DsBinds.hs 52.8 KB
Newer Older
Austin Seipp's avatar
Austin Seipp committed
1 2 3 4
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998

Simon Marlow's avatar
Simon Marlow committed
5 6

Pattern-matching bindings (HsBinds and MonoBinds)
7

8 9 10
Handles @HsBinds@; those at the top level require different handling,
in that the @Rec@/@NonRec@/etc structure is thrown away (whereas at
lower levels it is preserved with @let@/@letrec@s).
Austin Seipp's avatar
Austin Seipp committed
11
-}
12

13
{-# LANGUAGE CPP #-}
14
{-# LANGUAGE TypeFamilies #-}
Ian Lynagh's avatar
Ian Lynagh committed
15

16
module DsBinds ( dsTopLHsBinds, dsLHsBinds, decomposeRuleLhs, dsSpec,
17
                 dsHsWrapper, dsTcEvBinds, dsTcEvBinds_s, dsEvBinds, dsMkUserRule
18
  ) where
19

20 21
#include "HsVersions.h"

22 23
import GhcPrelude

24 25
import {-# SOURCE #-}   DsExpr( dsLExpr )
import {-# SOURCE #-}   Match( matchWrapper )
26

27
import DsMonad
Simon Marlow's avatar
Simon Marlow committed
28
import DsGRHSs
29
import DsUtils
30
import Check ( checkGuardMatches )
31

32 33
import HsSyn            -- lots of things
import CoreSyn          -- lots of things
34
import CoreOpt          ( simpleOptExpr )
35
import OccurAnal        ( occurAnalyseExpr )
36
import MkCore
Simon Marlow's avatar
Simon Marlow committed
37
import CoreUtils
38
import CoreArity ( etaExpand )
39
import CoreUnfold
40
import CoreFVs
41
import Digraph
42

43
import PrelNames
44
import TyCon
45
import TcEvidence
46
import TcType
47
import Type
48
import Coercion
Eric Seidel's avatar
Eric Seidel committed
49
import TysWiredIn ( typeNatKind, typeSymbolKind )
Simon Marlow's avatar
Simon Marlow committed
50
import Id
51
import MkId(proxyHashId)
52
import Name
53
import VarSet
Simon Marlow's avatar
Simon Marlow committed
54
import Rules
55
import VarEnv
David Eichmann's avatar
David Eichmann committed
56
import Var( EvVar )
57
import Outputable
58
import Module
Simon Marlow's avatar
Simon Marlow committed
59 60
import SrcLoc
import Maybes
61
import OrdList
Simon Marlow's avatar
Simon Marlow committed
62
import Bag
63
import BasicTypes
Ian Lynagh's avatar
Ian Lynagh committed
64
import DynFlags
Simon Marlow's avatar
Simon Marlow committed
65
import FastString
66
import Util
67
import UniqSet( nonDetEltsUniqSet )
68
import MonadUtils
69
import qualified GHC.LanguageExtensions as LangExt
70
import Control.Monad
71

72
{-**********************************************************************
Austin Seipp's avatar
Austin Seipp committed
73
*                                                                      *
74
           Desugaring a MonoBinds
Austin Seipp's avatar
Austin Seipp committed
75
*                                                                      *
76
**********************************************************************-}
77

78 79
-- | Desugar top level binds, strict binds are treated like normal
-- binds since there is no good time to force before first usage.
80
dsTopLHsBinds :: LHsBinds GhcTc -> DsM (OrdList (Id,CoreExpr))
81 82 83 84
dsTopLHsBinds binds
     -- see Note [Strict binds checks]
  | not (isEmptyBag unlifted_binds) || not (isEmptyBag bang_binds)
  = do { mapBagM_ (top_level_err "bindings for unlifted types") unlifted_binds
85
       ; mapBagM_ (top_level_err "strict bindings")             bang_binds
86
       ; return nilOL }
87

88 89 90 91 92 93
  | otherwise
  = do { (force_vars, prs) <- dsLHsBinds binds
       ; when debugIsOn $
         do { xstrict <- xoptM LangExt.Strict
            ; MASSERT2( null force_vars || xstrict, ppr binds $$ ppr force_vars ) }
              -- with -XStrict, even top-level vars are listed as force vars.
94

95 96 97 98
       ; return (toOL prs) }

  where
    unlifted_binds = filterBag (isUnliftedHsBind . unLoc) binds
99
    bang_binds     = filterBag (isBangedHsBind   . unLoc) binds
100 101 102 103 104

    top_level_err desc (L loc bind)
      = putSrcSpanDs loc $
        errDs (hang (text "Top-level" <+> text desc <+> text "aren't allowed:")
                  2 (ppr bind))
105

106

107
-- | Desugar all other kind of bindings, Ids of strict binds are returned to
108
-- later be forced in the binding group body, see Note [Desugar Strict binds]
109
dsLHsBinds :: LHsBinds GhcTc -> DsM ([Id], [(Id,CoreExpr)])
110
dsLHsBinds binds
111
  = do { ds_bs <- mapBagM dsLHsBind binds
112 113 114
       ; return (foldBag (\(a, a') (b, b') -> (a ++ b, a' ++ b'))
                         id ([], []) ds_bs) }

115
------------------------
116
dsLHsBind :: LHsBind GhcTc
117 118 119 120 121 122
          -> DsM ([Id], [(Id,CoreExpr)])
dsLHsBind (L loc bind) = do dflags <- getDynFlags
                            putSrcSpanDs loc $ dsHsBind dflags bind

-- | Desugar a single binding (or group of recursive binds).
dsHsBind :: DynFlags
123
         -> HsBind GhcTc
124 125 126 127 128
         -> DsM ([Id], [(Id,CoreExpr)])
         -- ^ The Ids of strict binds, to be forced in the body of the
         -- binding group see Note [Desugar Strict binds] and all
         -- bindings and their desugared right hand sides.

