CmmOpt.hs 27.3 KB
Newer Older
1 2 3 4 5 6 7
{-# OPTIONS -w #-}
-- The above warning supression flag is a temporary kludge.
-- While working on this module you are encouraged to remove it and fix
-- any warnings in the module. See
--     http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#Warnings
-- for details

8 9 10 11 12 13 14 15 16
-----------------------------------------------------------------------------
--
-- Cmm optimisation
--
-- (c) The University of Glasgow 2006
--
-----------------------------------------------------------------------------

module CmmOpt (
17 18 19 20 21
        cmmEliminateDeadBlocks,
        cmmMiniInline,
        cmmMachOpFold,
        cmmMachOpFoldM,
        cmmLoopifyForC,
22 23 24 25
 ) where

#include "HsVersions.h"

26
import OldCmm
Simon Marlow's avatar
Simon Marlow committed
27 28
import CmmUtils
import CLabel
29
import StaticFlags
30 31

import UniqFM
Simon Marlow's avatar
Simon Marlow committed
32
import Unique
33
import FastTypes
34
import Outputable
35
import BlockId
36

Simon Marlow's avatar
Simon Marlow committed
37 38 39
import Data.Bits
import Data.Word
import Data.Int
40
import Data.Maybe
41
import Data.List
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61

import Compiler.Hoopl hiding (Unique)

-- -----------------------------------------------------------------------------
-- Eliminates dead blocks

{-
We repeatedly expand the set of reachable blocks until we hit a
fixpoint, and then prune any blocks that were not in this set.  This is
actually a required optimization, as dead blocks can cause problems
for invariants in the linear register allocator (and possibly other
places.)
-}

-- Deep fold over statements could probably be abstracted out, but it
-- might not be worth the effort since OldCmm is moribund
cmmEliminateDeadBlocks :: [CmmBasicBlock] -> [CmmBasicBlock]
cmmEliminateDeadBlocks [] = []
cmmEliminateDeadBlocks blocks@(BasicBlock base_id _:_) =
    let -- Calculate what's reachable from what block
62 63 64
        reachableMap = foldl' f emptyUFM blocks -- lazy in values
            where f m (BasicBlock block_id stmts) = addToUFM m block_id (reachableFrom stmts)
        reachableFrom stmts = foldl stmt [] stmts
65 66 67 68 69 70 71 72
            where
                stmt m CmmNop = m
                stmt m (CmmComment _) = m
                stmt m (CmmAssign _ e) = expr m e
                stmt m (CmmStore e1 e2) = expr (expr m e1) e2
                stmt m (CmmCall c _ as _ _) = f (actuals m as) c
                    where f m (CmmCallee e _) = expr m e
                          f m (CmmPrim _) = m
73 74 75
                stmt m (CmmBranch b) = b:m
                stmt m (CmmCondBranch e b) = b:(expr m e)
                stmt m (CmmSwitch e bs) = catMaybes bs ++ expr m e
76 77
                stmt m (CmmJump e as) = expr (actuals m as) e
                stmt m (CmmReturn as) = actuals m as
78 79 80
                actuals m as = foldl' (\m h -> expr m (hintlessCmm h)) m as
                -- We have to do a deep fold into CmmExpr because
                -- there may be a BlockId in the CmmBlock literal.
81 82 83
                expr m (CmmLit l) = lit m l
                expr m (CmmLoad e _) = expr m e
                expr m (CmmReg _) = m
84
                expr m (CmmMachOp _ es) = foldl' expr m es
85 86
                expr m (CmmStackSlot _ _) = m
                expr m (CmmRegOff _ _) = m
87
                lit m (CmmBlock b) = b:m
88
                lit m _ = m
89 90 91 92 93 94 95 96
        -- go todo done
        reachable = go [base_id] (setEmpty :: BlockSet)
          where go []     m = m
                go (x:xs) m
                    | setMember x m = go xs m
                    | otherwise     = go (add ++ xs) (setInsert x m)
                        where add = fromMaybe (panic "cmmEliminateDeadBlocks: unknown block")
                                              (lookupUFM reachableMap x)
97
    in filter (\(BasicBlock block_id _) -> setMember block_id reachable) blocks
98 99 100 101

-- -----------------------------------------------------------------------------
-- The mini-inliner

Simon Marlow's avatar
Simon Marlow committed
102
{-
103 104 105 106
This pass inlines assignments to temporaries.  Temporaries that are
only used once are unconditionally inlined.  Temporaries that are used
two or more times are only inlined if they are assigned a literal.  It
works as follows:
Simon Marlow's avatar
Simon Marlow committed
107 108

  - count uses of each temporary
109
  - for each temporary:
Simon Marlow's avatar
Simon Marlow committed
110 111 112 113 114 115
	- attempt to push it forward to the statement that uses it
        - only push forward past assignments to other temporaries
	  (assumes that temporaries are single-assignment)
	- if we reach the statement that uses it, inline the rhs
	  and delete the original assignment.

