Commit 72462499 authored by simonpj@microsoft.com's avatar simonpj@microsoft.com

The Big INLINE Patch: totally reorganise way that INLINE pragmas work

This patch has been a long time in gestation and has, as a
result, accumulated some extra bits and bobs that are only
loosely related.  I separated the bits that are easy to split
off, but the rest comes as one big patch, I'm afraid.

Note that:
 * It comes together with a patch to the 'base' library
 * Interface file formats change slightly, so you need to
   recompile all libraries

The patch is mainly giant tidy-up, driven in part by the
particular stresses of the Data Parallel Haskell project. I don't
expect a big performance win for random programs.  Still, here are the
nofib results, relative to the state of affairs without the patch

        Program           Size    Allocs   Runtime   Elapsed
--------------------------------------------------------------------------------
            Min         -12.7%    -14.5%    -17.5%    -17.8%
            Max          +4.7%    +10.9%     +9.1%     +8.4%
 Geometric Mean          +0.9%     -0.1%     -5.6%     -7.3%

The +10.9% allocation outlier is rewrite, which happens to have a
very delicate optimisation opportunity involving an interaction
of CSE and inlining (see nofib/Simon-nofib-notes). The fact that
the 'before' case found the optimisation is somewhat accidental.
Runtimes seem to go down, but I never kno wwhether to really trust
this number.  Binary sizes wobble a bit, but nothing drastic.


The Main Ideas are as follows.

InlineRules
~~~~~~~~~~~
When you say 
      {-# INLINE f #-}
      f x = <rhs>
you intend that calls (f e) are replaced by <rhs>[e/x] So we
should capture (\x.<rhs>) in the Unfolding of 'f', and never meddle
with it.  Meanwhile, we can optimise <rhs> to our heart's content,
leaving the original unfolding intact in Unfolding of 'f'.

So the representation of an Unfolding has changed quite a bit
(see CoreSyn).  An INLINE pragma gives rise to an InlineRule 
unfolding.  

Moreover, it's only used when 'f' is applied to the
specified number of arguments; that is, the number of argument on 
the LHS of the '=' sign in the original source definition. 
For example, (.) is now defined in the libraries like this
   {-# INLINE (.) #-}
   (.) f g = \x -> f (g x)
so that it'll inline when applied to two arguments. If 'x' appeared
on the left, thus
   (.) f g x = f (g x)
it'd only inline when applied to three arguments.  This slightly-experimental
change was requested by Roman, but it seems to make sense.

Other associated changes

* Moving the deck chairs in DsBinds, which processes the INLINE pragmas

* In the old system an INLINE pragma made the RHS look like
   (Note InlineMe <rhs>)
  The Note switched off optimisation in <rhs>.  But it was quite
  fragile in corner cases. The new system is more robust, I believe.
  In any case, the InlineMe note has disappeared 

* The workerInfo of an Id has also been combined into its Unfolding,
  so it's no longer a separate field of the IdInfo.

* Many changes in CoreUnfold, esp in callSiteInline, which is the critical
  function that decides which function to inline.  Lots of comments added!

* exprIsConApp_maybe has moved to CoreUnfold, since it's so strongly
  associated with "does this expression unfold to a constructor application".
  It can now do some limited beta reduction too, which Roman found 
  was an important.

Instance declarations
~~~~~~~~~~~~~~~~~~~~~
It's always been tricky to get the dfuns generated from instance
declarations to work out well.  This is particularly important in 
the Data Parallel Haskell project, and I'm now on my fourth attempt,
more or less.

There is a detailed description in TcInstDcls, particularly in
Note [How instance declarations are translated].   Roughly speaking
we now generate a top-level helper function for every method definition
in an instance declaration, so that the dfun takes a particularly
stylised form:
  dfun a d1 d2 = MkD (op1 a d1 d2) (op2 a d1 d2) ...etc...

In fact, it's *so* stylised that we never need to unfold a dfun.
Instead ClassOps have a special rewrite rule that allows us to
short-cut dictionary selection.  Suppose dfun :: Ord a -> Ord [a]
                                            d :: Ord a
Then   
    compare (dfun a d)  -->   compare_list a d 
in one rewrite, without first inlining the 'compare' selector
and the body of the dfun.

To support this
a) ClassOps have a BuiltInRule (see MkId.dictSelRule)
b) DFuns have a special form of unfolding (CoreSyn.DFunUnfolding)
   which is exploited in CoreUnfold.exprIsConApp_maybe

Implmenting all this required a root-and-branch rework of TcInstDcls
and bits of TcClassDcl.