129 130 131
dsHsBind dflags (VarBind { var_id = var
                         , var_rhs = expr
                         , var_inline = inline_regardless })
132
  = do  { core_expr <- dsLExpr expr
133 134
                -- Dictionary bindings are always VarBinds,
                -- so we only need do this here
135
        ; let var' | inline_regardless = var `setIdUnfolding` mkCompulsoryUnfolding core_expr
136
                   | otherwise         = var
137
        ; let core_bind@(id,_) = makeCorePair dflags var' False 0 core_expr
138
              force_var = if xopt LangExt.Strict dflags
139 140 141 142
                          then [id]
                          else []
        ; return (force_var, [core_bind]) }

143 144
dsHsBind dflags b@(FunBind { fun_id = L _ fun, fun_matches = matches
                           , fun_co_fn = co_fn, fun_tick = tick })
145
 = do   { (args, body) <- matchWrapper
146
                           (mkPrefixFunRhs (noLoc $ idName fun))
147
                           Nothing matches
148
        ; core_wrap <- dsHsWrapper co_fn
149
        ; let body' = mkOptTickBox tick body
150 151
              rhs   = core_wrap (mkLams args body')
              core_binds@(id,_) = makeCorePair dflags fun False 0 rhs
152 153 154 155 156
              force_var
                  -- Bindings are strict when -XStrict is enabled
                | xopt LangExt.Strict dflags
                , matchGroupArity matches == 0 -- no need to force lambdas
                = [id]
157
                | isBangedHsBind b
158 159 160
                = [id]
                | otherwise
                = []
161 162 163 164 165 166
        ; --pprTrace "dsHsBind" (vcat [ ppr fun <+> ppr (idInlinePragma fun)
          --                          , ppr (mg_alts matches)
          --                          , ppr args, ppr core_binds]) $
          return (force_var, [core_binds]) }

dsHsBind dflags (PatBind { pat_lhs = pat, pat_rhs = grhss
167
                         , pat_ext = NPatBindTc _ ty
168
                         , pat_ticks = (rhs_tick, var_ticks) })
169
  = do  { body_expr <- dsGuarded grhss ty
170
        ; checkGuardMatches PatBindGuards grhss
171
        ; let body' = mkOptTickBox rhs_tick body_expr
172
              pat'  = decideBangHood dflags pat
173
        ; (force_var,sel_binds) <- mkSelectorBinds var_ticks pat body'
174 175
          -- We silently ignore inline pragmas; no makeCorePair
          -- Not so cool, but really doesn't matter
176 177
        ; let force_var' = if isBangedLPat pat'
                           then [force_var]
178 179
                           else []
        ; return (force_var', sel_binds) }
sof's avatar
sof committed
180

181 182 183 184
dsHsBind dflags (AbsBinds { abs_tvs = tyvars, abs_ev_vars = dicts
                          , abs_exports = exports
                          , abs_ev_binds = ev_binds
                          , abs_binds = binds, abs_sig = has_sig })
Simon Peyton Jones's avatar
Simon Peyton Jones committed
185
  = do { ds_binds <- addDictsDs (listToBag dicts) $
186
                     dsLHsBinds binds
Simon Peyton Jones's avatar
Simon Peyton Jones committed
187 188 189
                         -- addDictsDs: push type constraints deeper
                         --             for inner pattern match check
                         -- See Check, Note [Type and Term Equality Propagation]
190 191 192 193 194 195 196

       ; ds_ev_binds <- dsTcEvBinds_s ev_binds

       -- dsAbsBinds does the hard work
       ; dsAbsBinds dflags tyvars dicts exports ds_ev_binds ds_binds has_sig }

dsHsBind _ (PatSynBind{}) = panic "dsHsBind: PatSynBind"
197
dsHsBind _ (XHsBindsLR{}) = panic "dsHsBind: XHsBindsLR"
198 199 200 201 202


-----------------------
dsAbsBinds :: DynFlags
           -> [TyVar] -> [EvVar] -> [ABExport GhcTc]
Gabor Greif's avatar
Gabor Greif committed
203
           -> [CoreBind]                -- Desugared evidence bindings
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
           -> ([Id], [(Id,CoreExpr)])   -- Desugared value bindings
           -> Bool                      -- Single binding with signature
           -> DsM ([Id], [(Id,CoreExpr)])

dsAbsBinds dflags tyvars dicts exports
           ds_ev_binds (force_vars, bind_prs) has_sig

    -- A very important common case: one exported variable
    -- Non-recursive bindings come through this way
    -- So do self-recursive bindings
  | [export] <- exports
  , ABE { abe_poly = global_id, abe_mono = local_id
        , abe_wrap = wrap, abe_prags = prags } <- export
  , Just force_vars' <- case force_vars of
                           []                  -> Just []
                           [v] | v == local_id -> Just [global_id]
                           _                   -> Nothing
       -- If there is a variable to force, it's just the
       -- single variable we are binding here
  = do { core_wrap <- dsHsWrapper wrap -- Usually the identity
224

225 226
       ; let rhs = core_wrap $
                   mkLams tyvars $ mkLams dicts $
227 228 229 230 231 232 233 234 235
                   mkCoreLets ds_ev_binds $
                   body

             body | has_sig
                  , [(_, lrhs)] <- bind_prs
                  = lrhs
                  | otherwise
                  = mkLetRec bind_prs (Var local_id)

236
       ; (spec_binds, rules) <- dsSpecs rhs prags
237

238 239 240 241
       ; let global_id' = addIdSpecialisations global_id rules
             main_bind  = makeCorePair dflags global_id'
                                       (isDefaultMethod prags)
                                       (dictArity dicts) rhs
242

243
       ; return (force_vars', main_bind : fromOL spec_binds) }
sof's avatar
sof committed
244

245 246 247 248 249
    -- Another common case: no tyvars, no dicts
    -- In this case we can have a much simpler desugaring
  | null tyvars, null dicts

  = do { let mk_bind (ABE { abe_wrap = wrap
250 251 252
                          , abe_poly = global
                          , abe_mono = local
                          , abe_prags = prags })
253
              = do { core_wrap <- dsHsWrapper wrap
254 255
                   ; return (makeCorePair dflags global
                                          (isDefaultMethod prags)
256
                                          0 (core_wrap (Var local))) }
257
             mk_bind (XABExport _) = panic "dsAbsBinds"
258 259
       ; main_binds <- mapM mk_bind exports

260 261 262 263 264 265
       ; return (force_vars, flattenBinds ds_ev_binds ++ bind_prs ++ main_binds) }

    -- The general case
    -- See Note [Desugaring AbsBinds]
  | otherwise
  = do { let core_bind = Rec [ makeCorePair dflags (add_inline lcl_id) False 0 rhs
266
                              | (lcl_id, rhs) <- bind_prs ]
267
                -- Monomorphic recursion possible, hence Rec
268 269 270 271 272 273 274 275 276 277 278
             new_force_vars = get_new_force_vars force_vars
             locals       = map abe_mono exports
             all_locals   = locals ++ new_force_vars
             tup_expr     = mkBigCoreVarTup all_locals
             tup_ty       = exprType tup_expr
       ; let poly_tup_rhs = mkLams tyvars $ mkLams dicts $
                            mkCoreLets ds_ev_binds $
                            mkLet core_bind $
                            tup_expr

       ; poly_tup_id <- newSysLocalDs (exprType poly_tup_rhs)
279

280 281 282
        -- Find corresponding global or make up a new one: sometimes
        -- we need to make new export to desugar strict binds, see
        -- Note [Desugar Strict binds]
283
       ; (exported_force_vars, extra_exports) <- get_exports force_vars
284

