TcHsType.hs 96.8 KB
Newer Older
Austin Seipp's avatar
Austin Seipp committed
1 2 3 4
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998

5
\section[TcMonoType]{Typechecking user-specified @MonoTypes@}
Austin Seipp's avatar
Austin Seipp committed
6
-}
7

Richard Eisenberg's avatar
Richard Eisenberg committed
8
{-# LANGUAGE CPP, TupleSections, MultiWayIf, RankNTypes #-}
Ian Lynagh's avatar
Ian Lynagh committed
9

10
module TcHsType (
11
        -- Type signatures
Alan Zimmerman's avatar
Alan Zimmerman committed
12
        kcHsSigType, tcClassSigType,
13
        tcHsSigType, tcHsSigWcType,
14 15
        tcHsPartialSigType,
        funsSigCtxt, addSigCtxt, pprSigCtxt,
16 17 18

        tcHsClsInstType,
        tcHsDeriv, tcHsVectInst,
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
19
        tcHsTypeApp,
20
        UserTypeCtxt(..),
21
        tcImplicitTKBndrs, tcImplicitTKBndrsType, tcExplicitTKBndrs,
22

23
                -- Type checking type and class decls
24
        kcLookupTcTyCon, kcTyClTyVars, tcTyClTyVars,
25
        tcDataKindSig,
dreixel's avatar
dreixel committed
26

27 28 29
        -- Kind-checking types
        -- No kind generalisation, no checkValidType
        tcWildCardBinders,
30
        kcHsTyVarBndrs,
31 32 33
        tcHsLiftedType,   tcHsOpenType,
        tcHsLiftedTypeNC, tcHsOpenTypeNC,
        tcLHsType, tcCheckLHsType,
Simon Peyton Jones's avatar
Simon Peyton Jones committed
34
        tcHsContext, tcLHsPredType, tcInferApps,
35
        solveEqualities, -- useful re-export
batterseapower's avatar
batterseapower committed
36

37 38 39
        typeLevelMode, kindLevelMode,

        kindGeneralize, checkExpectedKindX, instantiateTyUntilN,
40

41 42
        reportFloatingKvs,

43
        -- Sort-checking kinds
44
        tcLHsKindSig,
45

46
        -- Pattern type signatures
47
        tcHsPatSigType, tcPatSig, funAppCtxt
48 49 50 51
   ) where

#include "HsVersions.h"

52
import HsSyn
53
import TcRnMonad
54
import TcEvidence
55 56
import TcEnv
import TcMType
57
import TcValidity
58 59
import TcUnify
import TcIface
Richard Eisenberg's avatar
Richard Eisenberg committed
60
import TcSimplify ( solveEqualities )
61
import TcType
62
import TcHsSyn( zonkSigType )
63
import Inst   ( tcInstBinders, tcInstBinder )
64
import Type
dreixel's avatar
dreixel committed
65
import Kind
66
import RdrName( lookupLocalRdrOcc )
67
import Var
68
import VarSet
69
import TyCon
Gergő Érdi's avatar
Gergő Érdi committed
70
import ConLike
71
import DataCon
72 73
import Class
import Name
74
import NameEnv
75 76
import NameSet
import VarEnv
77 78 79
import TysWiredIn
import BasicTypes
import SrcLoc
80 81
import Constants ( mAX_CTUPLE_SIZE )
import ErrUtils( MsgDoc )
82
import Unique
83
import Util
84
import UniqSupply
85
import Outputable
86
import FastString
87
import PrelNames hiding ( wildCardName )
88
import qualified GHC.LanguageExtensions as LangExt
89

eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
90
import Maybes
91
import Data.List ( partition, zipWith4 )
92
import Control.Monad
93

Austin Seipp's avatar
Austin Seipp committed
94
{-
95 96 97
        ----------------------------
                General notes
        ----------------------------
98

99 100 101 102 103
Unlike with expressions, type-checking types both does some checking and
desugars at the same time. This is necessary because we often want to perform
equality checks on the types right away, and it would be incredibly painful
to do this on un-desugared types. Luckily, desugared types are close enough
to HsTypes to make the error messages sane.
104

105 106 107 108 109 110 111
During type-checking, we perform as little validity checking as possible.
This is because some type-checking is done in a mutually-recursive knot, and
if we look too closely at the tycons, we'll loop. This is why we always must
use mkNakedTyConApp and mkNakedAppTys, etc., which never look at a tycon.
The mkNamed... functions don't uphold Type invariants, but zonkTcTypeToType
will repair this for us. Note that zonkTcType *is* safe within a knot, and
can be done repeatedly with no ill effect: it just squeezes out metavariables.
112

113 114
Generally, after type-checking, you will want to do validity checking, say
with TcValidity.checkValidType.
115 116 117

Validity checking
~~~~~~~~~~~~~~~~~
118
Some of the validity check could in principle be done by the kind checker,
119 120 121 122
but not all:

- During desugaring, we normalise by expanding type synonyms.  Only
  after this step can we check things like type-synonym saturation
123 124
  e.g.  type T k = k Int
        type S a = a
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
  Then (T S) is ok, because T is saturated; (T S) expands to (S Int);
  and then S is saturated.  This is a GHC extension.

- Similarly, also a GHC extension, we look through synonyms before complaining
  about the form of a class or instance declaration

- Ambiguity checks involve functional dependencies, and it's easier to wait
  until knots have been resolved before poking into them

Also, in a mutually recursive group of types, we can't look at the TyCon until we've
finished building the loop.  So to keep things simple, we postpone most validity
checking until step (3).

Knot tying
~~~~~~~~~~
During step (1) we might fault in a TyCon defined in another module, and it might
(via a loop) refer back to a TyCon defined in this module. So when we tie a big
knot around type declarations with ARecThing, so that the fault-in code can get
the TyCon being defined.

