CmmCommonBlockElim.hs 11.5 KB
Newer Older
1
{-# LANGUAGE GADTs, BangPatterns #-}
2
module CmmCommonBlockElim
3 4 5 6 7
  ( elimCommonBlocks
  )
where


8
import BlockId
9
import Cmm
10
import CmmUtils
11
import CmmSwitch (eqSwitchTargetWith)
Simon Marlow's avatar
Simon Marlow committed
12
import CmmContFlowOpt
13
-- import PprCmm ()
14
import Prelude hiding (iterate, succ, unzip, zip)
15

Simon Marlow's avatar
Simon Marlow committed
16
import Hoopl hiding (ChangeFlag)
17
import Data.Bits
Peter Wortmann's avatar
Peter Wortmann committed
18
import Data.Maybe (mapMaybe)
19
import qualified Data.List as List
20
import Data.Word
Peter Wortmann's avatar
Peter Wortmann committed
21
import qualified Data.Map as M
22 23
import Outputable
import UniqFM
24 25
import Unique
import Control.Arrow (first, second)
26

27 28 29
-- -----------------------------------------------------------------------------
-- Eliminate common blocks

30 31 32 33 34 35 36 37 38 39 40
-- If two blocks are identical except for the label on the first node,
-- then we can eliminate one of the blocks. To ensure that the semantics
-- of the program are preserved, we have to rewrite each predecessor of the
-- eliminated block to proceed with the block we keep.

-- The algorithm iterates over the blocks in the graph,
-- checking whether it has seen another block that is equal modulo labels.
-- If so, then it adds an entry in a map indicating that the new block
-- is made redundant by the old block.
-- Otherwise, it is added to the useful blocks.

41 42 43 44 45 46 47
-- To avoid comparing every block with every other block repeatedly, we group
-- them by
--   * a hash of the block, ignoring labels (explained below)
--   * the list of outgoing labels
-- The hash is invariant under relabeling, so we only ever compare within
-- the same group of blocks.
--
48 49
-- The list of outgoing labels is updated as we merge blocks (that is why they
-- are not included in the hash, which we want to calculate only once).
50 51 52 53 54
--
-- All in all, two blocks should never be compared if they have different
-- hashes, and at most once otherwise. Previously, we were slower, and people
-- rightfully complained: #10397

55 56
-- TODO: Use optimization fuel
elimCommonBlocks :: CmmGraph -> CmmGraph
Peter Wortmann's avatar
Peter Wortmann committed
57
elimCommonBlocks g = replaceLabels env $ copyTicks env g
58
  where
59
     env = iterate mapEmpty blocks_with_key
60
     groups = groupByInt hash_block (postorderDfs g)
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
     blocks_with_key = [ [ (successors b, [b]) | b <- bs] | bs <- groups]

-- Invariant: The blocks in the list are pairwise distinct
-- (so avoid comparing them again)
type DistinctBlocks = [CmmBlock]
type Key = [Label]
type Subst = BlockEnv BlockId

-- The outer list groups by hash. We retain this grouping throughout.
iterate :: Subst -> [[(Key, DistinctBlocks)]] -> Subst
iterate subst blocks
    | mapNull new_substs = subst
    | otherwise = iterate subst' updated_blocks
  where
    grouped_blocks :: [[(Key, [DistinctBlocks])]]
    grouped_blocks = map groupByLabel blocks
77

78 79 80 81 82 83
    merged_blocks :: [[(Key, DistinctBlocks)]]
    (new_substs, merged_blocks) = List.mapAccumL (List.mapAccumL go) mapEmpty grouped_blocks
      where
        go !new_subst1 (k,dbs) = (new_subst1 `mapUnion` new_subst2, (k,db))
          where
            (new_subst2, db) = mergeBlockList subst dbs
84

85 86
    subst' = subst `mapUnion` new_substs
    updated_blocks = map (map (first (map (lookupBid subst')))) merged_blocks
87