285 286 287 288
       ; let mk_bind (ABE { abe_wrap = wrap
                          , abe_poly = global
                          , abe_mono = local, abe_prags = spec_prags })
                          -- See Note [AbsBinds wrappers] in HsBinds
289
                = do { tup_id  <- newSysLocalDs tup_ty
290 291 292 293 294
                     ; core_wrap <- dsHsWrapper wrap
                     ; let rhs = core_wrap $ mkLams tyvars $ mkLams dicts $
                                 mkTupleSelector all_locals local tup_id $
                                 mkVarApps (Var poly_tup_id) (tyvars ++ dicts)
                           rhs_for_spec = Let (NonRec poly_tup_id poly_tup_rhs) rhs
295 296
                     ; (spec_binds, rules) <- dsSpecs rhs_for_spec spec_prags
                     ; let global' = (global `setInlinePragma` defaultInlinePragma)
297 298 299
                                             `addIdSpecialisations` rules
                           -- Kill the INLINE pragma because it applies to
                           -- the user written (local) function.  The global
300
                           -- Id is just the selector.  Hmm.
301
                     ; return ((global', rhs) : fromOL spec_binds) }
302
             mk_bind (XABExport _) = panic "dsAbsBinds"
303

304
       ; export_binds_s <- mapM mk_bind (exports ++ extra_exports)
305

306 307
       ; return ( exported_force_vars
                , (poly_tup_id, poly_tup_rhs) :
308
                   concat export_binds_s) }
309
  where
310
    inline_env :: IdEnv Id -- Maps a monomorphic local Id to one with
311 312 313
                             -- the inline pragma from the source
                             -- The type checker put the inline pragma
                             -- on the *global* Id, so we need to transfer it
314 315 316 317
    inline_env
      = mkVarEnv [ (lcl_id, setInlinePragma lcl_id prag)
                 | ABE { abe_mono = lcl_id, abe_poly = gbl_id } <- exports
                 , let prag = idInlinePragma gbl_id ]
318 319

    add_inline :: Id -> Id    -- tran
320 321
    add_inline lcl_id = lookupVarEnv inline_env lcl_id
                        `orElse` lcl_id
322

323 324 325 326 327 328 329 330 331 332 333 334 335 336
    global_env :: IdEnv Id -- Maps local Id to its global exported Id
    global_env =
      mkVarEnv [ (local, global)
               | ABE { abe_mono = local, abe_poly = global } <- exports
               ]

    -- find variables that are not exported
    get_new_force_vars lcls =
      foldr (\lcl acc -> case lookupVarEnv global_env lcl of
                           Just _ -> acc
                           Nothing -> lcl:acc)
            [] lcls

    -- find exports or make up new exports for force variables
337
    get_exports :: [Id] -> DsM ([Id], [ABExport GhcTc])
338 339 340 341 342 343 344 345 346 347 348 349
    get_exports lcls =
      foldM (\(glbls, exports) lcl ->
              case lookupVarEnv global_env lcl of
                Just glbl -> return (glbl:glbls, exports)
                Nothing   -> do export <- mk_export lcl
                                let glbl = abe_poly export
                                return (glbl:glbls, export:exports))
            ([],[]) lcls

    mk_export local =
      do global <- newSysLocalDs
                     (exprType (mkLams tyvars (mkLams dicts (Var local))))
350 351
         return (ABE { abe_ext   = noExt
                     , abe_poly  = global
352 353 354
                     , abe_mono  = local
                     , abe_wrap  = WpHole
                     , abe_prags = SpecPrags [] })
355 356

-- | This is where we apply INLINE and INLINABLE pragmas. All we need to
357 358 359 360 361 362
-- do is to attach the unfolding information to the Id.
--
-- Other decisions about whether to inline are made in
-- `calcUnfoldingGuidance` but the decision about whether to then expose
-- the unfolding in the interface file is made in `TidyPgm.addExternal`
-- using this information.
363
------------------------
364 365
makeCorePair :: DynFlags -> Id -> Bool -> Arity -> CoreExpr
             -> (Id, CoreExpr)
366
makeCorePair dflags gbl_id is_default_method dict_arity rhs
Simon Peyton Jones's avatar
Simon Peyton Jones committed
367 368
  | is_default_method    -- Default methods are *always* inlined
                         -- See Note [INLINE and default methods] in TcInstDcls
369 370
  = (gbl_id `setIdUnfolding` mkCompulsoryUnfolding rhs, rhs)

371 372
  | otherwise
  = case inlinePragmaSpec inline_prag of
373 374 375 376
          NoUserInline -> (gbl_id, rhs)
          NoInline     -> (gbl_id, rhs)
          Inlinable    -> (gbl_id `setIdUnfolding` inlinable_unf, rhs)
          Inline       -> inline_pair
377

378 379
  where
    inline_prag   = idInlinePragma gbl_id
380
    inlinable_unf = mkInlinableUnfolding dflags rhs
381 382
    inline_pair
       | Just arity <- inlinePragmaSat inline_prag
383 384
        -- Add an Unfolding for an INLINE (but not for NOINLINE)
        -- And eta-expand the RHS; see Note [Eta-expanding INLINE things]
385
       , let real_arity = dict_arity + arity
386
        -- NB: The arity in the InlineRule takes account of the dictionaries
387
       = ( gbl_id `setIdUnfolding` mkInlineUnfoldingWithArity real_arity rhs
388 389 390 391
         , etaExpand real_arity rhs)

       | otherwise
       = pprTrace "makeCorePair: arity missing" (ppr gbl_id) $
392
         (gbl_id `setIdUnfolding` mkInlineUnfolding rhs, rhs)
393 394 395 396

dictArity :: [Var] -> Arity
-- Don't count coercion variables in arity
dictArity dicts = count isId dicts
397

Austin Seipp's avatar
Austin Seipp committed
398
{-
399 400
Note [Desugaring AbsBinds]
~~~~~~~~~~~~~~~~~~~~~~~~~~
401 402 403 404 405 406 407 408
In the general AbsBinds case we desugar the binding to this:

       tup a (d:Num a) = let fm = ...gm...
                             gm = ...fm...
                         in (fm,gm)
       f a d = case tup a d of { (fm,gm) -> fm }
       g a d = case tup a d of { (fm,gm) -> fm }

409 410 411 412
Note [Rules and inlining]
~~~~~~~~~~~~~~~~~~~~~~~~~
Common special case: no type or dictionary abstraction
This is a bit less trivial than you might suppose
413
The naive way would be to desugar to something like
414 415
        f_lcl = ...f_lcl...     -- The "binds" from AbsBinds
        M.f = f_lcl             -- Generated from "exports"
416
But we don't want that, because if M.f isn't exported,
417 418
it'll be inlined unconditionally at every call site (its rhs is
trivial).  That would be ok unless it has RULES, which would
419 420 421
thereby be completely lost.  Bad, bad, bad.