Default methods
~~~~~~~~~~~~~~~
If you give an INLINE pragma to a default method, it should be just
as if you'd written out that code in each instance declaration, including
the INLINE pragma.  I think that it now *is* so.  As a result, library
code can be simpler; less duplication.


The CONLIKE pragma
~~~~~~~~~~~~~~~~~~
In the DPH project, Roman found cases where he had

   p n k = let x = replicate n k
           in ...(f x)...(g x)....

   {-# RULE f (replicate x) = f_rep x #-}

Normally the RULE would not fire, because doing so involves 
(in effect) duplicating the redex (replicate n k).  A new
experimental modifier to the INLINE pragma, {-# INLINE CONLIKE
replicate #-}, allows you to tell GHC to be prepared to duplicate
a call of this function if it allows a RULE to fire.

See Note [CONLIKE pragma] in BasicTypes


Join points
~~~~~~~~~~~
See Note [Case binders and join points] in Simplify


Other refactoring
~~~~~~~~~~~~~~~~~
* I moved endPass from CoreLint to CoreMonad, with associated jigglings

* Better pretty-printing of Core

* The top-level RULES (ones that are not rules for locally-defined things)
  are now substituted on every simplifier iteration.  I'm not sure how
  we got away without doing this before.  This entails a bit more plumbing
  in SimplCore.

* The necessary stuff to serialise and deserialise the new
  info across interface files.

* Something about bottoming floats in SetLevels
      Note [Bottoming floats]