88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
mergeBlocks :: Subst -> DistinctBlocks -> DistinctBlocks -> (Subst, DistinctBlocks)
mergeBlocks subst existing new = go new
  where
    go [] = (mapEmpty, existing)
    go (b:bs) = case List.find (eqBlockBodyWith (eqBid subst) b) existing of
        -- This block is a duplicate. Drop it, and add it to the substitution
        Just b' -> first (mapInsert (entryLabel b) (entryLabel b')) $ go bs
        -- This block is not a duplicate, keep it.
        Nothing -> second (b:) $ go bs

mergeBlockList :: Subst -> [DistinctBlocks] -> (Subst, DistinctBlocks)
mergeBlockList _ [] = pprPanic "mergeBlockList" empty
mergeBlockList subst (b:bs) = go mapEmpty b bs
  where
    go !new_subst1 b [] = (new_subst1, b)
    go !new_subst1 b1 (b2:bs) = go new_subst b bs
      where
        (new_subst2, b) =  mergeBlocks subst b1 b2
        new_subst = new_subst1 `mapUnion` new_subst2
107 108 109 110 111 112 113


-- -----------------------------------------------------------------------------
-- Hashing and equality on blocks

-- Below here is mostly boilerplate: hashing blocks ignoring labels,
-- and comparing blocks modulo a label mapping.
114

115
-- To speed up comparisons, we hash each basic block modulo jump labels.
116 117
-- The hashing is a bit arbitrary (the numbers are completely arbitrary),
-- but it should be fast and good enough.
118

119 120 121 122
-- We want to get as many small buckets as possible, as comparing blocks is
-- expensive. So include as much as possible in the hash. Ideally everything
-- that is compared with (==) in eqBlockBodyWith.

123 124
type HashCode = Int

125
hash_block :: CmmBlock -> HashCode
126 127
hash_block block =
  fromIntegral (foldBlockNodesB3 (hash_fst, hash_mid, hash_lst) block (0 :: Word32) .&. (0x7fffffff :: Word32))
128
  -- UniqFM doesn't like negative Ints
129 130 131 132 133
  where hash_fst _ h = h
        hash_mid m h = hash_node m + h `shiftL` 1
        hash_lst m h = hash_node m + h `shiftL` 1

        hash_node :: CmmNode O x -> Word32
Peter Wortmann's avatar
Peter Wortmann committed
134
        hash_node n | dont_care n = 0 -- don't care
135
        hash_node (CmmUnwind _ e) = hash_e e
136 137 138
        hash_node (CmmAssign r e) = hash_reg r + hash_e e
        hash_node (CmmStore e e') = hash_e e + hash_e e'
        hash_node (CmmUnsafeForeignCall t _ as) = hash_tgt t + hash_list hash_e as
139
        hash_node (CmmBranch _) = 23 -- NB. ignore the label
140
        hash_node (CmmCondBranch p _ _ _) = hash_e p
141
        hash_node (CmmCall e _ _ _ _ _) = hash_e e
142
        hash_node (CmmForeignCall t _ _ _ _ _ _) = hash_tgt t
143
        hash_node (CmmSwitch e _) = hash_e e
Peter Wortmann's avatar
Peter Wortmann committed
144
        hash_node _ = error "hash_node: unknown Cmm node!"
145

146
        hash_reg :: CmmReg -> Word32
147
        hash_reg   (CmmLocal localReg) = hash_unique localReg -- important for performance, see #10397
148
        hash_reg   (CmmGlobal _)    = 19
149

150
        hash_e :: CmmExpr -> Word32
151 152 153
        hash_e (CmmLit l) = hash_lit l
        hash_e (CmmLoad e _) = 67 + hash_e e
        hash_e (CmmReg r) = hash_reg r
154
        hash_e (CmmMachOp _ es) = hash_list hash_e es -- pessimal - no operator check
155
        hash_e (CmmRegOff r i) = hash_reg r + cvt i
156
        hash_e (CmmStackSlot _ _) = 13
157

158
        hash_lit :: CmmLit -> Word32
159 160
        hash_lit (CmmInt i _) = fromInteger i
        hash_lit (CmmFloat r _) = truncate r
161
        hash_lit (CmmVec ls) = hash_list hash_lit ls
162
        hash_lit (CmmLabel _) = 119 -- ugh
163 164
        hash_lit (CmmLabelOff _ i) = cvt $ 199 + i
        hash_lit (CmmLabelDiffOff _ _ i) = cvt $ 299 + i
165
        hash_lit (CmmBlock _) = 191 -- ugh
166
        hash_lit (CmmHighStackMark) = cvt 313
167