Instead we want to generate
422 423 424
        M.f = ...f_lcl...
        f_lcl = M.f
Now all is cool. The RULES are attached to M.f (by SimplCore),
425 426 427 428
and f_lcl is rapidly inlined away.

This does not happen in the same way to polymorphic binds,
because they desugar to
429
        M.f = /\a. let f_lcl = ...f_lcl... in f_lcl
430
Although I'm a bit worried about whether full laziness might
431
float the f_lcl binding out and then inline M.f at its call site
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446

Note [Specialising in no-dict case]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Even if there are no tyvars or dicts, we may have specialisation pragmas.
Class methods can generate
      AbsBinds [] [] [( ... spec-prag]
         { AbsBinds [tvs] [dicts] ...blah }
So the overloading is in the nested AbsBinds. A good example is in GHC.Float:

  class  (Real a, Fractional a) => RealFrac a  where
    round :: (Integral b) => a -> b

  instance  RealFrac Float  where
    {-# SPECIALIZE round :: Float -> Int #-}

447
The top-level AbsBinds for $cround has no tyvars or dicts (because the
448 449 450 451 452 453 454
instance does not).  But the method is locally overloaded!

Note [Abstracting over tyvars only]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When abstracting over type variable only (not dictionaries), we don't really need to
built a tuple and select from it, as we do in the general case. Instead we can take

455 456 457 458 459
        AbsBinds [a,b] [ ([a,b], fg, fl, _),
                         ([b],   gg, gl, _) ]
                { fl = e1
                  gl = e2
                   h = e3 }
460 461 462

and desugar it to

463 464 465
        fg = /\ab. let B in e1
        gg = /\b. let a = () in let B in S(e2)
        h  = /\ab. let B in e3
466 467

where B is the *non-recursive* binding
468 469 470
        fl = fg a b
        gl = gg b
        h  = h a b    -- See (b); note shadowing!
471 472

Notice (a) g has a different number of type variables to f, so we must
473 474
             use the mkArbitraryType thing to fill in the gaps.
             We use a type-let to do that.
475

476 477 478 479
         (b) The local variable h isn't in the exports, and rather than
             clone a fresh copy we simply replace h by (h a b), where
             the two h's have different types!  Shadowing happens here,
             which looks confusing but works fine.
480

481 482 483 484
         (c) The result is *still* quadratic-sized if there are a lot of
             small bindings.  So if there are more than some small
             number (10), we filter the binding set B by the free
             variables of the particular RHS.  Tiresome.
485 486

Why got to this trouble?  It's a common case, and it removes the
487
quadratic-sized tuple desugaring.  Less clutter, hopefully faster
488 489 490 491
compilation, especially in a case where there are a *lot* of
bindings.


492 493 494 495 496 497 498 499
Note [Eta-expanding INLINE things]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
   foo :: Eq a => a -> a
   {-# INLINE foo #-}
   foo x = ...

If (foo d) ever gets floated out as a common sub-expression (which can
500
happen as a result of method sharing), there's a danger that we never
501 502 503 504
get to do the inlining, which is a Terribly Bad thing given that the
user said "inline"!

To avoid this we pre-emptively eta-expand the definition, so that foo
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
505
has the arity with which it is declared in the source code.  In this
506
example it has arity 2 (one for the Eq and one for x). Doing this
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
507
should mean that (foo d) is a PAP and we don't share it.
508 509 510

Note [Nested arities]
~~~~~~~~~~~~~~~~~~~~~
511 512 513 514 515 516 517 518 519 520 521 522 523 524
For reasons that are not entirely clear, method bindings come out looking like
this:

  AbsBinds [] [] [$cfromT <= [] fromT]
    $cfromT [InlPrag=INLINE] :: T Bool -> Bool
    { AbsBinds [] [] [fromT <= [] fromT_1]
        fromT :: T Bool -> Bool
        { fromT_1 ((TBool b)) = not b } } }

Note the nested AbsBind.  The arity for the InlineRule on $cfromT should be
gotten from the binding for fromT_1.

It might be better to have just one level of AbsBinds, but that requires more
thought!
525 526 527 528


Note [Desugar Strict binds]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
529
See https://ghc.haskell.org/trac/ghc/wiki/StrictPragma
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581

Desugaring strict variable bindings looks as follows (core below ==>)

  let !x = rhs
  in  body
==>
  let x = rhs
  in x `seq` body -- seq the variable

and if it is a pattern binding the desugaring looks like

  let !pat = rhs
  in body
==>
  let x = rhs -- bind the rhs to a new variable
      pat = x
  in x `seq` body -- seq the new variable

if there is no variable in the pattern desugaring looks like

  let False = rhs
  in body
==>
  let x = case rhs of {False -> (); _ -> error "Match failed"}
  in x `seq` body

In order to force the Ids in the binding group they are passed around
in the dsHsBind family of functions, and later seq'ed in DsExpr.ds_val_bind.

Consider a recursive group like this

  letrec
     f : g = rhs[f,g]
  in <body>

Without `Strict`, we get a translation like this:

  let t = /\a. letrec tm = rhs[fm,gm]
                      fm = case t of fm:_ -> fm
                      gm = case t of _:gm -> gm
                in
                (fm,gm)

  in let f = /\a. case t a of (fm,_) -> fm
  in let g = /\a. case t a of (_,gm) -> gm
  in <body>

Here `tm` is the monomorphic binding for `rhs`.

With `Strict`, we want to force `tm`, but NOT `fm` or `gm`.
Alas, `tm` isn't in scope in the `in <body>` part.

Gabor Greif's avatar
Gabor Greif committed
582
The simplest thing is to return it in the polymorphic
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
tuple `t`, thus:

  let t = /\a. letrec tm = rhs[fm,gm]
                      fm = case t of fm:_ -> fm
                      gm = case t of _:gm -> gm
                in
                (tm, fm, gm)

  in let f = /\a. case t a of (_,fm,_) -> fm
  in let g = /\a. case t a of (_,_,gm) -> gm
  in let tm = /\a. case t a of (tm,_,_) -> tm
  in tm `seq` <body>


See https://ghc.haskell.org/trac/ghc/wiki/StrictPragma for a more
detailed explanation of the desugaring of strict bindings.

600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
Note [Strict binds checks]
~~~~~~~~~~~~~~~~~~~~~~~~~~
There are several checks around properly formed strict bindings. They
all link to this Note. These checks must be here in the desugarer because
we cannot know whether or not a type is unlifted until after zonking, due
to levity polymorphism. These checks all used to be handled in the typechecker
in checkStrictBinds (before Jan '17).

We define an "unlifted bind" to be any bind that binds an unlifted id. Note that

  x :: Char
  (# True, x #) = blah

is *not* an unlifted bind. Unlifted binds are detected by HsUtils.isUnliftedHsBind.

615
Define a "banged bind" to have a top-level bang. Detected by HsPat.isBangedHsBind.
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
Define a "strict bind" to be either an unlifted bind or a banged bind.