* substUnfolding has moved from SimplEnv to CoreSubs, where it belongs


--------------------------------------------------------------------------------
        Program           Size    Allocs   Runtime   Elapsed
--------------------------------------------------------------------------------
           anna          +2.4%     -0.5%      0.16      0.17
           ansi          +2.6%     -0.1%      0.00      0.00
           atom          -3.8%     -0.0%     -1.0%     -2.5%
         awards          +3.0%     +0.7%      0.00      0.00
         banner          +3.3%     -0.0%      0.00      0.00
     bernouilli          +2.7%     +0.0%     -4.6%     -6.9%
          boyer          +2.6%     +0.0%      0.06      0.07
         boyer2          +4.4%     +0.2%      0.01      0.01
           bspt          +3.2%     +9.6%      0.02      0.02
      cacheprof          +1.4%     -1.0%    -12.2%    -13.6%
       calendar          +2.7%     -1.7%      0.00      0.00
       cichelli          +3.7%     -0.0%      0.13      0.14
        circsim          +3.3%     +0.0%     -2.3%     -9.9%
       clausify          +2.7%     +0.0%      0.05      0.06
  comp_lab_zift          +2.6%     -0.3%     -7.2%     -7.9%
       compress          +3.3%     +0.0%     -8.5%     -9.6%
      compress2          +3.6%     +0.0%    -15.1%    -17.8%
    constraints          +2.7%     -0.6%    -10.0%    -10.7%
   cryptarithm1          +4.5%     +0.0%     -4.7%     -5.7%
   cryptarithm2          +4.3%    -14.5%      0.02      0.02
            cse          +4.4%     -0.0%      0.00      0.00
          eliza          +2.8%     -0.1%      0.00      0.00
          event          +2.6%     -0.0%     -4.9%     -4.4%
         exp3_8          +2.8%     +0.0%     -4.5%     -9.5%
         expert          +2.7%     +0.3%      0.00      0.00
            fem          -2.0%     +0.6%      0.04      0.04
            fft          -6.0%     +1.8%      0.05      0.06
           fft2          -4.8%     +2.7%      0.13      0.14
       fibheaps          +2.6%     -0.6%      0.05      0.05
           fish          +4.1%     +0.0%      0.03      0.04
          fluid          -2.1%     -0.2%      0.01      0.01
         fulsom          -4.8%     +9.2%     +9.1%     +8.4%
         gamteb          -7.1%     -1.3%      0.10      0.11
            gcd          +2.7%     +0.0%      0.05      0.05
    gen_regexps          +3.9%     -0.0%      0.00      0.00
         genfft          +2.7%     -0.1%      0.05      0.06
             gg          -2.7%     -0.1%      0.02      0.02
           grep          +3.2%     -0.0%      0.00      0.00
         hidden          -0.5%     +0.0%    -11.9%    -13.3%
            hpg          -3.0%     -1.8%     +0.0%     -2.4%
            ida          +2.6%     -1.2%      0.17     -9.0%
          infer          +1.7%     -0.8%      0.08      0.09
        integer          +2.5%     -0.0%     -2.6%     -2.2%
      integrate          -5.0%     +0.0%     -1.3%     -2.9%
        knights          +4.3%     -1.5%      0.01      0.01
           lcss          +2.5%     -0.1%     -7.5%     -9.4%
           life          +4.2%     +0.0%     -3.1%     -3.3%
           lift          +2.4%     -3.2%      0.00      0.00
      listcompr          +4.0%     -1.6%      0.16      0.17
       listcopy          +4.0%     -1.4%      0.17      0.18
       maillist          +4.1%     +0.1%      0.09      0.14
         mandel          +2.9%     +0.0%      0.11      0.12
        mandel2          +4.7%     +0.0%      0.01      0.01
        minimax          +3.8%     -0.0%      0.00      0.00
        mkhprog          +3.2%     -4.2%      0.00      0.00
     multiplier          +2.5%     -0.4%     +0.7%     -1.3%
       nucleic2          -9.3%     +0.0%      0.10      0.10
           para          +2.9%     +0.1%     -0.7%     -1.2%
      paraffins         -10.4%     +0.0%      0.20     -1.9%
         parser          +3.1%     -0.0%      0.05      0.05
        parstof          +1.9%     -0.0%      0.00      0.01
            pic          -2.8%     -0.8%      0.01      0.02
