from its original
   definition. 

That is, just as if you'd written

  instance Foo Int where
    op2 b x = <blah>

    {-# INLINE op1 #-}
    op1 b x = op2 (not b) x

So for the above example we generate:
1191
1192
1193


  {-# INLINE $dmop1 #-}
1194
  -- $dmop1 has an InlineCompulsory unfolding
1195
1196
1197
1198
1199
  $dmop1 d b x = op2 d (not b) x

  $fFooInt = MkD $cop1 $cop2

  {-# INLINE $cop1 #-}
1200
  $cop1 = $dmop1 $fFooInt
1201
1202
1203

  $cop2 = <blah>

1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
Note carefullly:

* We *copy* any INLINE pragma from the default method $dmop1 to the
  instance $cop1.  Otherwise we'll just inline the former in the
  latter and stop, which isn't what the user expected

* Regardless of its pragma, we give the default method an 
  unfolding with an InlineCompulsory source. That means
  that it'll be inlined at every use site, notably in
  each instance declaration, such as $cop1.  This inlining
  must happen even though 
    a) $dmop1 is not saturated in $cop1
    b) $cop1 itself has an INLINE pragma

  It's vital that $dmop1 *is* inlined in this way, to allow the mutual
  recursion between $fooInt and $cop1 to be broken

* To communicate the need for an InlineCompulsory to the desugarer
  (which makes the Unfoldings), we use the IsDefaultMethod constructor
  in TcSpecPrags.
Ian Lynagh's avatar
Ian Lynagh committed
1224

1225

1226
%************************************************************************
Ian Lynagh's avatar
Ian Lynagh committed
1227
%*                                                                      *
1228
\subsection{Error messages}
Ian Lynagh's avatar
Ian Lynagh committed
1229
%*                                                                      *
1230
1231
1232
%************************************************************************

\begin{code}
Ian Lynagh's avatar
Ian Lynagh committed
1233
instDeclCtxt1 :: LHsType Name -> SDoc
Ian Lynagh's avatar
Ian Lynagh committed
1234
instDeclCtxt1 hs_inst_ty
1235
  = inst_decl_ctxt (case unLoc hs_inst_ty of
Ian Lynagh's avatar
Ian Lynagh committed
1236
1237
                        HsForAllTy _ _ _ (L _ (HsPredTy pred)) -> ppr pred
                        HsPredTy pred                    -> ppr pred
Ian Lynagh's avatar
Ian Lynagh committed
1238
1239
                        _                                -> ppr hs_inst_ty)     -- Don't expect this
instDeclCtxt2 :: Type -> SDoc
1240
1241
instDeclCtxt2 dfun_ty
  = inst_decl_ctxt (ppr (mkClassPred cls tys))
1242
  where
1243
    (_,_,cls,tys) = tcSplitDFunTy dfun_ty
1244

Ian Lynagh's avatar
Ian Lynagh committed
1245
inst_decl_ctxt :: SDoc -> SDoc
Ian Lynagh's avatar
Ian Lynagh committed
1246
inst_decl_ctxt doc = ptext (sLit "In the instance declaration for") <+> quotes doc
1247

Ian Lynagh's avatar
Ian Lynagh committed
1248
atInstCtxt :: Name -> SDoc
Ian Lynagh's avatar
Ian Lynagh committed
1249
1250
atInstCtxt name = ptext (sLit "In the associated type instance for") <+>
                  quotes (ppr name)
1251

Ian Lynagh's avatar
Ian Lynagh committed
1252
mustBeVarArgErr :: Type -> SDoc
Ian Lynagh's avatar
Ian Lynagh committed
1253
mustBeVarArgErr ty =
Ian Lynagh's avatar
Ian Lynagh committed
1254
1255
1256
  sep [ ptext (sLit "Arguments that do not correspond to a class parameter") <+>
        ptext (sLit "must be variables")
      , ptext (sLit "Instead of a variable, found") <+> ppr ty
1257
1258
      ]

Ian Lynagh's avatar
Ian Lynagh committed
1259
wrongATArgErr :: Type -> Type -> SDoc
1260
wrongATArgErr ty instTy =
Ian Lynagh's avatar
Ian Lynagh committed
1261
  sep [ ptext (sLit "Type indexes must match class instance head")
1262
1263
      , ptext (sLit "Found") <+> quotes (ppr ty)
        <+> ptext (sLit "but expected") <+> quotes (ppr instTy)
1264
      ]
1265
\end{code}