The restrictions are:
  1. Strict binds may not be top-level. Checked in dsTopLHsBinds.

  2. Unlifted binds must also be banged. (There is no trouble to compile an unbanged
     unlifted bind, but an unbanged bind looks lazy, and we don't want users to be
     surprised by the strictness of an unlifted bind.) Checked in first clause
     of DsExpr.ds_val_bind.

  3. Unlifted binds may not have polymorphism (#6078). (That is, no quantified type
     variables or constraints.) Checked in first clause
     of DsExpr.ds_val_bind.

  4. Unlifted binds may not be recursive. Checked in second clause of ds_val_bind.

Austin Seipp's avatar
Austin Seipp committed
632
-}
633

634
------------------------
635
dsSpecs :: CoreExpr     -- Its rhs
636
        -> TcSpecPrags
637 638
        -> DsM ( OrdList (Id,CoreExpr)  -- Binding for specialised Ids
               , [CoreRule] )           -- Rules for the Global Ids
639
-- See Note [Handling SPECIALISE pragmas] in TcBinds
640 641 642 643 644 645
dsSpecs _ IsDefaultMethod = return (nilOL, [])
dsSpecs poly_rhs (SpecPrags sps)
  = do { pairs <- mapMaybeM (dsSpec (Just poly_rhs)) sps
       ; let (spec_binds_s, rules) = unzip pairs
       ; return (concatOL spec_binds_s, rules) }

646 647 648
dsSpec :: Maybe CoreExpr        -- Just rhs => RULE is for a local binding
                                -- Nothing => RULE is for an imported Id
                                --            rhs is in the Id's unfolding
649 650 651
       -> Located TcSpecPrag
       -> DsM (Maybe (OrdList (Id,CoreExpr), CoreRule))
dsSpec mb_poly_rhs (L loc (SpecPrag poly_id spec_co spec_inl))
652
  | isJust (isClassOpId_maybe poly_id)
653
  = putSrcSpanDs loc $
654 655
    do { warnDs NoReason (text "Ignoring useless SPECIALISE pragma for class method selector"
                          <+> quotes (ppr poly_id))
656
       ; return Nothing  }  -- There is no point in trying to specialise a class op
657 658
                            -- Moreover, classops don't (currently) have an inl_sat arity set
                            -- (it would be Just 0) and that in turn makes makeCorePair bleat
659

660 661
  | no_act_spec && isNeverActive rule_act
  = putSrcSpanDs loc $
662 663
    do { warnDs NoReason (text "Ignoring useless SPECIALISE pragma for NOINLINE function:"
                          <+> quotes (ppr poly_id))
Gabor Greif's avatar
Gabor Greif committed
664
       ; return Nothing  }  -- Function is NOINLINE, and the specialisation inherits that
665
                            -- See Note [Activation pragmas for SPECIALISE]
666

667
  | otherwise
668
  = putSrcSpanDs loc $
669 670
    do { uniq <- newUnique
       ; let poly_name = idName poly_id
671 672
             spec_occ  = mkSpecOcc (getOccName poly_name)
             spec_name = mkInternalName uniq spec_occ (getSrcSpan poly_name)
673 674 675 676 677 678 679 680 681 682
             (spec_bndrs, spec_app) = collectHsWrapBinders spec_co
               -- spec_co looks like
               --         \spec_bndrs. [] spec_args
               -- perhaps with the body of the lambda wrapped in some WpLets
               -- E.g. /\a \(d:Eq a). let d2 = $df d in [] (Maybe a) d2

       ; core_app <- dsHsWrapper spec_app

       ; let ds_lhs  = core_app (Var poly_id)
             spec_ty = mkLamTypes spec_bndrs (exprType ds_lhs)
683 684 685
       ; -- pprTrace "dsRule" (vcat [ text "Id:" <+> ppr poly_id
         --                         , text "spec_co:" <+> ppr spec_co
         --                         , text "ds_rhs:" <+> ppr ds_lhs ]) $
686 687
         dflags <- getDynFlags
       ; case decomposeRuleLhs dflags spec_bndrs ds_lhs of {
688
           Left msg -> do { warnDs NoReason msg; return Nothing } ;
689
           Right (rule_bndrs, _fn, args) -> do
690

691
       { this_mod <- getModule
Simon Peyton Jones's avatar
Simon Peyton Jones committed
692
       ; let fn_unf    = realIdUnfolding poly_id
693
             spec_unf  = specUnfolding dflags spec_bndrs core_app arity_decrease fn_unf
694 695 696
             spec_id   = mkLocalId spec_name spec_ty
                            `setInlinePragma` inl_prag
                            `setIdUnfolding`  spec_unf
697 698
             arity_decrease = count isValArg args - count isId spec_bndrs

699
       ; rule <- dsMkUserRule this_mod is_local_id
Ian Lynagh's avatar
Ian Lynagh committed
700
                        (mkFastString ("SPEC " ++ showPpr dflags poly_name))
701 702
                        rule_act poly_name
                        rule_bndrs args
703
                        (mkVarApps (Var spec_id) spec_bndrs)
704

705
       ; let spec_rhs = mkLams spec_bndrs (core_app poly_rhs)
706

707 708
-- Commented out: see Note [SPECIALISE on INLINE functions]
--       ; when (isInlinePragma id_inl)
709
--              (warnDs $ text "SPECIALISE pragma on INLINE function probably won't fire:"
710
--                        <+> quotes (ppr poly_name))
Simon Peyton Jones's avatar
Simon Peyton Jones committed
711 712 713 714 715

       ; return (Just (unitOL (spec_id, spec_rhs), rule))
            -- NB: do *not* use makeCorePair on (spec_id,spec_rhs), because
            --     makeCorePair overwrites the unfolding, which we have
            --     just created using specUnfolding
716 717 718 719
       } } }
  where
    is_local_id = isJust mb_poly_rhs
    poly_rhs | Just rhs <-  mb_poly_rhs
720
             = rhs          -- Local Id; this is its rhs
721 722
             | Just unfolding <- maybeUnfoldingTemplate (realIdUnfolding poly_id)
             = unfolding    -- Imported Id; this is its unfolding
723 724 725
                            -- Use realIdUnfolding so we get the unfolding
                            -- even when it is a loop breaker.
                            -- We want to specialise recursive functions!
726
             | otherwise = pprPanic "dsImpSpecs" (ppr poly_id)
727
                            -- The type checker has checked that it *has* an unfolding
728