          power          +2.1%     +0.1%     -8.5%     -9.0%
         pretty         -12.7%     +0.1%      0.00      0.00
         primes          +2.8%     +0.0%      0.11      0.11
      primetest          +2.5%     -0.0%     -2.1%     -3.1%
         prolog          +3.2%     -7.2%      0.00      0.00
         puzzle          +4.1%     +0.0%     -3.5%     -8.0%
         queens          +2.8%     +0.0%      0.03      0.03
        reptile          +2.2%     -2.2%      0.02      0.02
        rewrite          +3.1%    +10.9%      0.03      0.03
           rfib          -5.2%     +0.2%      0.03      0.03
            rsa          +2.6%     +0.0%      0.05      0.06
            scc          +4.6%     +0.4%      0.00      0.00
          sched          +2.7%     +0.1%      0.03      0.03
            scs          -2.6%     -0.9%     -9.6%    -11.6%
         simple          -4.0%     +0.4%    -14.6%    -14.9%
          solid          -5.6%     -0.6%     -9.3%    -14.3%
        sorting          +3.8%     +0.0%      0.00      0.00
         sphere          -3.6%     +8.5%      0.15      0.16
         symalg          -1.3%     +0.2%      0.03      0.03
            tak          +2.7%     +0.0%      0.02      0.02
      transform          +2.0%     -2.9%     -8.0%     -8.8%
       treejoin          +3.1%     +0.0%    -17.5%    -17.8%
      typecheck          +2.9%     -0.3%     -4.6%     -6.6%
        veritas          +3.9%     -0.3%      0.00      0.00
           wang          -6.2%     +0.0%      0.18     -9.8%
      wave4main         -10.3%     +2.6%     -2.1%     -2.3%
   wheel-sieve1          +2.7%     -0.0%     +0.3%     -0.6%
   wheel-sieve2          +2.7%     +0.0%     -3.7%     -7.5%
           x2n1          -4.1%     +0.1%      0.03      0.04
--------------------------------------------------------------------------------
            Min         -12.7%    -14.5%    -17.5%    -17.8%
            Max          +4.7%    +10.9%     +9.1%     +8.4%
 Geometric Mean          +0.9%     -0.1%     -5.6%     -7.3%
parent ad23a496
...@@ -54,12 +54,12 @@ module BasicTypes( ...@@ -54,12 +54,12 @@ module BasicTypes(
StrictnessMark(..), isMarkedUnboxed, isMarkedStrict, StrictnessMark(..), isMarkedUnboxed, isMarkedStrict,
CompilerPhase, CompilerPhase,
Activation(..), isActive, isNeverActive, isAlwaysActive, Activation(..), isActive, isNeverActive, isAlwaysActive, isEarlyActive,
RuleMatchInfo(..), isConLike, isFunLike, RuleMatchInfo(..), isConLike, isFunLike,
InlinePragma(..), defaultInlinePragma, isDefaultInlinePragma, InlinePragma(..), defaultInlinePragma, neverInlinePragma, dfunInlinePragma,
isDefaultInlinePragma, isInlinePragma,
inlinePragmaActivation, inlinePragmaRuleMatchInfo, inlinePragmaActivation, inlinePragmaRuleMatchInfo,
setInlinePragmaActivation, setInlinePragmaRuleMatchInfo, setInlinePragmaActivation, setInlinePragmaRuleMatchInfo,
InlineSpec(..), defaultInlineSpec, alwaysInlineSpec, neverInlineSpec,
SuccessFlag(..), succeeded, failed, successIf SuccessFlag(..), succeeded, failed, successIf
) where ) where
...@@ -585,10 +585,69 @@ data Activation = NeverActive ...@@ -585,10 +585,69 @@ data Activation = NeverActive
| ActiveAfter CompilerPhase -- Active in this phase and later | ActiveAfter CompilerPhase -- Active in this phase and later
deriving( Eq ) -- Eq used in comparing rules in HsDecls deriving( Eq ) -- Eq used in comparing rules in HsDecls
data RuleMatchInfo = ConLike data RuleMatchInfo = ConLike -- See Note [CONLIKE pragma]
| FunLike | FunLike
deriving( Eq ) deriving( Eq )
data InlinePragma -- Note [InlinePragma]
= InlinePragma
{ inl_inline :: Bool -- True <=> INLINE,
-- False <=> no pragma at all, or NOINLINE
, inl_act :: Activation -- Says during which phases inlining is allowed
, inl_rule :: RuleMatchInfo -- Should the function be treated like a constructor?
} deriving( Eq )
\end{code}
Note [InlinePragma]
~~~~~~~~~~~~~~~~~~~
This data type mirrors what you can write in an INLINE or NOINLINE pragma in
the source program.
If you write nothing at all, you get defaultInlinePragma:
inl_inline = False