116 117 118 119
[N.B. In the Quick C-- compiler, this optimization is achieved by a
 combination of two dataflow passes: forward substitution (peephole
 optimization) and dead-assignment elimination.  ---NR]

Simon Marlow's avatar
Simon Marlow committed
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
Possible generalisations: here is an example from factorial

Fac_zdwfac_entry:
    cmG:
        _smi = R2;
        if (_smi != 0) goto cmK;
        R1 = R3;
        jump I64[Sp];
    cmK:
        _smn = _smi * R3;
        R2 = _smi + (-1);
        R3 = _smn;
        jump Fac_zdwfac_info;

We want to inline _smi and _smn.  To inline _smn:

   - we must be able to push forward past assignments to global regs.
     We can do this if the rhs of the assignment we are pushing
     forward doesn't refer to the global reg being assigned to; easy
     to test.

To inline _smi:

   - It is a trivial replacement, reg for reg, but it occurs more than
     once.
   - We can inline trivial assignments even if the temporary occurs
     more than once, as long as we don't eliminate the original assignment
     (this doesn't help much on its own).
   - We need to be able to propagate the assignment forward through jumps;
     if we did this, we would find that it can be inlined safely in all
     its occurrences.
-}

153 154 155 156
countUses :: UserOfLocalRegs a => a -> UniqFM Int
countUses a = foldRegsUsed (\m r -> addToUFM m r (count m r + 1)) emptyUFM a
  where count m r = lookupWithDefaultUFM m (0::Int) r

157 158
cmmMiniInline :: [CmmBasicBlock] -> [CmmBasicBlock]
cmmMiniInline blocks = map do_inline blocks 
159 160
  where do_inline (BasicBlock id stmts)
          = BasicBlock id (cmmMiniInlineStmts (countUses blocks) stmts)
161 162 163

cmmMiniInlineStmts :: UniqFM Int -> [CmmStmt] -> [CmmStmt]
cmmMiniInlineStmts uses [] = []
164
cmmMiniInlineStmts uses (stmt@(CmmAssign (CmmLocal (LocalReg u _)) expr) : stmts)
165 166 167 168
        -- not used: just discard this assignment
  | Nothing <- lookupUFM uses u
  = cmmMiniInlineStmts uses stmts

169 170
        -- used (literal): try to inline at all the use sites
  | Just n <- lookupUFM uses u, isLit expr
171 172 173 174 175 176 177 178 179 180
  =
#ifdef NCG_DEBUG
     trace ("nativeGen: inlining " ++ showSDoc (pprStmt stmt)) $
#endif
     case lookForInlineLit u expr stmts of
         (m, stmts')
             | n == m -> cmmMiniInlineStmts (delFromUFM uses u) stmts'
             | otherwise ->
                 stmt : cmmMiniInlineStmts (adjustUFM (\x -> x - m) uses u) stmts'

181 182 183 184 185 186 187 188 189 190 191 192 193
        -- used (foldable to literal): try to inline at all the use sites
  | Just n <- lookupUFM uses u,
    CmmMachOp op es <- expr,
    e@(CmmLit _) <- cmmMachOpFold op es
  =
#ifdef NCG_DEBUG
     trace ("nativeGen: inlining " ++ showSDoc (pprStmt stmt)) $
#endif
     case lookForInlineLit u e stmts of
         (m, stmts')
             | n == m -> cmmMiniInlineStmts (delFromUFM uses u) stmts'
             | otherwise ->
                 stmt : cmmMiniInlineStmts (adjustUFM (\x -> x - m) uses u) stmts'
194