729 730 731 732 733
    id_inl = idInlinePragma poly_id

    -- See Note [Activation pragmas for SPECIALISE]
    inl_prag | not (isDefaultInlinePragma spec_inl)    = spec_inl
             | not is_local_id  -- See Note [Specialising imported functions]
734
                                 -- in OccurAnal
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
             , isStrongLoopBreaker (idOccInfo poly_id) = neverInlinePragma
             | otherwise                               = id_inl
     -- Get the INLINE pragma from SPECIALISE declaration, or,
     -- failing that, from the original Id

    spec_prag_act = inlinePragmaActivation spec_inl

    -- See Note [Activation pragmas for SPECIALISE]
    -- no_act_spec is True if the user didn't write an explicit
    -- phase specification in the SPECIALISE pragma
    no_act_spec = case inlinePragmaSpec spec_inl of
                    NoInline -> isNeverActive  spec_prag_act
                    _        -> isAlwaysActive spec_prag_act
    rule_act | no_act_spec = inlinePragmaActivation id_inl   -- Inherit
             | otherwise   = spec_prag_act                   -- Specified by user


752 753 754 755 756 757
dsMkUserRule :: Module -> Bool -> RuleName -> Activation
       -> Name -> [CoreBndr] -> [CoreExpr] -> CoreExpr -> DsM CoreRule
dsMkUserRule this_mod is_local name act fn bndrs args rhs = do
    let rule = mkRule this_mod False is_local name act fn bndrs args rhs
    dflags <- getDynFlags
    when (isOrphan (ru_orphan rule) && wopt Opt_WarnOrphans dflags) $
758
        warnDs (Reason Opt_WarnOrphans) (ruleOrphWarn rule)
759 760 761
    return rule

ruleOrphWarn :: CoreRule -> SDoc
762
ruleOrphWarn rule = text "Orphan rule:" <+> ppr rule
763

764 765 766 767 768 769 770 771 772 773 774 775 776
{- Note [SPECIALISE on INLINE functions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We used to warn that using SPECIALISE for a function marked INLINE
would be a no-op; but it isn't!  Especially with worker/wrapper split
we might have
   {-# INLINE f #-}
   f :: Ord a => Int -> a -> ...
   f d x y = case x of I# x' -> $wf d x' y

We might want to specialise 'f' so that we in turn specialise '$wf'.
We can't even /name/ '$wf' in the source code, so we can't specialise
it even if we wanted to.  Trac #10721 is a case in point.

777 778 779 780 781 782 783 784
Note [Activation pragmas for SPECIALISE]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
From a user SPECIALISE pragma for f, we generate
  a) A top-level binding    spec_fn = rhs
  b) A RULE                 f dOrd = spec_fn

We need two pragma-like things:

785
* spec_fn's inline pragma: inherited from f's inline pragma (ignoring
786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
                           activation on SPEC), unless overriden by SPEC INLINE

* Activation of RULE: from SPECIALISE pragma (if activation given)
                      otherwise from f's inline pragma

This is not obvious (see Trac #5237)!

Examples      Rule activation   Inline prag on spec'd fn
---------------------------------------------------------------------
SPEC [n] f :: ty            [n]   Always, or NOINLINE [n]
                                  copy f's prag

NOINLINE f
SPEC [n] f :: ty            [n]   NOINLINE
                                  copy f's prag

NOINLINE [k] f
SPEC [n] f :: ty            [n]   NOINLINE [k]
                                  copy f's prag

INLINE [k] f
807
SPEC [n] f :: ty            [n]   INLINE [k]
808 809 810 811 812 813 814 815 816 817
                                  copy f's prag

SPEC INLINE [n] f :: ty     [n]   INLINE [n]
                                  (ignore INLINE prag on f,
                                  same activation for rule and spec'd fn)

NOINLINE [k] f
SPEC f :: ty                [n]   INLINE [k]


Austin Seipp's avatar
Austin Seipp committed
818 819
************************************************************************
*                                                                      *
820
\subsection{Adding inline pragmas}
Austin Seipp's avatar
Austin Seipp committed
821 822 823
*                                                                      *
************************************************************************
-}
824

825 826
decomposeRuleLhs :: DynFlags -> [Var] -> CoreExpr
                 -> Either SDoc ([Var], Id, [CoreExpr])
unknown's avatar
unknown committed
827 828
-- (decomposeRuleLhs bndrs lhs) takes apart the LHS of a RULE,
-- The 'bndrs' are the quantified binders of the rules, but decomposeRuleLhs
829
-- may add some extra dictionary binders (see Note [Free dictionaries])
unknown's avatar
unknown committed
830
--
831
-- Returns an error message if the LHS isn't of the expected shape
832
-- Note [Decomposing the left-hand side of a RULE]
833
decomposeRuleLhs dflags orig_bndrs orig_lhs
834 835 836
  | not (null unbound)    -- Check for things unbound on LHS
                          -- See Note [Unused spec binders]
  = Left (vcat (map dead_msg unbound))
837 838 839
  | Var funId <- fun2
  , Just con <- isDataConId_maybe funId
  = Left (constructor_msg con) -- See Note [No RULES on datacons]
840
  | Just (fn_id, args) <- decompose fun2 args2
841
  , let extra_bndrs = mk_extra_bndrs fn_id args
842 843 844 845 846 847
  = -- pprTrace "decmposeRuleLhs" (vcat [ text "orig_bndrs:" <+> ppr orig_bndrs
    --                                  , text "orig_lhs:" <+> ppr orig_lhs
    --                                  , text "lhs1:"     <+> ppr lhs1
    --                                  , text "extra_dict_bndrs:" <+> ppr extra_dict_bndrs
    --                                  , text "fn_id:" <+> ppr fn_id
    --                                  , text "args:"   <+> ppr args]) $
848
    Right (orig_bndrs ++ extra_bndrs, fn_id, args)
849

850
  | otherwise
851
  = Left bad_shape_msg
852
 where
853
   lhs1         = drop_dicts orig_lhs
854
   lhs2         = simpleOptExpr dflags lhs1  -- See Note [Simplify rule LHS]
855 856
   (fun2,args2) = collectArgs lhs2

857 858
   lhs_fvs    = exprFreeVars lhs2
   unbound    = filterOut (`elemVarSet` lhs_fvs) orig_bndrs
859