inl_act = AlwaysActive
inl_rule = FunLike
It's not possible to get that combination by *writing* something, so
if an Id has defaultInlinePragma it means the user didn't specify anything.
Note [CONLIKE pragma]
~~~~~~~~~~~~~~~~~~~~~
The ConLike constructor of a RuleMatchInfo is aimed at the following.
Consider first
{-# RULE "r/cons" forall a as. r (a:as) = f (a+1) #-}
g b bs = let x = b:bs in ..x...x...(r x)...
Now, the rule applies to the (r x) term, because GHC "looks through"
the definition of 'x' to see that it is (b:bs).
Now consider
{-# RULE "r/f" forall v. r (f v) = f (v+1) #-}
g v = let x = f v in ..x...x...(r x)...
Normally the (r x) would *not* match the rule, because GHC would be
scared about duplicating the redex (f v), so it does not "look
through" the bindings.
However the CONLIKE modifier says to treat 'f' like a constructor in
this situation, and "look through" the unfolding for x. So (r x)
fires, yielding (f (v+1)).
This is all controlled with a user-visible pragma:
{-# NOINLINE CONLIKE [1] f #-}
The main effects of CONLIKE are:
- The occurrence analyser (OccAnal) and simplifier (Simplify) treat
CONLIKE thing like constructors, by ANF-ing them
- New function coreUtils.exprIsExpandable is like exprIsCheap, but
additionally spots applications of CONLIKE functions
- A CoreUnfolding has a field that caches exprIsExpandable
- The rule matcher consults this field. See
Note [Expanding variables] in Rules.lhs.
\begin{code}
isConLike :: RuleMatchInfo -> Bool isConLike :: RuleMatchInfo -> Bool
isConLike ConLike = True isConLike ConLike = True
isConLike _ = False isConLike _ = False
...@@ -597,55 +656,39 @@ isFunLike :: RuleMatchInfo -> Bool ...@@ -597,55 +656,39 @@ isFunLike :: RuleMatchInfo -> Bool
isFunLike FunLike = True isFunLike FunLike = True
isFunLike _ = False isFunLike _ = False
data InlinePragma defaultInlinePragma, neverInlinePragma, dfunInlinePragma :: InlinePragma
= InlinePragma defaultInlinePragma
Activation -- Says during which phases inlining is allowed = InlinePragma { inl_act = AlwaysActive, inl_rule = FunLike, inl_inline = False }
RuleMatchInfo -- Should the function be treated like a constructor? neverInlinePragma
deriving( Eq ) = InlinePragma { inl_act = NeverActive, inl_rule = FunLike, inl_inline = False }
dfunInlinePragma
defaultInlinePragma :: InlinePragma = InlinePragma { inl_act = AlwaysActive, inl_rule = ConLike, inl_inline = False }
defaultInlinePragma = InlinePragma AlwaysActive FunLike
isDefaultInlinePragma :: InlinePragma -> Bool isDefaultInlinePragma :: InlinePragma -> Bool
isDefaultInlinePragma (InlinePragma activation match_info) isDefaultInlinePragma (InlinePragma { inl_act = activation
= isAlwaysActive activation && isFunLike match_info , inl_rule = match_info
, inl_inline = inline })
= not inline && isAlwaysActive activation && isFunLike match_info
isInlinePragma :: InlinePragma -> Bool
isInlinePragma prag = inl_inline prag
inlinePragmaActivation :: InlinePragma -> Activation inlinePragmaActivation :: InlinePragma -> Activation
inlinePragmaActivation (InlinePragma activation _) = activation inlinePragmaActivation (InlinePragma { inl_act = activation }) = activation
inlinePragmaRuleMatchInfo :: InlinePragma -> RuleMatchInfo inlinePragmaRuleMatchInfo :: InlinePragma -> RuleMatchInfo
inlinePragmaRuleMatchInfo (InlinePragma _ info) = info inlinePragmaRuleMatchInfo (InlinePragma { inl_rule = info }) = info
setInlinePragmaActivation :: InlinePragma -> Activation -> InlinePragma setInlinePragmaActivation :: InlinePragma -> Activation -> InlinePragma
setInlinePragmaActivation (InlinePragma _ info) activation setInlinePragmaActivation prag activation = prag { inl_act = activation }
= InlinePragma activation info
setInlinePragmaRuleMatchInfo :: InlinePragma -> RuleMatchInfo -> InlinePragma setInlinePragmaRuleMatchInfo :: InlinePragma -> RuleMatchInfo -> InlinePragma
setInlinePragmaRuleMatchInfo (InlinePragma activation _) info setInlinePragmaRuleMatchInfo prag info = prag { inl_rule = info }
= InlinePragma activation info
data InlineSpec
= Inline
InlinePragma
Bool -- True <=> INLINE