195
        -- used once (non-literal): try to inline at the use site
196 197 198 199 200 201 202 203 204 205 206
  | Just 1 <- lookupUFM uses u,
    Just stmts' <- lookForInline u expr stmts
  = 
#ifdef NCG_DEBUG
     trace ("nativeGen: inlining " ++ showSDoc (pprStmt stmt)) $
#endif
     cmmMiniInlineStmts uses stmts'

cmmMiniInlineStmts uses (stmt:stmts)
  = stmt : cmmMiniInlineStmts uses stmts

207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
-- | Takes a register, a 'CmmLit' expression assigned to that
-- register, and a list of statements.  Inlines the expression at all
-- use sites of the register.  Returns the number of substituations
-- made and the, possibly modified, list of statements.
lookForInlineLit :: Unique -> CmmExpr -> [CmmStmt] -> (Int, [CmmStmt])
lookForInlineLit _ _ [] = (0, [])
lookForInlineLit u expr stmts@(stmt : rest)
  | Just n <- lookupUFM (countUses stmt) u
  = case lookForInlineLit u expr rest of
      (m, stmts) -> let z = n + m
                    in z `seq` (z, inlineStmt u expr stmt : stmts)

  | ok_to_skip
  = case lookForInlineLit u expr rest of
      (n, stmts) -> (n, stmt : stmts)

  | otherwise
  = (0, stmts)
  where
    -- We skip over assignments to registers, unless the register
    -- being assigned to is the one we're inlining.
    ok_to_skip = case stmt of
        CmmAssign (CmmLocal r@(LocalReg u' _)) _ | u' == u -> False
        _other -> True

232 233 234 235
lookForInline u expr stmts = lookForInline' u expr regset stmts
    where regset = foldRegsUsed extendRegSet emptyRegSet expr

lookForInline' u expr regset (stmt : rest)
236 237 238 239
  | Just 1 <- lookupUFM (countUses stmt) u, ok_to_inline
  = Just (inlineStmt u expr stmt : rest)

  | ok_to_skip
240
  = case lookForInline' u expr regset rest of
241 242 243 244 245
           Nothing    -> Nothing
           Just stmts -> Just (stmt:stmts)

  | otherwise 
  = Nothing
246

247 248 249 250 251 252 253 254 255
  where
	-- we don't inline into CmmCall if the expression refers to global
	-- registers.  This is a HACK to avoid global registers clashing with
	-- C argument-passing registers, really the back-end ought to be able
	-- to handle it properly, but currently neither PprC nor the NCG can
	-- do it.  See also CgForeignCall:load_args_into_temps.
    ok_to_inline = case stmt of
		     CmmCall{} -> hasNoGlobalRegs expr
		     _ -> True
256

257 258 259 260 261 262 263 264
   -- Expressions aren't side-effecting.  Temporaries may or may not
   -- be single-assignment depending on the source (the old code
   -- generator creates single-assignment code, but hand-written Cmm
   -- and Cmm from the new code generator is not single-assignment.)
   -- So we do an extra check to make sure that the register being
   -- changed is not one we were relying on.  I don't know how much of a
   -- performance hit this is (we have to create a regset for every
   -- instruction.) -- EZY
265 266
    ok_to_skip = case stmt of
                 CmmNop -> True
267
                 CmmComment{} -> True
268
                 CmmAssign (CmmLocal r@(LocalReg u' _)) rhs | u' /= u && not (r `elemRegSet` regset) -> True
269 270 271 272
                 CmmAssign g@(CmmGlobal _) rhs -> not (g `regUsedIn` expr)
                 _other -> False


273 274 275
inlineStmt :: Unique -> CmmExpr -> CmmStmt -> CmmStmt
inlineStmt u a (CmmAssign r e) = CmmAssign r (inlineExpr u a e)
inlineStmt u a (CmmStore e1 e2) = CmmStore (inlineExpr u a e1) (inlineExpr u a e2)
276 277
inlineStmt u a (CmmCall target regs es srt ret)
   = CmmCall (infn target) regs es' srt ret
278
   where infn (CmmCallee fn cconv) = CmmCallee (inlineExpr u a fn) cconv
279
	 infn (CmmPrim p) = CmmPrim p
280
	 es' = [ (CmmHinted (inlineExpr u a e) hint) | (CmmHinted e hint) <- es ]
281 282 283 284 285 286
inlineStmt u a (CmmCondBranch e d) = CmmCondBranch (inlineExpr u a e) d
inlineStmt u a (CmmSwitch e d) = CmmSwitch (inlineExpr u a e) d
inlineStmt u a (CmmJump e d) = CmmJump (inlineExpr u a e) d
inlineStmt u a other_stmt = other_stmt

inlineExpr :: Unique -> CmmExpr -> CmmExpr -> CmmExpr
287
inlineExpr u a e@(CmmReg (CmmLocal (LocalReg u' _)))
288 289
  | u == u' = a
  | otherwise = e
290 291
inlineExpr u a e@(CmmRegOff (CmmLocal (LocalReg u' rep)) off)
  | u == u' = CmmMachOp (MO_Add width) [a, CmmLit (CmmInt (fromIntegral off) width)]
292
  | otherwise = e
293 294
  where
    width = typeWidth rep
295 296 297 298 299 300 301 302 303 304 305
inlineExpr u a (CmmLoad e rep) = CmmLoad (inlineExpr u a e) rep
inlineExpr u a (CmmMachOp op es) = CmmMachOp op (map (inlineExpr u a) es)
inlineExpr u a other_expr = other_expr