145 146
%************************************************************************
%*                                                                      *
147
              Check types AND do validity checking
Austin Seipp's avatar
Austin Seipp committed
148 149 150
*                                                                      *
************************************************************************
-}
151

152 153 154 155 156 157
funsSigCtxt :: [Located Name] -> UserTypeCtxt
-- Returns FunSigCtxt, with no redundant-context-reporting,
-- form a list of located names
funsSigCtxt (L _ name1 : _) = FunSigCtxt name1 False
funsSigCtxt []              = panic "funSigCtxt"

158
addSigCtxt :: UserTypeCtxt -> LHsType GhcRn -> TcM a -> TcM a
159 160 161
addSigCtxt ctxt hs_ty thing_inside
  = setSrcSpan (getLoc hs_ty) $
    addErrCtxt (pprSigCtxt ctxt hs_ty) $
162 163
    thing_inside

164
pprSigCtxt :: UserTypeCtxt -> LHsType GhcRn -> SDoc
165 166 167 168 169 170 171 172 173 174 175 176 177
-- (pprSigCtxt ctxt <extra> <type>)
-- prints    In the type signature for 'f':
--              f :: <type>
-- The <extra> is either empty or "the ambiguity check for"
pprSigCtxt ctxt hs_ty
  | Just n <- isSigMaybe ctxt
  = hang (text "In the type signature:")
       2 (pprPrefixOcc n <+> dcolon <+> ppr hs_ty)

  | otherwise
  = hang (text "In" <+> pprUserTypeCtxt ctxt <> colon)
       2 (ppr hs_ty)

178
tcHsSigWcType :: UserTypeCtxt -> LHsSigWcType GhcRn -> TcM Type
179 180
-- This one is used when we have a LHsSigWcType, but in
-- a place where wildards aren't allowed. The renamer has
Gabor Greif's avatar
Gabor Greif committed
181
-- already checked this, so we can simply ignore it.
182 183
tcHsSigWcType ctxt sig_ty = tcHsSigType ctxt (dropWildCards sig_ty)

184
kcHsSigType :: [Located Name] -> LHsSigType GhcRn -> TcM ()
Alan Zimmerman's avatar
Alan Zimmerman committed
185
kcHsSigType names (HsIB { hsib_body = hs_ty
186
                        , hsib_vars = sig_vars })
187
  = addSigCtxt (funsSigCtxt names) hs_ty $
188 189 190
    discardResult $
    tcImplicitTKBndrsType sig_vars $
    tc_lhs_type typeLevelMode hs_ty liftedTypeKind
191

192
tcClassSigType :: [Located Name] -> LHsSigType GhcRn -> TcM Type
193 194 195 196
-- Does not do validity checking; this must be done outside
-- the recursive class declaration "knot"
tcClassSigType names sig_ty
  = addSigCtxt (funsSigCtxt names) (hsSigType sig_ty) $
Richard Eisenberg's avatar
Richard Eisenberg committed
197
    tc_hs_sig_type_and_gen sig_ty liftedTypeKind
198

199
tcHsSigType :: UserTypeCtxt -> LHsSigType GhcRn -> TcM Type
200 201 202 203
-- Does validity checking
tcHsSigType ctxt sig_ty
  = addSigCtxt ctxt (hsSigType sig_ty) $
    do { kind <- case expectedKindInCtxt ctxt of
204 205
                    AnythingKind -> newMetaKindVar
                    TheKind k    -> return k
206
                    OpenKind     -> newOpenTypeKind
207 208 209
              -- The kind is checked by checkValidType, and isn't necessarily
              -- of kind * in a Template Haskell quote eg [t| Maybe |]

210
          -- Generalise here: see Note [Kind generalisation]
Richard Eisenberg's avatar
Richard Eisenberg committed
211
       ; do_kind_gen <- decideKindGeneralisationPlan sig_ty
212
       ; ty <- if do_kind_gen
Richard Eisenberg's avatar
Richard Eisenberg committed
213 214
               then tc_hs_sig_type_and_gen sig_ty kind
               else tc_hs_sig_type         sig_ty kind >>= zonkTcType
215

216 217 218
       ; checkValidType ctxt ty
       ; return ty }

219
tc_hs_sig_type_and_gen :: LHsSigType GhcRn -> Kind -> TcM Type
220 221 222
-- Kind-checks/desugars an 'LHsSigType',
--   solve equalities,
--   and then kind-generalizes.
Richard Eisenberg's avatar
Richard Eisenberg committed
223 224
-- This will never emit constraints, as it uses solveEqualities interally.
-- No validity checking, but it does zonk en route to generalization
225 226 227 228 229 230
tc_hs_sig_type_and_gen hs_ty kind
  = do { ty <- solveEqualities $
               tc_hs_sig_type hs_ty kind
         -- NB the call to solveEqualities, which unifies all those
         --    kind variables floating about, immediately prior to
         --    kind generalisation
Richard Eisenberg's avatar
Richard Eisenberg committed
231 232
       ; kindGeneralizeType ty }