-- False <=> NOINLINE
deriving( Eq )
defaultInlineSpec :: InlineSpec
alwaysInlineSpec, neverInlineSpec :: RuleMatchInfo -> InlineSpec
defaultInlineSpec = Inline defaultInlinePragma False
-- Inlining is OK, but not forced
alwaysInlineSpec match_info
= Inline (InlinePragma AlwaysActive match_info) True
-- INLINE always
neverInlineSpec match_info
= Inline (InlinePragma NeverActive match_info) False
-- NOINLINE
instance Outputable Activation where instance Outputable Activation where
ppr NeverActive = ptext (sLit "NEVER")
ppr AlwaysActive = ptext (sLit "ALWAYS") ppr AlwaysActive = ptext (sLit "ALWAYS")
ppr NeverActive = ptext (sLit "NEVER")
ppr (ActiveBefore n) = brackets (char '~' <> int n) ppr (ActiveBefore n) = brackets (char '~' <> int n)
ppr (ActiveAfter n) = brackets (int n) ppr (ActiveAfter n) = brackets (int n)
...@@ -654,25 +697,17 @@ instance Outputable RuleMatchInfo where ...@@ -654,25 +697,17 @@ instance Outputable RuleMatchInfo where
ppr FunLike = ptext (sLit "FUNLIKE") ppr FunLike = ptext (sLit "FUNLIKE")
instance Outputable InlinePragma where instance Outputable InlinePragma where
ppr (InlinePragma activation FunLike) ppr (InlinePragma { inl_inline = inline, inl_act = activation, inl_rule = info })
= ppr activation = pp_inline <+> pp_info <+> pp_activation
ppr (InlinePragma activation match_info) where
= ppr match_info <+> ppr activation pp_inline | inline = ptext (sLit "INLINE")
| otherwise = ptext (sLit "NOINLINE")
instance Outputable InlineSpec where pp_info | isFunLike info = empty
ppr (Inline (InlinePragma act match_info) is_inline) | otherwise = ppr info
| is_inline = ptext (sLit "INLINE") pp_activation
<+> ppr_match_info | inline && isAlwaysActive activation = empty
<+> case act of | not inline && isNeverActive activation = empty
AlwaysActive -> empty | otherwise = ppr activation
_ -> ppr act
| otherwise = ptext (sLit "NOINLINE")
<+> ppr_match_info
<+> case act of
NeverActive -> empty
_ -> ppr act
where
ppr_match_info = if isFunLike match_info then empty else ppr match_info
isActive :: CompilerPhase -> Activation -> Bool isActive :: CompilerPhase -> Activation -> Bool
isActive _ NeverActive = False isActive _ NeverActive = False
...@@ -680,11 +715,15 @@ isActive _ AlwaysActive = True ...@@ -680,11 +715,15 @@ isActive _ AlwaysActive = True
isActive p (ActiveAfter n) = p <= n isActive p (ActiveAfter n) = p <= n
isActive p (ActiveBefore n) = p > n isActive p (ActiveBefore n) = p > n
isNeverActive, isAlwaysActive :: Activation -> Bool isNeverActive, isAlwaysActive, isEarlyActive :: Activation -> Bool
isNeverActive NeverActive = True isNeverActive NeverActive = True
isNeverActive _ = False isNeverActive _ = False
isAlwaysActive AlwaysActive = True isAlwaysActive AlwaysActive = True
isAlwaysActive _ = False isAlwaysActive _ = False
isEarlyActive AlwaysActive = True
isEarlyActive (ActiveBefore {}) = True
isEarlyActive _ = False
\end{code} \end{code}
...@@ -69,7 +69,6 @@ module Id ( ...@@ -69,7 +69,6 @@ module Id (
idArity, idArity,
idNewDemandInfo, idNewDemandInfo_maybe, idNewDemandInfo, idNewDemandInfo_maybe,
idNewStrictness, idNewStrictness_maybe, idNewStrictness, idNewStrictness_maybe,
idWorkerInfo,
idUnfolding, idUnfolding,
idSpecialisation, idCoreRules, idHasRules, idSpecialisation, idCoreRules, idHasRules,
idCafInfo, idCafInfo,
...@@ -87,7 +86,6 @@ module Id ( ...@@ -87,7 +86,6 @@ module Id (
setIdArity, setIdArity,
setIdNewDemandInfo, setIdNewDemandInfo,
setIdNewStrictness, zapIdNewStrictness, setIdNewStrictness, zapIdNewStrictness,
setIdWorkerInfo,
setIdSpecialisation, setIdSpecialisation,
setIdCafInfo, setIdCafInfo,
setIdOccInfo, zapIdOccInfo, setIdOccInfo, zapIdOccInfo,
...@@ -140,7 +138,6 @@ infixl 1 `setIdUnfolding`, ...@@ -140,7 +138,6 @@ infixl 1 `setIdUnfolding`,
`setIdArity`, `setIdArity`,
`setIdNewDemandInfo`, `setIdNewDemandInfo`,
`setIdNewStrictness`, `setIdNewStrictness`,
`setIdWorkerInfo`,
`setIdSpecialisation`, `setIdSpecialisation`,
`setInlinePragma`, `setInlinePragma`,
`idCafInfo` `idCafInfo`
...@@ -289,9 +286,7 @@ instantiated before use. ...@@ -289,9 +286,7 @@ instantiated before use.