-- -----------------------------------------------------------------------------
-- MachOp constant folder

-- Now, try to constant-fold the MachOps.  The arguments have already
-- been optimized and folded.

cmmMachOpFold
306 307
    :: MachOp       -- The operation from an CmmMachOp
    -> [CmmExpr]    -- The optimized arguments
308 309
    -> CmmExpr

310 311 312 313 314 315 316 317 318 319 320
cmmMachOpFold op args = fromMaybe (CmmMachOp op args) (cmmMachOpFoldM op args)

-- Returns Nothing if no changes, useful for Hoopl, also reduces
-- allocation!
cmmMachOpFoldM
    :: MachOp
    -> [CmmExpr]
    -> Maybe CmmExpr

cmmMachOpFoldM op arg@[CmmLit (CmmInt x rep)]
  = Just $ case op of
321 322 323
      MO_S_Neg r -> CmmLit (CmmInt (-x) rep)
      MO_Not r   -> CmmLit (CmmInt (complement x) rep)

324 325 326 327
        -- these are interesting: we must first narrow to the 
        -- "from" type, in order to truncate to the correct size.
        -- The final narrow/widen to the destination type
        -- is implicit in the CmmLit.
328 329 330
      MO_SF_Conv from to -> CmmLit (CmmFloat (fromInteger x) to)
      MO_SS_Conv from to -> CmmLit (CmmInt (narrowS from x) to)
      MO_UU_Conv from to -> CmmLit (CmmInt (narrowU from x) to)
331

332
      _ -> panic "cmmMachOpFoldM: unknown unary op"
333 334 335


-- Eliminate conversion NOPs
336 337
cmmMachOpFoldM (MO_SS_Conv rep1 rep2) [x] | rep1 == rep2 = Just x
cmmMachOpFoldM (MO_UU_Conv rep1 rep2) [x] | rep1 == rep2 = Just x
338 339

-- Eliminate nested conversions where possible
340
cmmMachOpFoldM conv_outer args@[CmmMachOp conv_inner [x]]
341 342 343
  | Just (rep1,rep2,signed1) <- isIntConversion conv_inner,
    Just (_,   rep3,signed2) <- isIntConversion conv_outer
  = case () of
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
        -- widen then narrow to the same size is a nop
      _ | rep1 < rep2 && rep1 == rep3 -> Just x
        -- Widen then narrow to different size: collapse to single conversion
        -- but remember to use the signedness from the widening, just in case
        -- the final conversion is a widen.
        | rep1 < rep2 && rep2 > rep3 ->
            Just $ cmmMachOpFold (intconv signed1 rep1 rep3) [x]
        -- Nested widenings: collapse if the signedness is the same
        | rep1 < rep2 && rep2 < rep3 && signed1 == signed2 ->
            Just $ cmmMachOpFold (intconv signed1 rep1 rep3) [x]
        -- Nested narrowings: collapse
        | rep1 > rep2 && rep2 > rep3 ->
            Just $ cmmMachOpFold (MO_UU_Conv rep1 rep3) [x]
        | otherwise ->
            Nothing
359
  where
360 361 362 363 364
        isIntConversion (MO_UU_Conv rep1 rep2) 
          = Just (rep1,rep2,False)
        isIntConversion (MO_SS_Conv rep1 rep2)
          = Just (rep1,rep2,True)
        isIntConversion _ = Nothing
365

366 367
        intconv True  = MO_SS_Conv
        intconv False = MO_UU_Conv
368 369 370 371 372

-- ToDo: a narrow of a load can be collapsed into a narrow load, right?
-- but what if the architecture only supports word-sized loads, should
-- we do the transformation anyway?