233
tc_hs_sig_type :: LHsSigType GhcRn -> Kind -> TcM Type
234 235 236
-- Kind-check/desugar a 'LHsSigType', but does not solve
-- the equalities that arise from doing so; instead it may
-- emit kind-equality constraints into the monad
Richard Eisenberg's avatar
Richard Eisenberg committed
237
-- No zonking or validity checking
238 239 240
tc_hs_sig_type (HsIB { hsib_vars = sig_vars
                     , hsib_body = hs_ty }) kind
  = do { (tkvs, ty) <- tcImplicitTKBndrsType sig_vars $
241
                       tc_lhs_type typeLevelMode hs_ty kind
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
242
       ; return (mkSpecForAllTys tkvs ty) }
batterseapower's avatar
batterseapower committed
243

244
-----------------
245
tcHsDeriv :: LHsSigType GhcRn -> TcM ([TyVar], Class, [Type], [Kind])
246
-- Like tcHsSigType, but for the ...deriving( C t1 ty2 ) clause
247
-- Returns the C, [ty1, ty2, and the kinds of C's remaining arguments
248 249
-- E.g.    class C (a::*) (b::k->k)
--         data T a b = ... deriving( C Int )
250
--    returns ([k], C, [k, Int], [k->k])
251
tcHsDeriv hs_ty
252
  = do { cls_kind <- newMetaKindVar
253 254 255 256
                    -- always safe to kind-generalize, because there
                    -- can be no covars in an outer scope
       ; ty <- checkNoErrs $
                 -- avoid redundant error report with "illegal deriving", below
Richard Eisenberg's avatar
Richard Eisenberg committed
257
               tc_hs_sig_type_and_gen hs_ty cls_kind
258
       ; cls_kind <- zonkTcType cls_kind
259
       ; let (tvs, pred) = splitForAllTys ty
260
       ; let (args, _) = splitFunTys cls_kind
261
       ; case getClassPredTys_maybe pred of
262
           Just (cls, tys) -> return (tvs, cls, tys, args)
263
           Nothing -> failWithTc (text "Illegal deriving item" <+> quotes (ppr hs_ty)) }
264

265
tcHsClsInstType :: UserTypeCtxt    -- InstDeclCtxt or SpecInstCtxt
266
                -> LHsSigType GhcRn
267 268
                -> TcM ([TyVar], ThetaType, Class, [Type])
-- Like tcHsSigType, but for a class instance declaration
269 270
tcHsClsInstType user_ctxt hs_inst_ty
  = setSrcSpan (getLoc (hsSigType hs_inst_ty)) $
Richard Eisenberg's avatar
Richard Eisenberg committed
271
    do { inst_ty <- tc_hs_sig_type_and_gen hs_inst_ty constraintKind
272 273
       ; checkValidInstance user_ctxt hs_inst_ty inst_ty }

274
-- Used for 'VECTORISE [SCALAR] instance' declarations
275
tcHsVectInst :: LHsSigType GhcRn -> TcM (Class, [Type])
276
tcHsVectInst ty
277 278
  | let hs_cls_ty = hsSigType ty
  , Just (L _ cls_name, tys) <- hsTyGetAppHead_maybe hs_cls_ty
279
    -- Ignoring the binders looks pretty dodgy to me
280
  = do { (cls, cls_kind) <- tcClass cls_name
281
       ; (applied_class, _res_kind)
282
           <- tcTyApps typeLevelMode hs_cls_ty (mkClassPred cls []) cls_kind tys
283 284 285 286
       ; case tcSplitTyConApp_maybe applied_class of
           Just (_tc, args) -> ASSERT( _tc == classTyCon cls )
                               return (cls, args)
           _ -> failWithTc (text "Too many arguments passed to" <+> ppr cls_name) }
287
  | otherwise
288
  = failWithTc $ text "Malformed instance type"
289

eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
290 291
----------------------------------------------
-- | Type-check a visible type application
292
tcHsTypeApp :: LHsWcType GhcRn -> Kind -> TcM Type
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
293
tcHsTypeApp wc_ty kind
294
  | HsWC { hswc_wcs = sig_wcs, hswc_body = hs_ty } <- wc_ty
Richard Eisenberg's avatar
Richard Eisenberg committed
295
  = do { ty <- tcWildCardBindersX newWildTyVar sig_wcs $ \ _ ->
296
               tcCheckLHsType hs_ty kind
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
297 298 299 300 301 302 303
       ; ty <- zonkTcType ty
       ; checkValidType TypeAppCtxt ty
       ; return ty }
        -- NB: we don't call emitWildcardHoleConstraints here, because
        -- we want any holes in visible type applications to be used
        -- without fuss. No errors, warnings, extensions, etc.

Austin Seipp's avatar
Austin Seipp committed
304 305 306
{-
************************************************************************
*                                                                      *
307
            The main kind checker: no validity checks here
Richard Eisenberg's avatar
Richard Eisenberg committed
308 309
*                                                                      *
************************************************************************
310 311

        First a couple of simple wrappers for kcHsType
Austin Seipp's avatar
Austin Seipp committed
312
-}
313

dreixel's avatar
dreixel committed
314
---------------------------
315
tcHsOpenType, tcHsLiftedType,
316
  tcHsOpenTypeNC, tcHsLiftedTypeNC :: LHsType GhcRn -> TcM TcType
317 318
-- Used for type signatures
-- Do not do validity checking
319 320 321
tcHsOpenType ty   = addTypeCtxt ty $ tcHsOpenTypeNC ty
tcHsLiftedType ty = addTypeCtxt ty $ tcHsLiftedTypeNC ty