168 169
        hash_tgt (ForeignTarget e _) = hash_e e
        hash_tgt (PrimTarget _) = 31 -- lots of these
170 171 172

        hash_list f = foldl (\z x -> f x + z) (0::Word32)

173
        cvt = fromInteger . toInteger
Peter Wortmann's avatar
Peter Wortmann committed
174

175 176 177
        hash_unique :: Uniquable a => a -> Word32
        hash_unique = cvt . getKey . getUnique

Peter Wortmann's avatar
Peter Wortmann committed
178 179 180 181 182 183
-- | Ignore these node types for equality
dont_care :: CmmNode O x -> Bool
dont_care CmmComment {}  = True
dont_care CmmTick {}     = True
dont_care _other         = False

184 185 186
-- Utilities: equality and substitution on the graph.

-- Given a map ``subst'' from BlockID -> BlockID, we define equality.
187
eqBid :: BlockEnv BlockId -> BlockId -> BlockId -> Bool
188
eqBid subst bid bid' = lookupBid subst bid == lookupBid subst bid'
189
lookupBid :: BlockEnv BlockId -> BlockId -> BlockId
190
lookupBid subst bid = case mapLookup bid subst of
191 192 193
                        Just bid  -> lookupBid subst bid
                        Nothing -> bid

194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
-- Middle nodes and expressions can contain BlockIds, in particular in
-- CmmStackSlot and CmmBlock, so we have to use a special equality for
-- these.
--
eqMiddleWith :: (BlockId -> BlockId -> Bool)
             -> CmmNode O O -> CmmNode O O -> Bool
eqMiddleWith eqBid (CmmAssign r1 e1) (CmmAssign r2 e2)
  = r1 == r2 && eqExprWith eqBid e1 e2
eqMiddleWith eqBid (CmmStore l1 r1) (CmmStore l2 r2)
  = eqExprWith eqBid l1 l2 && eqExprWith eqBid r1 r2
eqMiddleWith eqBid (CmmUnsafeForeignCall t1 r1 a1)
                   (CmmUnsafeForeignCall t2 r2 a2)
  = t1 == t2 && r1 == r2 && and (zipWith (eqExprWith eqBid) a1 a2)
eqMiddleWith _ _ _ = False

eqExprWith :: (BlockId -> BlockId -> Bool)
           -> CmmExpr -> CmmExpr -> Bool
eqExprWith eqBid = eq
 where
  CmmLit l1          `eq` CmmLit l2          = eqLit l1 l2
  CmmLoad e1 _       `eq` CmmLoad e2 _       = e1 `eq` e2
  CmmReg r1          `eq` CmmReg r2          = r1==r2
  CmmRegOff r1 i1    `eq` CmmRegOff r2 i2    = r1==r2 && i1==i2
  CmmMachOp op1 es1  `eq` CmmMachOp op2 es2  = op1==op2 && es1 `eqs` es2
  CmmStackSlot a1 i1 `eq` CmmStackSlot a2 i2 = eqArea a1 a2 && i1==i2
  _e1                `eq` _e2                = False

  xs `eqs` ys = and (zipWith eq xs ys)

  eqLit (CmmBlock id1) (CmmBlock id2) = eqBid id1 id2
  eqLit l1 l2 = l1 == l2

  eqArea Old Old = True
  eqArea (Young id1) (Young id2) = eqBid id1 id2
  eqArea _ _ = False

Simon Marlow's avatar
Simon Marlow committed
230 231
-- Equality on the body of a block, modulo a function mapping block
-- IDs to block IDs.
232
eqBlockBodyWith :: (BlockId -> BlockId -> Bool) -> CmmBlock -> CmmBlock -> Bool
Simon Marlow's avatar
Simon Marlow committed
233
eqBlockBodyWith eqBid block block'
234 235 236 237 238
  {-
  | equal     = pprTrace "equal" (vcat [ppr block, ppr block']) True
  | otherwise = pprTrace "not equal" (vcat [ppr block, ppr block']) False
  -}
  = equal
Simon Marlow's avatar
Simon Marlow committed
239
  where (_,m,l)   = blockSplit block
Peter Wortmann's avatar
Peter Wortmann committed
240
        nodes     = filter (not . dont_care) (blockToList m)
Simon Marlow's avatar
Simon Marlow committed
241
        (_,m',l') = blockSplit block'
Peter Wortmann's avatar
Peter Wortmann committed
242
        nodes'    = filter (not . dont_care) (blockToList m')
243