373
cmmMachOpFoldM mop args@[CmmLit (CmmInt x xrep), CmmLit (CmmInt y _)]
374
  = case mop of
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
        -- for comparisons: don't forget to narrow the arguments before
        -- comparing, since they might be out of range.
        MO_Eq r   -> Just $ CmmLit (CmmInt (if x_u == y_u then 1 else 0) wordWidth)
        MO_Ne r   -> Just $ CmmLit (CmmInt (if x_u /= y_u then 1 else 0) wordWidth)

        MO_U_Gt r -> Just $ CmmLit (CmmInt (if x_u >  y_u then 1 else 0) wordWidth)
        MO_U_Ge r -> Just $ CmmLit (CmmInt (if x_u >= y_u then 1 else 0) wordWidth)
        MO_U_Lt r -> Just $ CmmLit (CmmInt (if x_u <  y_u then 1 else 0) wordWidth)
        MO_U_Le r -> Just $ CmmLit (CmmInt (if x_u <= y_u then 1 else 0) wordWidth)

        MO_S_Gt r -> Just $ CmmLit (CmmInt (if x_s >  y_s then 1 else 0) wordWidth)
        MO_S_Ge r -> Just $ CmmLit (CmmInt (if x_s >= y_s then 1 else 0) wordWidth)
        MO_S_Lt r -> Just $ CmmLit (CmmInt (if x_s <  y_s then 1 else 0) wordWidth)
        MO_S_Le r -> Just $ CmmLit (CmmInt (if x_s <= y_s then 1 else 0) wordWidth)

        MO_Add r -> Just $ CmmLit (CmmInt (x + y) r)
        MO_Sub r -> Just $ CmmLit (CmmInt (x - y) r)
        MO_Mul r -> Just $ CmmLit (CmmInt (x * y) r)
        MO_U_Quot r | y /= 0 -> Just $ CmmLit (CmmInt (x_u `quot` y_u) r)
        MO_U_Rem  r | y /= 0 -> Just $ CmmLit (CmmInt (x_u `rem`  y_u) r)
        MO_S_Quot r | y /= 0 -> Just $ CmmLit (CmmInt (x `quot` y) r)
        MO_S_Rem  r | y /= 0 -> Just $ CmmLit (CmmInt (x `rem` y) r)

        MO_And   r -> Just $ CmmLit (CmmInt (x .&. y) r)
        MO_Or    r -> Just $ CmmLit (CmmInt (x .|. y) r)
        MO_Xor   r -> Just $ CmmLit (CmmInt (x `xor` y) r)

        MO_Shl   r -> Just $ CmmLit (CmmInt (x `shiftL` fromIntegral y) r)
        MO_U_Shr r -> Just $ CmmLit (CmmInt (x_u `shiftR` fromIntegral y) r)
        MO_S_Shr r -> Just $ CmmLit (CmmInt (x `shiftR` fromIntegral y) r)

        other      -> Nothing
407 408

   where
409 410 411 412 413
        x_u = narrowU xrep x
        y_u = narrowU xrep y
        x_s = narrowS xrep x
        y_s = narrowS xrep y

414 415 416 417 418 419

-- When possible, shift the constants to the right-hand side, so that we
-- can match for strength reductions.  Note that the code generator will
-- also assume that constants have been shifted to the right when
-- possible.

420 421 422
cmmMachOpFoldM op [x@(CmmLit _), y]
   | not (isLit y) && isCommutableMachOp op
   = Just (cmmMachOpFold op [y, x])
423 424 425 426 427 428 429 430 431 432 433 434 435 436

-- Turn (a+b)+c into a+(b+c) where possible.  Because literals are
-- moved to the right, it is more likely that we will find
-- opportunities for constant folding when the expression is
-- right-associated.
--
-- ToDo: this appears to introduce a quadratic behaviour due to the
-- nested cmmMachOpFold.  Can we fix this?
--
-- Why do we check isLit arg1?  If arg1 is a lit, it means that arg2
-- is also a lit (otherwise arg1 would be on the right).  If we
-- put arg1 on the left of the rearranged expression, we'll get into a
-- loop:  (x1+x2)+x3 => x1+(x2+x3)  => (x2+x3)+x1 => x2+(x3+x1) ...
--
437 438 439
-- Also don't do it if arg1 is PicBaseReg, so that we don't separate the
-- PicBaseReg from the corresponding label (or label difference).
--
440
cmmMachOpFoldM mop1 [CmmMachOp mop2 [arg1,arg2], arg3]
441
   | mop2 `associates_with` mop1
442
     && not (isLit arg1) && not (isPicReg arg1)
443
   = Just (cmmMachOpFold mop2 [arg1, cmmMachOpFold mop1 [arg2,arg3]])
444 445 446 447 448 449
   where
     MO_Add{} `associates_with` MO_Sub{} = True
     mop1 `associates_with` mop2 =
        mop1 == mop2 && isAssociativeMachOp mop1