322
tcHsOpenTypeNC   ty = do { ek <- newOpenTypeKind
323 324
                         ; tc_lhs_type typeLevelMode ty ek }
tcHsLiftedTypeNC ty = tc_lhs_type typeLevelMode ty liftedTypeKind
325 326

-- Like tcHsType, but takes an expected kind
327
tcCheckLHsType :: LHsType GhcRn -> Kind -> TcM TcType
328
tcCheckLHsType hs_ty exp_kind
329
  = addTypeCtxt hs_ty $
330
    tc_lhs_type typeLevelMode hs_ty exp_kind
331

332
tcLHsType :: LHsType GhcRn -> TcM (TcType, TcKind)
333
-- Called from outside: set the context
334
tcLHsType ty = addTypeCtxt ty (tc_infer_lhs_type typeLevelMode ty)
dreixel's avatar
dreixel committed
335

336
---------------------------
337
-- | Should we generalise the kind of this type signature?
Richard Eisenberg's avatar
Richard Eisenberg committed
338
-- We *should* generalise if the type is closed
339
-- or if NoMonoLocalBinds is set. Otherwise, nope.
340
-- See Note [Kind generalisation plan]
341
decideKindGeneralisationPlan :: LHsSigType GhcRn -> TcM Bool
Richard Eisenberg's avatar
Richard Eisenberg committed
342
decideKindGeneralisationPlan sig_ty@(HsIB { hsib_closed = closed })
343
  = do { mono_locals <- xoptM LangExt.MonoLocalBinds
Richard Eisenberg's avatar
Richard Eisenberg committed
344
       ; let should_gen = not mono_locals || closed
345
       ; traceTc "decideKindGeneralisationPlan"
Richard Eisenberg's avatar
Richard Eisenberg committed
346
           (ppr sig_ty $$ text "should gen?" <+> ppr should_gen)
347 348
       ; return should_gen }

349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
{- Note [Kind generalisation plan]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When should we do kind-generalisation for user-written type signature?
Answer: we use the same rule as for value bindings:

 * We always kind-generalise if the type signature is closed
 * Additionally, we attempt to generalise if we have NoMonoLocalBinds

Trac #13337 shows the problem if we kind-generalise an open type (i.e.
one that mentions in-scope tpe variable
  foo :: forall k (a :: k) proxy. (Typeable k, Typeable a)
      => proxy a -> String
  foo _ = case eqT :: Maybe (k :~: Type) of
            Nothing   -> ...
            Just Refl -> case eqT :: Maybe (a :~: Int) of ...

In the expression type sig on the last line, we have (a :: k)
but (Int :: Type).  Since (:~:) is kind-homogeneous, this requires
k ~ *, which is true in the Refl branch of the outer case.

That equality will be solved if we allow it to float out to the
implication constraint for the Refl match, bnot not if we aggressively
attempt to solve all equalities the moment they occur; that is, when
checking (Maybe (a :~: Int)).   (NB: solveEqualities fails unless it
solves all the kind equalities, which is the right thing at top level.)

So here the right thing is simply not to do kind generalisation!

377 378 379 380 381 382 383 384 385 386 387 388
************************************************************************
*                                                                      *
      Type-checking modes
*                                                                      *
************************************************************************

The kind-checker is parameterised by a TcTyMode, which contains some
information about where we're checking a type.

The renamer issues errors about what it can. All errors issued here must
concern things that the renamer can't handle.

Austin Seipp's avatar
Austin Seipp committed
389
-}
390

eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
391 392 393 394 395
-- | Info about the context in which we're checking a type. Currently,
-- differentiates only between types and kinds, but this will likely
-- grow, at least to include the distinction between patterns and
-- not-patterns.
newtype TcTyMode
396 397 398 399 400 401 402 403 404 405 406 407 408
  = TcTyMode { mode_level :: TypeOrKind  -- True <=> type, False <=> kind
             }

typeLevelMode :: TcTyMode
typeLevelMode = TcTyMode { mode_level = TypeLevel }

kindLevelMode :: TcTyMode
kindLevelMode = TcTyMode { mode_level = KindLevel }

-- switch to kind level
kindLevel :: TcTyMode -> TcTyMode
kindLevel mode = mode { mode_level = KindLevel }

eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
409 410 411
instance Outputable TcTyMode where
  ppr = ppr . mode_level

412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
{-
Note [Bidirectional type checking]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In expressions, whenever we see a polymorphic identifier, say `id`, we are
free to instantiate it with metavariables, knowing that we can always
re-generalize with type-lambdas when necessary. For example:

  rank2 :: (forall a. a -> a) -> ()
  x = rank2 id

When checking the body of `x`, we can instantiate `id` with a metavariable.
Then, when we're checking the application of `rank2`, we notice that we really
need a polymorphic `id`, and then re-generalize over the unconstrained
metavariable.

In types, however, we're not so lucky, because *we cannot re-generalize*!
There is no lambda. So, we must be careful only to instantiate at the last
possible moment, when we're sure we're never going to want the lost polymorphism
430
again. This is done in calls to tcInstBinders.
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456

To implement this behavior, we use bidirectional type checking, where we
explicitly think about whether we know the kind of the type we're checking
or not. Note that there is a difference between not knowing a kind and
knowing a metavariable kind: the metavariables are TauTvs, and cannot become
forall-quantified kinds. Previously (before dependent types), there were
no higher-rank kinds, and so we could instantiate early and be sure that
no types would have polymorphic kinds, and so we could always assume that
the kind of a type was a fresh metavariable. Not so anymore, thus the
need for two algorithms.