-- | Workers get local names. "CoreTidy" will externalise these if necessary -- | Workers get local names. "CoreTidy" will externalise these if necessary
mkWorkerId :: Unique -> Id -> Type -> Id mkWorkerId :: Unique -> Id -> Type -> Id
mkWorkerId uniq unwrkr ty mkWorkerId uniq unwrkr ty
= mkLocalId wkr_name ty = mkLocalId (mkDerivedInternalName mkWorkerOcc uniq (getName unwrkr)) ty
where
wkr_name = mkInternalName uniq (mkWorkerOcc (getOccName unwrkr)) (getSrcSpan unwrkr)
-- | Create a /template local/: a family of system local 'Id's in bijection with @Int@s, typically used in unfoldings -- | Create a /template local/: a family of system local 'Id's in bijection with @Int@s, typically used in unfoldings
mkTemplateLocal :: Int -> Type -> Id mkTemplateLocal :: Int -> Type -> Id
...@@ -350,8 +345,8 @@ isPrimOpId id = case Var.idDetails id of ...@@ -350,8 +345,8 @@ isPrimOpId id = case Var.idDetails id of
_ -> False _ -> False
isDFunId id = case Var.idDetails id of isDFunId id = case Var.idDetails id of
DFunId -> True DFunId _ -> True
_ -> False _ -> False
isPrimOpId_maybe id = case Var.idDetails id of isPrimOpId_maybe id = case Var.idDetails id of
PrimOpId op -> Just op PrimOpId op -> Just op
...@@ -409,11 +404,11 @@ isImplicitId :: Id -> Bool ...@@ -409,11 +404,11 @@ isImplicitId :: Id -> Bool
-- file, even if it's mentioned in some other interface unfolding. -- file, even if it's mentioned in some other interface unfolding.
isImplicitId id isImplicitId id
= case Var.idDetails id of = case Var.idDetails id of
FCallId _ -> True FCallId {} -> True
ClassOpId _ -> True ClassOpId {} -> True
PrimOpId _ -> True PrimOpId {} -> True
DataConWorkId _ -> True DataConWorkId {} -> True
DataConWrapId _ -> True DataConWrapId {} -> True
-- These are are implied by their type or class decl; -- These are are implied by their type or class decl;
-- remember that all type and class decls appear in the interface file. -- remember that all type and class decls appear in the interface file.
-- The dfun id is not an implicit Id; it must *not* be omitted, because -- The dfun id is not an implicit Id; it must *not* be omitted, because
...@@ -512,14 +507,6 @@ isStrictId id ...@@ -512,14 +507,6 @@ isStrictId id
(isStrictDmd (idNewDemandInfo id)) || (isStrictDmd (idNewDemandInfo id)) ||
(isStrictType (idType id)) (isStrictType (idType id))
---------------------------------
-- WORKER ID
idWorkerInfo :: Id -> WorkerInfo
idWorkerInfo id = workerInfo (idInfo id)
setIdWorkerInfo :: Id -> WorkerInfo -> Id
setIdWorkerInfo id work_info = modifyIdInfo (`setWorkerInfo` work_info) id
--------------------------------- ---------------------------------
-- UNFOLDING -- UNFOLDING
idUnfolding :: Id -> Unfolding idUnfolding :: Id -> Unfolding
...@@ -549,6 +536,9 @@ setIdNewDemandInfo id dmd = modifyIdInfo (`setNewDemandInfo` Just dmd) id ...@@ -549,6 +536,9 @@ setIdNewDemandInfo id dmd = modifyIdInfo (`setNewDemandInfo` Just dmd) id
--------------------------------- ---------------------------------
-- SPECIALISATION -- SPECIALISATION
-- See Note [Specialisations and RULES in IdInfo] in IdInfo.lhs
idSpecialisation :: Id -> SpecInfo idSpecialisation :: Id -> SpecInfo
idSpecialisation id = specInfo (idInfo id) idSpecialisation id = specInfo (idInfo id)
...@@ -617,7 +607,7 @@ idInlineActivation :: Id -> Activation ...@@ -617,7 +607,7 @@ idInlineActivation :: Id -> Activation
idInlineActivation id = inlinePragmaActivation (idInlinePragma id) idInlineActivation id = inlinePragmaActivation (idInlinePragma id)
setInlineActivation :: Id -> Activation -> Id setInlineActivation :: Id -> Activation -> Id
setInlineActivation id act = modifyInlinePragma id (\(InlinePragma _ match_info) -> InlinePragma act match_info) setInlineActivation id act = modifyInlinePragma id (\prag -> setInlinePragmaActivation prag act)
idRuleMatchInfo :: Id -> RuleMatchInfo idRuleMatchInfo :: Id -> RuleMatchInfo
idRuleMatchInfo id = inlinePragmaRuleMatchInfo (idInlinePragma id) idRuleMatchInfo id = inlinePragmaRuleMatchInfo (idInlinePragma id)
......