244 245
        equal = and (zipWith (eqMiddleWith eqBid) nodes nodes') &&
                eqLastWith eqBid l l'
246 247


248 249
eqLastWith :: (BlockId -> BlockId -> Bool) -> CmmNode O C -> CmmNode O C -> Bool
eqLastWith eqBid (CmmBranch bid1) (CmmBranch bid2) = eqBid bid1 bid2
250 251
eqLastWith eqBid (CmmCondBranch c1 t1 f1 l1) (CmmCondBranch c2 t2 f2 l2) =
  c1 == c2 && l1 == l2 && eqBid t1 t2 && eqBid f1 f2
252 253
eqLastWith eqBid (CmmCall t1 c1 g1 a1 r1 u1) (CmmCall t2 c2 g2 a2 r2 u2) =
  t1 == t2 && eqMaybeWith eqBid c1 c2 && a1 == a2 && r1 == r2 && u1 == u2 && g1 == g2
254 255
eqLastWith eqBid (CmmSwitch e1 ids1) (CmmSwitch e2 ids2) =
  e1 == e2 && eqSwitchTargetWith eqBid ids1 ids2
256 257 258 259 260 261
eqLastWith _ _ _ = False

eqMaybeWith :: (a -> b -> Bool) -> Maybe a -> Maybe b -> Bool
eqMaybeWith eltEq (Just e) (Just e') = eltEq e e'
eqMaybeWith _ Nothing Nothing = True
eqMaybeWith _ _ _ = False
Peter Wortmann's avatar
Peter Wortmann committed
262 263 264 265 266 267 268 269

-- | Given a block map, ensure that all "target" blocks are covered by
-- the same ticks as the respective "source" blocks. This not only
-- means copying ticks, but also adjusting tick scopes where
-- necessary.
copyTicks :: BlockEnv BlockId -> CmmGraph -> CmmGraph
copyTicks env g
  | mapNull env = g
Peter Wortmann's avatar
Peter Wortmann committed
270 271 272
  | otherwise   = ofBlockMap (g_entry g) $ mapMap copyTo blockMap
  where -- Reverse block merge map
        blockMap = toBlockMap g
Peter Wortmann's avatar
Peter Wortmann committed
273 274
        revEnv = mapFoldWithKey insertRev M.empty env
        insertRev k x = M.insertWith (const (k:)) x [k]
Peter Wortmann's avatar
Peter Wortmann committed
275 276
        -- Copy ticks and scopes into the given block
        copyTo block = case M.lookup (entryLabel block) revEnv of
Peter Wortmann's avatar
Peter Wortmann committed
277
          Nothing -> block
Peter Wortmann's avatar
Peter Wortmann committed
278 279 280 281 282 283 284
          Just ls -> foldr copy block $ mapMaybe (flip mapLookup blockMap) ls
        copy from to =
          let ticks = blockTicks from
              CmmEntry  _   scp0        = firstNode from
              (CmmEntry lbl scp1, code) = blockSplitHead to
          in CmmEntry lbl (combineTickScopes scp0 scp1) `blockJoinHead`
             foldr blockCons code (map CmmTick ticks)
285 286 287

-- Group by [Label]
groupByLabel :: [(Key, a)] -> [(Key, [a])]
288
groupByLabel = go M.empty
289
  where
290 291
    go !m [] = M.elems m
    go !m ((k,v) : entries) = go (M.alter adjust k' m) entries
292 293 294 295 296
      where k' = map getUnique k
            adjust Nothing       = Just (k,[v])
            adjust (Just (_,vs)) = Just (k,v:vs)


297 298 299
groupByInt :: (a -> Int) -> [a] -> [[a]]
groupByInt f xs = eltsUFM $ List.foldl' go emptyUFM xs
  where go m x = alterUFM (Just . maybe [x] (x:)) m (f x)