For HsType forms that can never be kind-polymorphic, we implement only the
"down" direction, where we safely assume a metavariable kind. For HsType forms
that *can* be kind-polymorphic, we implement just the "up" (functions with
"infer" in their name) version, as we gain nothing by also implementing the
"down" version.

Note [Future-proofing the type checker]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
As discussed in Note [Bidirectional type checking], each HsType form is
handled in *either* tc_infer_hs_type *or* tc_hs_type. These functions
are mutually recursive, so that either one can work for any type former.
But, we want to make sure that our pattern-matches are complete. So,
we have a bunch of repetitive code just so that we get warnings if we're
missing any patterns.
-}
457

458
------------------------------------------
459 460 461
-- | Check and desugar a type, returning the core type and its
-- possibly-polymorphic kind. Much like 'tcInferRho' at the expression
-- level.
462
tc_infer_lhs_type :: TcTyMode -> LHsType GhcRn -> TcM (TcType, TcKind)
463 464
tc_infer_lhs_type mode (L span ty)
  = setSrcSpan span $
465 466
    do { (ty', kind) <- tc_infer_hs_type mode ty
       ; return (ty', kind) }
467 468 469

-- | Infer the kind of a type and desugar. This is the "up" type-checker,
-- as described in Note [Bidirectional type checking]
470
tc_infer_hs_type :: TcTyMode -> HsType GhcRn -> TcM (TcType, TcKind)
Alan Zimmerman's avatar
Alan Zimmerman committed
471
tc_infer_hs_type mode (HsTyVar _ (L _ tv)) = tcTyVar mode tv
472 473 474 475
tc_infer_hs_type mode (HsAppTy ty1 ty2)
  = do { let (fun_ty, arg_tys) = splitHsAppTys ty1 [ty2]
       ; (fun_ty', fun_kind) <- tc_infer_lhs_type mode fun_ty
       ; fun_kind' <- zonkTcType fun_kind
476
       ; tcTyApps mode fun_ty fun_ty' fun_kind' arg_tys }
477
tc_infer_hs_type mode (HsParTy t)     = tc_infer_lhs_type mode t
478
tc_infer_hs_type mode (HsOpTy lhs (L loc_op op) rhs)
479 480 481
  | not (op `hasKey` funTyConKey)
  = do { (op', op_kind) <- tcTyVar mode op
       ; op_kind' <- zonkTcType op_kind
482
       ; tcTyApps mode (noLoc $ HsTyVar NotPromoted (L loc_op op)) op' op_kind' [lhs, rhs] }
483 484 485 486
tc_infer_hs_type mode (HsKindSig ty sig)
  = do { sig' <- tc_lhs_kind (kindLevel mode) sig
       ; ty' <- tc_lhs_type mode ty sig'
       ; return (ty', sig') }
487 488 489 490 491 492 493 494
-- HsSpliced is an annotation produced by 'RnSplice.rnSpliceType' to communicate
-- the splice location to the typechecker. Here we skip over it in order to have
-- the same kind inferred for a given expression whether it was produced from
-- splices or not.
--
-- See Note [Delaying modFinalizers in untyped splices].
tc_infer_hs_type mode (HsSpliceTy (HsSpliced _ (HsSplicedTy ty)) _)
  = tc_infer_hs_type mode ty
495 496 497 498 499 500 501
tc_infer_hs_type mode (HsDocTy ty _) = tc_infer_lhs_type mode ty
tc_infer_hs_type _    (HsCoreTy ty)  = return (ty, typeKind ty)
tc_infer_hs_type mode other_ty
  = do { kv <- newMetaKindVar
       ; ty' <- tc_hs_type mode other_ty kv
       ; return (ty', kv) }

502
------------------------------------------
503
tc_lhs_type :: TcTyMode -> LHsType GhcRn -> TcKind -> TcM TcType
504
tc_lhs_type mode (L span ty) exp_kind
505
  = setSrcSpan span $
506 507
    do { ty' <- tc_hs_type mode ty exp_kind
       ; return ty' }
508

509
------------------------------------------
510 511
tc_fun_type :: TcTyMode -> LHsType GhcRn -> LHsType GhcRn -> TcKind
            -> TcM TcType
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
512 513
tc_fun_type mode ty1 ty2 exp_kind = case mode_level mode of
  TypeLevel ->
514 515 516 517
    do { arg_k <- newOpenTypeKind
       ; res_k <- newOpenTypeKind
       ; ty1' <- tc_lhs_type mode ty1 arg_k
       ; ty2' <- tc_lhs_type mode ty2 res_k
518
       ; checkExpectedKind (HsFunTy ty1 ty2) (mkFunTy ty1' ty2') liftedTypeKind exp_kind }
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
519 520 521
  KindLevel ->  -- no representation polymorphism in kinds. yet.
    do { ty1' <- tc_lhs_type mode ty1 liftedTypeKind
       ; ty2' <- tc_lhs_type mode ty2 liftedTypeKind
522
       ; checkExpectedKind (HsFunTy ty1 ty2) (mkFunTy ty1' ty2') liftedTypeKind exp_kind }
523