860
   orig_bndr_set = mkVarSet orig_bndrs
861

862 863 864
        -- Add extra tyvar binders: Note [Free tyvars in rule LHS]
        -- and extra dict binders: Note [Free dictionaries in rule LHS]
   mk_extra_bndrs fn_id args
Tobias Dammers's avatar
Tobias Dammers committed
865
     = scopedSort unbound_tvs ++ unbound_dicts
866 867 868 869 870 871 872 873 874
     where
       unbound_tvs   = [ v | v <- unbound_vars, isTyVar v ]
       unbound_dicts = [ mkLocalId (localiseName (idName d)) (idType d)
                       | d <- unbound_vars, isDictId d ]
       unbound_vars  = [ v | v <- exprsFreeVarsList args
                           , not (v `elemVarSet` orig_bndr_set)
                           , not (v == fn_id) ]
         -- fn_id: do not quantify over the function itself, which may
         -- itself be a dictionary (in pathological cases, Trac #10251)
875 876 877 878 879 880

   decompose (Var fn_id) args
      | not (fn_id `elemVarSet` orig_bndr_set)
      = Just (fn_id, args)

   decompose _ _ = Nothing
881

882
   bad_shape_msg = hang (text "RULE left-hand side too complicated to desugar")
883 884
                      2 (vcat [ text "Optimised lhs:" <+> ppr lhs2
                              , text "Orig lhs:" <+> ppr orig_lhs])
885 886
   dead_msg bndr = hang (sep [ text "Forall'd" <+> pp_bndr bndr
                             , text "is not bound in RULE lhs"])
887 888 889
                      2 (vcat [ text "Orig bndrs:" <+> ppr orig_bndrs
                              , text "Orig lhs:" <+> ppr orig_lhs
                              , text "optimised lhs:" <+> ppr lhs2 ])
890
   pp_bndr bndr
891 892 893
    | isTyVar bndr = text "type variable" <+> quotes (ppr bndr)
    | isEvVar bndr = text "constraint"    <+> quotes (ppr (varType bndr))
    | otherwise    = text "variable"      <+> quotes (ppr bndr)
894

895 896 897 898 899
   constructor_msg con = vcat
     [ text "A constructor," <+> ppr con <>
         text ", appears as outermost match in RULE lhs."
     , text "This rule will be ignored." ]

900
   drop_dicts :: CoreExpr -> CoreExpr
901
   drop_dicts e
902 903 904
       = wrap_lets needed bnds body
     where
       needed = orig_bndr_set `minusVarSet` exprFreeVars body
905
       (bnds, body) = split_lets (occurAnalyseExpr e)
906
           -- The occurAnalyseExpr drops dead bindings which is
907 908
           -- crucial to ensure that every binding is used later;
           -- which in turn makes wrap_lets work right
909 910

   split_lets :: CoreExpr -> ([(DictId,CoreExpr)], CoreExpr)
911 912
   split_lets (Let (NonRec d r) body)
     | isDictId d
913
     = ((d,r):bs, body')
914 915 916 917 918 919 920 921 922
     where (bs, body') = split_lets body

    -- handle "unlifted lets" too, needed for "map/coerce"
   split_lets (Case r d _ [(DEFAULT, _, body)])
     | isCoVar d
     = ((d,r):bs, body')
     where (bs, body') = split_lets body

   split_lets e = ([], e)
923 924 925 926

   wrap_lets :: VarSet -> [(DictId,CoreExpr)] -> CoreExpr -> CoreExpr
   wrap_lets _ [] body = body
   wrap_lets needed ((d, r) : bs) body
927
     | rhs_fvs `intersectsVarSet` needed = mkCoreLet (NonRec d r) (wrap_lets needed' bs body)
928 929 930 931
     | otherwise                         = wrap_lets needed bs body
     where
       rhs_fvs = exprFreeVars r
       needed' = (needed `minusVarSet` rhs_fvs) `extendVarSet` d
932

Austin Seipp's avatar
Austin Seipp committed
933
{-
934
Note [Decomposing the left-hand side of a RULE]
935
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
936
There are several things going on here.
937 938
* drop_dicts: see Note [Drop dictionary bindings on rule LHS]
* simpleOptExpr: see Note [Simplify rule LHS]
939
* extra_dict_bndrs: see Note [Free dictionaries]
940

941 942 943 944 945 946 947 948 949 950 951 952 953
Note [Free tyvars on rule LHS]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
  data T a = C

  foo :: T a -> Int
  foo C = 1

  {-# RULES "myrule"  foo C = 1 #-}

After type checking the LHS becomes (foo alpha (C alpha)), where alpha
is an unbound meta-tyvar.  The zonker in TcHsSyn is careful not to
turn the free alpha into Any (as it usually does).  Instead it turns it
954
into a TyVar 'a'.  See TcHsSyn Note [Zonking the LHS of a RULE].
955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988

Now we must quantify over that 'a'.  It's /really/ inconvenient to do that
in the zonker, because the HsExpr data type is very large.  But it's /easy/
to do it here in the desugarer.

Moreover, we have to do something rather similar for dictionaries;
see Note [Free dictionaries on rule LHS].   So that's why we look for
type variables free on the LHS, and quantify over them.

Note [Free dictionaries on rule LHS]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When the LHS of a specialisation rule, (/\as\ds. f es) has a free dict,
which is presumably in scope at the function definition site, we can quantify
over it too.  *Any* dict with that type will do.

So for example when you have
        f :: Eq a => a -> a
        f = <rhs>
        ... SPECIALISE f :: Int -> Int ...

Then we get the SpecPrag
        SpecPrag (f Int dInt)

And from that we want the rule

        RULE forall dInt. f Int dInt = f_spec
        f_spec = let f = <rhs> in f Int dInt

But be careful!  That dInt might be GHC.Base.$fOrdInt, which is an External
Name, and you can't bind them in a lambda or forall without getting things
confused.   Likewise it might have an InlineRule or something, which would be
utterly bogus. So we really make a fresh Id, with the same unique and type
as the old one, but with an Internal name and no IdInfo.

989 990
Note [Drop dictionary bindings on rule LHS]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
991
drop_dicts drops dictionary bindings on the LHS where possible.
992 993
   E.g.  let d:Eq [Int] = $fEqList $fEqInt in f d
     --> f d
994
   Reasoning here is that there is only one d:Eq [Int], and so we can
995 996 997 998
   quantify over it. That makes 'd' free in the LHS, but that is later
   picked up by extra_dict_bndrs (Note [Dead spec binders]).

   NB 1: We can only drop the binding if the RHS doesn't bind
999
         one of the orig_bndrs, which we assume occur on RHS.
1000 1001 1002 1003 1004 1005
         Example
            f :: (Eq a) => b -> a -> a
            {-# SPECIALISE f :: Eq a => b -> [a] -> [a] #-}
         Here we want to end up with
            RULE forall d:Eq a.  f ($dfEqList d) = f_spec d
         Of course, the ($dfEqlist d) in the pattern makes it less likely
1006
         to match, but there is no other way to get d:Eq a
1007

1008
   NB 2: We do drop_dicts *before* simplOptEpxr, so that we expect all
1009 1010 1011 1012 1013 1014
         the evidence bindings to be wrapped around the outside of the
         LHS.  (After simplOptExpr they'll usually have been inlined.)
         dsHsWrapper does dependency analysis, so that civilised ones
         will be simple NonRec bindings.  We don't handle recursive
         dictionaries!