-- special case: (a - b) + c  ==>  a + (c - b)
450
cmmMachOpFoldM mop1@(MO_Add{}) [CmmMachOp mop2@(MO_Sub{}) [arg1,arg2], arg3]
451
   | not (isLit arg1) && not (isPicReg arg1)
452
   = Just (cmmMachOpFold mop1 [arg1, cmmMachOpFold mop2 [arg3,arg2]])
453 454

-- Make a RegOff if we can
455 456 457 458 459 460 461 462
cmmMachOpFoldM (MO_Add _) [CmmReg reg, CmmLit (CmmInt n rep)]
  = Just $ CmmRegOff reg (fromIntegral (narrowS rep n))
cmmMachOpFoldM (MO_Add _) [CmmRegOff reg off, CmmLit (CmmInt n rep)]
  = Just $ CmmRegOff reg (off + fromIntegral (narrowS rep n))
cmmMachOpFoldM (MO_Sub _) [CmmReg reg, CmmLit (CmmInt n rep)]
  = Just $ CmmRegOff reg (- fromIntegral (narrowS rep n))
cmmMachOpFoldM (MO_Sub _) [CmmRegOff reg off, CmmLit (CmmInt n rep)]
  = Just $ CmmRegOff reg (off - fromIntegral (narrowS rep n))
463 464 465

-- Fold label(+/-)offset into a CmmLit where possible

466 467 468 469 470 471
cmmMachOpFoldM (MO_Add _) [CmmLit (CmmLabel lbl), CmmLit (CmmInt i rep)]
  = Just $ CmmLit (CmmLabelOff lbl (fromIntegral (narrowU rep i)))
cmmMachOpFoldM (MO_Add _) [CmmLit (CmmInt i rep), CmmLit (CmmLabel lbl)]
  = Just $ CmmLit (CmmLabelOff lbl (fromIntegral (narrowU rep i)))
cmmMachOpFoldM (MO_Sub _) [CmmLit (CmmLabel lbl), CmmLit (CmmInt i rep)]
  = Just $ CmmLit (CmmLabelOff lbl (fromIntegral (negate (narrowU rep i))))
472

473

474 475 476 477 478 479
-- Comparison of literal with widened operand: perform the comparison
-- at the smaller width, as long as the literal is within range.

-- We can't do the reverse trick, when the operand is narrowed:
-- narrowing throws away bits from the operand, there's no way to do
-- the same comparison at the larger size.
480 481 482 483

#if i386_TARGET_ARCH || x86_64_TARGET_ARCH
-- powerPC NCG has a TODO for I8/I16 comparisons, so don't try

484
cmmMachOpFoldM cmp [CmmMachOp conv [x], CmmLit (CmmInt i _)]
485 486 487 488 489 490 491
  |     -- if the operand is widened:
    Just (rep, signed, narrow_fn) <- maybe_conversion conv,
        -- and this is a comparison operation:
    Just narrow_cmp <- maybe_comparison cmp rep signed,
        -- and the literal fits in the smaller size:
    i == narrow_fn rep i
        -- then we can do the comparison at the smaller size
492
  = Just (cmmMachOpFold narrow_cmp [x, CmmLit (CmmInt i rep)])
493
 where
494
    maybe_conversion (MO_UU_Conv from to)
495 496
        | to > from
        = Just (from, False, narrowU)
497 498
    maybe_conversion (MO_SS_Conv from to)
        | to > from
499
        = Just (from, True, narrowS)
500

Simon Marlow's avatar
Simon Marlow committed
501 502
        -- don't attempt to apply this optimisation when the source
        -- is a float; see #1916
503
    maybe_conversion _ = Nothing
504

505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
        -- careful (#2080): if the original comparison was signed, but
        -- we were doing an unsigned widen, then we must do an
        -- unsigned comparison at the smaller size.
    maybe_comparison (MO_U_Gt _) rep _     = Just (MO_U_Gt rep)
    maybe_comparison (MO_U_Ge _) rep _     = Just (MO_U_Ge rep)
    maybe_comparison (MO_U_Lt _) rep _     = Just (MO_U_Lt rep)
    maybe_comparison (MO_U_Le _) rep _     = Just (MO_U_Le rep)
    maybe_comparison (MO_Eq   _) rep _     = Just (MO_Eq   rep)
    maybe_comparison (MO_S_Gt _) rep True  = Just (MO_S_Gt rep)
    maybe_comparison (MO_S_Ge _) rep True  = Just (MO_S_Ge rep)
    maybe_comparison (MO_S_Lt _) rep True  = Just (MO_S_Lt rep)
    maybe_comparison (MO_S_Le _) rep True  = Just (MO_S_Le rep)
    maybe_comparison (MO_S_Gt _) rep False = Just (MO_U_Gt rep)
    maybe_comparison (MO_S_Ge _) rep False = Just (MO_U_Ge rep)
    maybe_comparison (MO_S_Lt _) rep False = Just (MO_U_Lt rep)
    maybe_comparison (MO_S_Le _) rep False = Just (MO_U_Le rep)
    maybe_comparison _ _ _ = Nothing
522 523 524