524
------------------------------------------
525
-- See also Note [Bidirectional type checking]
526
tc_hs_type :: TcTyMode -> HsType GhcRn -> TcKind -> TcM TcType
527 528 529
tc_hs_type mode (HsParTy ty)   exp_kind = tc_lhs_type mode ty exp_kind
tc_hs_type mode (HsDocTy ty _) exp_kind = tc_lhs_type mode ty exp_kind
tc_hs_type _ ty@(HsBangTy {}) _
530 531 532
    -- While top-level bangs at this point are eliminated (eg !(Maybe Int)),
    -- other kinds of bangs are not (eg ((!Maybe) Int)). These kinds of
    -- bangs are invalid, so fail. (#7210)
533
    = failWithTc (text "Unexpected strictness annotation:" <+> ppr ty)
534
tc_hs_type _ ty@(HsRecTy _)      _
535
      -- Record types (which only show up temporarily in constructor
536
      -- signatures) should have been removed by now
537
    = failWithTc (text "Record syntax is illegal here:" <+> ppr ty)
538

539 540 541 542 543 544 545 546 547 548 549 550
-- HsSpliced is an annotation produced by 'RnSplice.rnSpliceType'.
-- Here we get rid of it and add the finalizers to the global environment
-- while capturing the local environment.
--
-- See Note [Delaying modFinalizers in untyped splices].
tc_hs_type mode (HsSpliceTy (HsSpliced mod_finalizers (HsSplicedTy ty))
                            _
                )
           exp_kind
  = do addModFinalizersWithLclEnv mod_finalizers
       tc_hs_type mode ty exp_kind

551 552
-- This should never happen; type splices are expanded by the renamer
tc_hs_type _ ty@(HsSpliceTy {}) _exp_kind
553
  = failWithTc (text "Unexpected type splice:" <+> ppr ty)
554

555 556 557
---------- Functions and applications
tc_hs_type mode (HsFunTy ty1 ty2) exp_kind
  = tc_fun_type mode ty1 ty2 exp_kind
558

559
tc_hs_type mode (HsOpTy ty1 (L _ op) ty2) exp_kind
560
  | op `hasKey` funTyConKey
561
  = tc_fun_type mode ty1 ty2 exp_kind
562 563

--------- Foralls
564
tc_hs_type mode (HsForAllTy { hst_bndrs = hs_tvs, hst_body = ty }) exp_kind
565
  = fmap fst $
566
    tcExplicitTKBndrs hs_tvs $ \ tvs' ->
567
    -- Do not kind-generalise here!  See Note [Kind generalisation]
568
    -- Why exp_kind?  See Note [Body kind of HsForAllTy]
569 570
    do { ty' <- tc_lhs_type mode ty exp_kind
       ; let bound_vars = allBoundVariables ty'
Simon Peyton Jones's avatar
Simon Peyton Jones committed
571
             bndrs      = mkTyVarBinders Specified tvs'
572
       ; return (mkForAllTys bndrs ty', bound_vars) }
573

574
tc_hs_type mode (HsQualTy { hst_ctxt = ctxt, hst_body = ty }) exp_kind
575 576 577 578
  | null (unLoc ctxt)
  = tc_lhs_type mode ty exp_kind

  | otherwise
579
  = do { ctxt' <- tc_hs_context mode ctxt
580 581 582 583

         -- See Note [Body kind of a HsQualTy]
       ; ty' <- if isConstraintKind exp_kind
                then tc_lhs_type mode ty constraintKind
584 585 586
                else do { ek <- newOpenTypeKind
                                -- The body kind (result of the function)
                                -- can be * or #, hence newOpenTypeKind
587 588
                        ; ty' <- tc_lhs_type mode ty ek
                        ; checkExpectedKind (unLoc ty) ty' liftedTypeKind exp_kind }
589 590

       ; return (mkPhiTy ctxt' ty') }
591 592

--------- Lists, arrays, and tuples
593
tc_hs_type mode rn_ty@(HsListTy elt_ty) exp_kind
594
  = do { tau_ty <- tc_lhs_type mode elt_ty liftedTypeKind
595
       ; checkWiredInTyCon listTyCon
596
       ; checkExpectedKind rn_ty (mkListTy tau_ty) liftedTypeKind exp_kind }
597

598
tc_hs_type mode rn_ty@(HsPArrTy elt_ty) exp_kind
599 600
  = do { MASSERT( isTypeLevel (mode_level mode) )
       ; tau_ty <- tc_lhs_type mode elt_ty liftedTypeKind
601
       ; checkWiredInTyCon parrTyCon
602
       ; checkExpectedKind rn_ty (mkPArrTy tau_ty) liftedTypeKind exp_kind }
603

dreixel's avatar
dreixel committed
604
-- See Note [Distinguishing tuple kinds] in HsTypes
605
-- See Note [Inferring tuple kinds]
606
tc_hs_type mode rn_ty@(HsTupleTy HsBoxedOrConstraintTuple hs_tys) exp_kind
607
     -- (NB: not zonking before looking at exp_k, to avoid left-right bias)
608
  | Just tup_sort <- tupKindSort_maybe exp_kind
609
  = traceTc "tc_hs_type tuple" (ppr hs_tys) >>
610
    tc_tuple rn_ty mode tup_sort hs_tys exp_kind
dreixel's avatar
dreixel committed
611
  | otherwise
Austin Seipp's avatar
Austin Seipp committed
612
  = do { traceTc "tc_hs_type tuple 2" (ppr hs_tys)
613 614
       ; (tys, kinds) <- mapAndUnzipM (tc_infer_lhs_type mode) hs_tys
       ; kinds <- mapM zonkTcType kinds
615 616 617 618 619 620
           -- Infer each arg type separately, because errors can be
           -- confusing if we give them a shared kind.  Eg Trac #7410
           -- (Either Int, Int), we do not want to get an error saying
           -- "the second argument of a tuple should have kind *->*"