Gabor Greif's avatar
Gabor Greif committed
1015
    NB3: In the common case of a non-overloaded, but perhaps-polymorphic
1016 1017 1018 1019 1020 1021
         specialisation, we don't need to bind *any* dictionaries for use
         in the RHS. For example (Trac #8331)
             {-# SPECIALIZE INLINE useAbstractMonad :: ReaderST s Int #-}
             useAbstractMonad :: MonadAbstractIOST m => m Int
         Here, deriving (MonadAbstractIOST (ReaderST s)) is a lot of code
         but the RHS uses no dictionaries, so we want to end up with
1022
             RULE forall s (d :: MonadAbstractIOST (ReaderT s)).
1023 1024
                useAbstractMonad (ReaderT s) d = $suseAbstractMonad s

1025
   Trac #8848 is a good example of where there are some interesting
1026 1027
   dictionary bindings to discard.

1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
The drop_dicts algorithm is based on these observations:

  * Given (let d = rhs in e) where d is a DictId,
    matching 'e' will bind e's free variables.

  * So we want to keep the binding if one of the needed variables (for
    which we need a binding) is in fv(rhs) but not already in fv(e).

  * The "needed variables" are simply the orig_bndrs.  Consider
       f :: (Eq a, Show b) => a -> b -> String
Austin Seipp's avatar
Austin Seipp committed
1038
       ... SPECIALISE f :: (Show b) => Int -> b -> String ...
1039 1040 1041 1042 1043 1044
    Then orig_bndrs includes the *quantified* dictionaries of the type
    namely (dsb::Show b), but not the one for Eq Int

So we work inside out, applying the above criterion at each step.


1045 1046 1047 1048
Note [Simplify rule LHS]
~~~~~~~~~~~~~~~~~~~~~~~~
simplOptExpr occurrence-analyses and simplifies the LHS:

1049
   (a) Inline any remaining dictionary bindings (which hopefully
1050 1051
       occur just once)

1052
   (b) Substitute trivial lets, so that they don't get in the way.
1053
       Note that we substitute the function too; we might
1054 1055
       have this as a LHS:  let f71 = M.f Int in f71

1056
   (c) Do eta reduction.  To see why, consider the fold/build rule,
1057 1058 1059 1060
       which without simplification looked like:
          fold k z (build (/\a. g a))  ==>  ...
       This doesn't match unless you do eta reduction on the build argument.
       Similarly for a LHS like
1061
         augment g (build h)
1062
       we do not want to get
1063
         augment (\a. g a) (build h)
1064 1065
       otherwise we don't match when given an argument like
          augment (\a. h a a) (build h)
1066

1067
Note [Matching seqId]
1068 1069
~~~~~~~~~~~~~~~~~~~
The desugarer turns (seq e r) into (case e of _ -> r), via a special-case hack
1070
and this code turns it back into an application of seq!
1071 1072
See Note [Rules for seq] in MkId for the details.

1073 1074 1075
Note [Unused spec binders]
~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
1076
        f :: a -> a
Austin Seipp's avatar
Austin Seipp committed
1077
        ... SPECIALISE f :: Eq a => a -> a ...
1078 1079
It's true that this *is* a more specialised type, but the rule
we get is something like this:
1080 1081
        f_spec d = f
        RULE: f = f_spec d
Gabor Greif's avatar
typos  
Gabor Greif committed
1082 1083
Note that the rule is bogus, because it mentions a 'd' that is
not bound on the LHS!  But it's a silly specialisation anyway, because
1084 1085 1086 1087
the constraint is unused.  We could bind 'd' to (error "unused")
but it seems better to reject the program because it's almost certainly
a mistake.  That's what the isDeadBinder call detects.

1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
Note [No RULES on datacons]
~~~~~~~~~~~~~~~~~~~~~~~~~~~

Previously, `RULES` like

    "JustNothing" forall x . Just x = Nothing

were allowed. Simon Peyton Jones says this seems to have been a
mistake, that such rules have never been supported intentionally,
and that he doesn't know if they can break in horrible ways.
Furthermore, Ben Gamari and Reid Barton are considering trying to
detect the presence of "static data" that the simplifier doesn't
need to traverse at all. Such rules do not play well with that.
So for now, we ban them altogether as requested by #13290. See also #7398.


Austin Seipp's avatar
Austin Seipp committed
1104 1105
************************************************************************
*                                                                      *
1106
                Desugaring evidence
Austin Seipp's avatar
Austin Seipp committed
1107 1108
*                                                                      *
************************************************************************
1109

Austin Seipp's avatar
Austin Seipp committed
1110
-}
1111

1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
dsHsWrapper :: HsWrapper -> DsM (CoreExpr -> CoreExpr)
dsHsWrapper WpHole            = return $ \e -> e
dsHsWrapper (WpTyApp ty)      = return $ \e -> App e (Type ty)
dsHsWrapper (WpEvLam ev)      = return $ Lam ev
dsHsWrapper (WpTyLam tv)      = return $ Lam tv
dsHsWrapper (WpLet ev_binds)  = do { bs <- dsTcEvBinds ev_binds
                                   ; return (mkCoreLets bs) }
dsHsWrapper (WpCompose c1 c2) = do { w1 <- dsHsWrapper c1
                                   ; w2 <- dsHsWrapper c2
                                   ; return (w1 . w2) }
1122 1123 1124 1125
 -- See comments on WpFun in TcEvidence for an explanation of what
 -- the specification of this clause is
dsHsWrapper (WpFun c1 c2 t1 doc)
                              = do { x  <- newSysLocalDsNoLP t1
1126 1127 1128
                                   ; w1 <- dsHsWrapper c1
                                   ; w2 <- dsHsWrapper c2
                                   ; let app f a = mkCoreAppDs (text "dsHsWrapper") f a
1129
                                         arg     = w1 (Var x)
1130 1131 1132 1133
                                   ; (_, ok) <- askNoErrsDs $ dsNoLevPolyExpr arg doc
                                   ; if ok
                                     then return (\e -> (Lam x (w2 (app e arg))))
                                     else return id }  -- this return is irrelevant
1134 1135 1136 1137
dsHsWrapper (WpCast co)       = ASSERT(coercionRole co == Representational)
                                return $ \e -> mkCastDs e co
dsHsWrapper (WpEvApp tm)      = do { core_tm <- dsEvTerm tm
                                   ; return (\e -> App e core_tm) }
1138 1139

--------------------------------------
1140 1141 1142 1143 1144
dsTcEvBinds_s :: [TcEvBinds] -> DsM [CoreBind]
dsTcEvBinds_s []       = return []
dsTcEvBinds_s (b:rest) = ASSERT( null rest )  -- Zonker ensures null
                         dsTcEvBinds b

1145
dsTcEvBinds :: TcEvBinds -> DsM [CoreBind]
1146
dsTcEvBinds (TcEvBinds {}) = panic "dsEvBinds"    -- Zonker has got rid of this
1147 1148
dsTcEvBinds (EvBinds bs)   = dsEvBinds bs

1149
dsEvBinds :: Bag EvBind -> DsM [CoreBind]
1150 1151 1152 1153