#endif

525 526
-- We can often do something with constants of 0 and 1 ...

527
cmmMachOpFoldM mop args@[x, y@(CmmLit (CmmInt 0 _))]
528
  = case mop of
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
        MO_Add   r -> Just x
        MO_Sub   r -> Just x
        MO_Mul   r -> Just y
        MO_And   r -> Just y
        MO_Or    r -> Just x
        MO_Xor   r -> Just x
        MO_Shl   r -> Just x
        MO_S_Shr r -> Just x
        MO_U_Shr r -> Just x
        MO_Ne    r | isComparisonExpr x -> Just x
        MO_Eq    r | Just x' <- maybeInvertCmmExpr x -> Just x'
        MO_U_Gt  r | isComparisonExpr x -> Just x
        MO_S_Gt  r | isComparisonExpr x -> Just x
        MO_U_Lt  r | isComparisonExpr x -> Just $ CmmLit (CmmInt 0 wordWidth)
        MO_S_Lt  r | isComparisonExpr x -> Just $ CmmLit (CmmInt 0 wordWidth)
        MO_U_Ge  r | isComparisonExpr x -> Just $ CmmLit (CmmInt 1 wordWidth)
        MO_S_Ge  r | isComparisonExpr x -> Just $ CmmLit (CmmInt 1 wordWidth)
        MO_U_Le  r | Just x' <- maybeInvertCmmExpr x -> Just x'
        MO_S_Le  r | Just x' <- maybeInvertCmmExpr x -> Just x'
        other    -> Nothing

cmmMachOpFoldM mop args@[x, y@(CmmLit (CmmInt 1 rep))]
551
  = case mop of
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
        MO_Mul    r -> Just x
        MO_S_Quot r -> Just x
        MO_U_Quot r -> Just x
        MO_S_Rem  r -> Just $ CmmLit (CmmInt 0 rep)
        MO_U_Rem  r -> Just $ CmmLit (CmmInt 0 rep)
        MO_Ne    r | Just x' <- maybeInvertCmmExpr x -> Just x'
        MO_Eq    r | isComparisonExpr x -> Just x
        MO_U_Lt  r | Just x' <- maybeInvertCmmExpr x -> Just x'
        MO_S_Lt  r | Just x' <- maybeInvertCmmExpr x -> Just x'
        MO_U_Gt  r | isComparisonExpr x -> Just $ CmmLit (CmmInt 0 wordWidth)
        MO_S_Gt  r | isComparisonExpr x -> Just $ CmmLit (CmmInt 0 wordWidth)
        MO_U_Le  r | isComparisonExpr x -> Just $ CmmLit (CmmInt 1 wordWidth)
        MO_S_Le  r | isComparisonExpr x -> Just $ CmmLit (CmmInt 1 wordWidth)
        MO_U_Ge  r | isComparisonExpr x -> Just x
        MO_S_Ge  r | isComparisonExpr x -> Just x
        other       -> Nothing
568 569 570

-- Now look for multiplication/division by powers of 2 (integers).