       ; let (arg_kind, tup_sort)
621 622 623
               = case [ (k,s) | k <- kinds
                              , Just s <- [tupKindSort_maybe k] ] of
                    ((k,s) : _) -> (k,s)
624
                    [] -> (liftedTypeKind, BoxedTuple)
625 626
         -- In the [] case, it's not clear what the kind is, so guess *

627
       ; tys' <- sequence [ setSrcSpan loc $
628 629
                            checkExpectedKind hs_ty ty kind arg_kind
                          | ((L loc hs_ty),ty,kind) <- zip3 hs_tys tys kinds ]
630

631
       ; finish_tuple rn_ty tup_sort tys' (map (const arg_kind) tys') exp_kind }
632

dreixel's avatar
dreixel committed
633

634 635
tc_hs_type mode rn_ty@(HsTupleTy hs_tup_sort tys) exp_kind
  = tc_tuple rn_ty mode tup_sort tys exp_kind
636 637 638 639 640 641 642
  where
    tup_sort = case hs_tup_sort of  -- Fourth case dealt with above
                  HsUnboxedTuple    -> UnboxedTuple
                  HsBoxedTuple      -> BoxedTuple
                  HsConstraintTuple -> ConstraintTuple
                  _                 -> panic "tc_hs_type HsTupleTy"

643
tc_hs_type mode rn_ty@(HsSumTy hs_tys) exp_kind
644
  = do { let arity = length hs_tys
645 646
       ; arg_kinds <- mapM (\_ -> newOpenTypeKind) hs_tys
       ; tau_tys   <- zipWithM (tc_lhs_type mode) hs_tys arg_kinds
647
       ; let arg_reps = map getRuntimeRepFromKind arg_kinds
Richard Eisenberg's avatar
Richard Eisenberg committed
648
             arg_tys  = arg_reps ++ tau_tys
649 650
       ; checkExpectedKind rn_ty
                           (mkTyConApp (sumTyCon arity) arg_tys)
Richard Eisenberg's avatar
Richard Eisenberg committed
651 652
                           (unboxedSumKind arg_reps)
                           exp_kind
653
       }
dreixel's avatar
dreixel committed
654

655
--------- Promoted lists and tuples
656
tc_hs_type mode rn_ty@(HsExplicitListTy _ _k tys) exp_kind
657
  = do { tks <- mapM (tc_infer_lhs_type mode) tys
658
       ; (taus', kind) <- unifyKinds tys tks
659
       ; let ty = (foldr (mk_cons kind) (mk_nil kind) taus')
660
       ; checkExpectedKind rn_ty ty (mkListTy kind) exp_kind }
661
  where
662 663
    mk_cons k a b = mkTyConApp (promoteDataCon consDataCon) [k, a, b]
    mk_nil  k     = mkTyConApp (promoteDataCon nilDataCon) [k]
664

665
tc_hs_type mode rn_ty@(HsExplicitTupleTy _ tys) exp_kind
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
666 667 668 669 670 671
  -- using newMetaKindVar means that we force instantiations of any polykinded
  -- types. At first, I just used tc_infer_lhs_type, but that led to #11255.
  = do { ks   <- replicateM arity newMetaKindVar
       ; taus <- zipWithM (tc_lhs_type mode) tys ks
       ; let kind_con   = tupleTyCon           Boxed arity
             ty_con     = promotedTupleDataCon Boxed arity
672
             tup_k      = mkTyConApp kind_con ks
673
       ; checkExpectedKind rn_ty (mkTyConApp ty_con (ks ++ taus)) tup_k exp_kind }
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
674 675
  where
    arity = length tys
676 677

--------- Constraint types
678
tc_hs_type mode rn_ty@(HsIParamTy (L _ n) ty) exp_kind
679 680
  = do { MASSERT( isTypeLevel (mode_level mode) )
       ; ty' <- tc_lhs_type mode ty liftedTypeKind
681
       ; let n' = mkStrLitTy $ hsIPNameFS n
682
       ; ipClass <- tcLookupClass ipClassName
683
       ; checkExpectedKind rn_ty (mkClassPred ipClass [n',ty'])
684 685
           constraintKind exp_kind }

686
tc_hs_type mode rn_ty@(HsEqTy ty1 ty2) exp_kind
687 688
  = do { (ty1', kind1) <- tc_infer_lhs_type mode ty1
       ; (ty2', kind2) <- tc_infer_lhs_type mode ty2
689
       ; ty2'' <- checkExpectedKind (unLoc ty2) ty2' kind2 kind1
690 691
       ; eq_tc <- tcLookupTyCon eqTyConName
       ; let ty' = mkNakedTyConApp eq_tc [kind1, ty1', ty2'']
692
       ; checkExpectedKind rn_ty ty' constraintKind exp_kind }
693 694

--------- Literals
695
tc_hs_type _ rn_ty@(HsTyLit (HsNumTy _ n)) exp_kind
696
  = do { checkWiredInTyCon typeNatKindCon
697
       ; checkExpectedKind rn_ty (mkNumLitTy n) typeNatKind exp_kind }
698

699
tc_hs_type _ rn_ty@(HsTyLit (HsStrTy _ s)) exp_kind
700
  = do { checkWiredInTyCon typeSymbolKindCon
701
       ; checkExpectedKind rn_ty (mkStrLitTy s) typeSymbolKind exp_kind }
702 703 704 705 706 707 708 709 710 711