571
cmmMachOpFoldM mop args@[x, y@(CmmLit (CmmInt n _))]
572
  = case mop of
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
        MO_Mul rep
           | Just p <- exactLog2 n ->
                 Just (cmmMachOpFold (MO_Shl rep) [x, CmmLit (CmmInt p rep)])
        MO_U_Quot rep
           | Just p <- exactLog2 n ->
                 Just (cmmMachOpFold (MO_U_Shr rep) [x, CmmLit (CmmInt p rep)])
        MO_S_Quot rep
           | Just p <- exactLog2 n, 
             CmmReg _ <- x ->   -- We duplicate x below, hence require
                                -- it is a reg.  FIXME: remove this restriction.
                -- shift right is not the same as quot, because it rounds
                -- to minus infinity, whereasq quot rounds toward zero.
                -- To fix this up, we add one less than the divisor to the
                -- dividend if it is a negative number.
                --
                -- to avoid a test/jump, we use the following sequence:
                -- 	x1 = x >> word_size-1  (all 1s if -ve, all 0s if +ve)
                --      x2 = y & (divisor-1)
                --      result = (x+x2) >>= log2(divisor)
                -- this could be done a bit more simply using conditional moves,
                -- but we're processor independent here.
                --
                -- we optimise the divide by 2 case slightly, generating
                --      x1 = x >> word_size-1  (unsigned)
                --      return = (x + x1) >>= log2(divisor)
                let
                    bits = fromIntegral (widthInBits rep) - 1
                    shr = if p == 1 then MO_U_Shr rep else MO_S_Shr rep
                    x1 = CmmMachOp shr [x, CmmLit (CmmInt bits rep)]
                    x2 = if p == 1 then x1 else
                         CmmMachOp (MO_And rep) [x1, CmmLit (CmmInt (n-1) rep)]
                    x3 = CmmMachOp (MO_Add rep) [x, x2]
                in
                Just (cmmMachOpFold (MO_S_Shr rep) [x3, CmmLit (CmmInt p rep)])
        other
           -> Nothing
609 610 611

-- Anything else is just too hard.

612
cmmMachOpFoldM _ _ = Nothing
613 614 615 616 617 618 619 620 621 622 623

-- -----------------------------------------------------------------------------
-- exactLog2

-- This algorithm for determining the $\log_2$ of exact powers of 2 comes
-- from GCC.  It requires bit manipulation primitives, and we use GHC
-- extensions.  Tough.
-- 
-- Used to be in MachInstrs --SDM.
-- ToDo: remove use of unboxery --SDM.

624 625 626 627 628
-- Unboxery removed in favor of FastInt; but is the function supposed to fail
-- on inputs >= 2147483648, or was that just an implementation artifact?
-- And is this speed-critical, or can we just use Integer operations
-- (including Data.Bits)?
--  --Isaac Dupree
629 630

exactLog2 :: Integer -> Maybe Integer
631 632
exactLog2 x_
  = if (x_ <= 0 || x_ >= 2147483648) then
633 634
       Nothing
    else
635 636
       case iUnbox (fromInteger x_) of { x ->
       if (x `bitAndFastInt` negateFastInt x) /=# x then
637 638
	  Nothing
       else
639
	  Just (toInteger (iBox (pow2 x)))
640 641
       }
  where
642 643
    pow2 x | x ==# _ILIT(1) = _ILIT(0)
           | otherwise = _ILIT(1) +# pow2 (x `shiftR_FastInt` _ILIT(1))
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671


-- -----------------------------------------------------------------------------
-- Loopify for C

{-
 This is a simple pass that replaces tail-recursive functions like this:

   fac() {
     ...
     jump fac();
   }

 with this:

  fac() {
   L:
     ...
     goto L;
  }

  the latter generates better C code, because the C compiler treats it
  like a loop, and brings full loop optimisation to bear.

  In my measurements this makes little or no difference to anything
  except factorial, but what the hell.
-}

672
cmmLoopifyForC :: RawCmmTop -> RawCmmTop
673
cmmLoopifyForC p@(CmmProc info entry_lbl
674
                 (ListGraph blocks@(BasicBlock top_id _ : _)))
675 676 677
  | null info = p  -- only if there's an info table, ignore case alts
  | otherwise =  
--  pprTrace "jump_lbl" (ppr jump_lbl <+> ppr entry_lbl) $
678
  CmmProc info entry_lbl (ListGraph blocks')
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
  where blocks' = [ BasicBlock id (map do_stmt stmts)
		  | BasicBlock id stmts <- blocks ]

        do_stmt (CmmJump (CmmLit (CmmLabel lbl)) _) | lbl == jump_lbl
		= CmmBranch top_id
	do_stmt stmt = stmt

	jump_lbl | tablesNextToCode = entryLblToInfoLbl entry_lbl
		 | otherwise        = entry_lbl

cmmLoopifyForC top = top

-- -----------------------------------------------------------------------------
-- Utils

isLit (CmmLit _) = True
isLit _          = False

isComparisonExpr :: CmmExpr -> Bool
isComparisonExpr (CmmMachOp op _) = isComparisonMachOp op
isComparisonExpr _other 	    = False

701
isPicReg (CmmReg (CmmGlobal PicBaseReg)) = True
702
isPicReg _ = False
703