--------- Potentially kind-polymorphic types: call the "up" checker
-- See Note [Future-proofing the type checker]
tc_hs_type mode ty@(HsTyVar {})   ek = tc_infer_hs_type_ek mode ty ek
tc_hs_type mode ty@(HsAppTy {})   ek = tc_infer_hs_type_ek mode ty ek
tc_hs_type mode ty@(HsOpTy {})    ek = tc_infer_hs_type_ek mode ty ek
tc_hs_type mode ty@(HsKindSig {}) ek = tc_infer_hs_type_ek mode ty ek
tc_hs_type mode ty@(HsCoreTy {})  ek = tc_infer_hs_type_ek mode ty ek

tc_hs_type _ (HsWildCardTy wc) exp_kind
712 713
  = do { wc_tv <- tcWildCardOcc wc exp_kind
       ; return (mkTyVarTy wc_tv) }
714 715 716 717 718

-- disposed of by renamer
tc_hs_type _ ty@(HsAppsTy {}) _
  = pprPanic "tc_hs_tyep HsAppsTy" (ppr ty)

719
tcWildCardOcc :: HsWildCardInfo GhcRn -> Kind -> TcM TcTyVar
720 721 722 723 724 725 726
tcWildCardOcc wc_info exp_kind
  = do { wc_tv <- tcLookupTyVar (wildCardName wc_info)
          -- The wildcard's kind should be an un-filled-in meta tyvar
       ; let Just wc_kind_var = tcGetTyVar_maybe (tyVarKind wc_tv)
       ; writeMetaTyVar wc_kind_var exp_kind
       ; return wc_tv }

727 728
---------------------------
-- | Call 'tc_infer_hs_type' and check its result against an expected kind.
729
tc_infer_hs_type_ek :: TcTyMode -> HsType GhcRn -> TcKind -> TcM TcType
Simon Peyton Jones's avatar
Simon Peyton Jones committed
730 731 732
tc_infer_hs_type_ek mode hs_ty ek
  = do { (ty, k) <- tc_infer_hs_type mode hs_ty
       ; checkExpectedKind hs_ty ty k ek }
thomasw's avatar
thomasw committed
733

734
---------------------------
735
tupKindSort_maybe :: TcKind -> Maybe TupleSort
736
tupKindSort_maybe k
Simon Peyton Jones's avatar
Simon Peyton Jones committed
737
  | Just (k', _) <- splitCastTy_maybe k = tupKindSort_maybe k'
Ben Gamari's avatar
Ben Gamari committed
738
  | Just k'      <- tcView k            = tupKindSort_maybe k'
739 740
  | isConstraintKind k = Just ConstraintTuple
  | isLiftedTypeKind k = Just BoxedTuple
741 742
  | otherwise          = Nothing

743 744
tc_tuple :: HsType GhcRn -> TcTyMode -> TupleSort -> [LHsType GhcRn] -> TcKind -> TcM TcType
tc_tuple rn_ty mode tup_sort tys exp_kind
745 746
  = do { arg_kinds <- case tup_sort of
           BoxedTuple      -> return (nOfThem arity liftedTypeKind)
747
           UnboxedTuple    -> mapM (\_ -> newOpenTypeKind) tys
748 749
           ConstraintTuple -> return (nOfThem arity constraintKind)
       ; tau_tys <- zipWithM (tc_lhs_type mode) tys arg_kinds
750
       ; finish_tuple rn_ty tup_sort tau_tys arg_kinds exp_kind }
dreixel's avatar
dreixel committed
751
  where
752 753
    arity   = length tys

754 755
finish_tuple :: HsType GhcRn
             -> TupleSort
756 757 758 759
             -> [TcType]    -- ^ argument types
             -> [TcKind]    -- ^ of these kinds
             -> TcKind      -- ^ expected kind of the whole tuple
             -> TcM TcType
760
finish_tuple rn_ty tup_sort tau_tys tau_kinds exp_kind
761 762
  = do { traceTc "finish_tuple" (ppr res_kind $$ ppr tau_kinds $$ ppr exp_kind)
       ; let arg_tys  = case tup_sort of
763
                   -- See also Note [Unboxed tuple RuntimeRep vars] in TyCon
Richard Eisenberg's avatar
Richard Eisenberg committed
764
                 UnboxedTuple    -> tau_reps ++ tau_tys
765 766
                 BoxedTuple      -> tau_tys
                 ConstraintTuple -> tau_tys
767
       ; tycon <- case tup_sort of
768 769 770 771 772 773 774 775
           ConstraintTuple
             | arity > mAX_CTUPLE_SIZE
                         -> failWith (bigConstraintTuple arity)
             | otherwise -> tcLookupTyCon (cTupleTyConName arity)
           BoxedTuple    -> do { let tc = tupleTyCon Boxed arity
                               ; checkWiredInTyCon tc
                               ; return tc }
           UnboxedTuple  -> return (tupleTyCon Unboxed arity)
776
       ; checkExpectedKind rn_ty (mkTyConApp tycon arg_tys) res_kind exp_kind }
777
  where
778
    arity = length tau_tys
779
    tau_reps = map getRuntimeRepFromKind tau_kinds
780
    res_kind = case tup_sort of
Richard Eisenberg's avatar
Richard Eisenberg committed
781
                 UnboxedTuple    -> unboxedTupleKind tau_reps
782 783
                 BoxedTuple      -> liftedTypeKind
                 ConstraintTuple -> constraintKind
784