...@@ -49,11 +49,6 @@ module IdInfo ( ...@@ -49,11 +49,6 @@ module IdInfo (
cprInfoFromNewStrictness, cprInfoFromNewStrictness,
#endif #endif
-- ** The WorkerInfo type
WorkerInfo(..),
workerExists, wrapperArity, workerId,
workerInfo, setWorkerInfo, ppWorkerInfo,
-- ** Unfolding Info -- ** Unfolding Info
unfoldingInfo, setUnfoldingInfo, setUnfoldingInfoLazily, unfoldingInfo, setUnfoldingInfo, setUnfoldingInfoLazily,
...@@ -94,7 +89,6 @@ import CoreSyn ( CoreRule, setRuleIdName, seqRules, Unfolding, noUnfolding ) ...@@ -94,7 +89,6 @@ import CoreSyn ( CoreRule, setRuleIdName, seqRules, Unfolding, noUnfolding )
import Class import Class
import PrimOp import PrimOp
import Name import Name
import Var
import VarSet import VarSet
import BasicTypes import BasicTypes
import DataCon import DataCon
...@@ -119,7 +113,6 @@ infixl 1 `setSpecInfo`, ...@@ -119,7 +113,6 @@ infixl 1 `setSpecInfo`,
`setArityInfo`, `setArityInfo`,
`setInlinePragInfo`, `setInlinePragInfo`,
`setUnfoldingInfo`, `setUnfoldingInfo`,
`setWorkerInfo`,
`setLBVarInfo`, `setLBVarInfo`,
`setOccInfo`, `setOccInfo`,
`setCafInfo`, `setCafInfo`,
...@@ -165,8 +158,8 @@ seqNewStrictnessInfo Nothing = () ...@@ -165,8 +158,8 @@ seqNewStrictnessInfo Nothing = ()
seqNewStrictnessInfo (Just ty) = seqStrictSig ty seqNewStrictnessInfo (Just ty) = seqStrictSig ty
pprNewStrictness :: Maybe StrictSig -> SDoc pprNewStrictness :: Maybe StrictSig -> SDoc
pprNewStrictness Nothing = empty pprNewStrictness Nothing = empty
pprNewStrictness (Just sig) = ftext (fsLit "Str:") <+> ppr sig pprNewStrictness (Just sig) = ppr sig
#ifdef OLD_STRICTNESS #ifdef OLD_STRICTNESS
oldStrictnessFromNew :: StrictSig -> Demand.StrictnessInfo oldStrictnessFromNew :: StrictSig -> Demand.StrictnessInfo
...@@ -260,35 +253,38 @@ data IdDetails ...@@ -260,35 +253,38 @@ data IdDetails
-- b) when desugaring a RecordCon we can get -- b) when desugaring a RecordCon we can get
-- from the Id back to the data con] -- from the Id back to the data con]
| ClassOpId Class -- ^ The 'Id' is an operation of a class | ClassOpId Class -- ^ The 'Id' is an superclass selector or class operation of a class
| PrimOpId PrimOp -- ^ The 'Id' is for a primitive operator | PrimOpId PrimOp -- ^ The 'Id' is for a primitive operator
| FCallId ForeignCall -- ^ The 'Id' is for a foreign call | FCallId ForeignCall -- ^ The 'Id' is for a foreign call
| TickBoxOpId TickBoxOp -- ^ The 'Id' is for a HPC tick box (both traditional and binary) | TickBoxOpId TickBoxOp -- ^ The 'Id' is for a HPC tick box (both traditional and binary)
| DFunId -- ^ A dictionary function. We don't use this in an essential way, | DFunId Bool -- ^ A dictionary function.
-- currently, but it's kind of nice that we can keep track of -- True <=> the class has only one method, so may be
-- which Ids are DFuns, across module boundaries too -- implemented with a newtype, so it might be bad
-- to be strict on this dictionary
instance Outputable IdDetails where instance Outputable IdDetails where
ppr = pprIdDetails ppr = pprIdDetails
pprIdDetails :: IdDetails -> SDoc pprIdDetails :: IdDetails -> SDoc
pprIdDetails VanillaId = empty pprIdDetails VanillaId = empty
pprIdDetails (DataConWorkId _) = ptext (sLit "[DataCon]") pprIdDetails other = brackets (pp other)
pprIdDetails (DataConWrapId _) = ptext (sLit "[DataConWrapper]") where
pprIdDetails (ClassOpId _) = ptext (sLit "[ClassOp]") pp VanillaId = panic "pprIdDetails"
pprIdDetails (PrimOpId _) = ptext (sLit "[PrimOp]") pp (DataConWorkId _) = ptext (sLit "DataCon")
pprIdDetails (FCallId _) = ptext (sLit "[ForeignCall]") pp (DataConWrapId _) = ptext (sLit "DataConWrapper")
pprIdDetails (TickBoxOpId _) = ptext (sLit "[TickBoxOp]") pp (ClassOpId {}) = ptext (sLit "ClassOp")
pprIdDetails DFunId = ptext (sLit "[DFunId]") pp (PrimOpId _) = ptext (sLit "PrimOp")
pprIdDetails (RecSelId { sel_naughty = is_naughty }) pp (FCallId _) = ptext (sLit "ForeignCall")
= brackets $ ptext (sLit "RecSel") <> pp_naughty pp (TickBoxOpId _) = ptext (sLit "TickBoxOp")
where pp (DFunId b) = ptext (sLit "DFunId") <>
pp_naughty | is_naughty = ptext (sLit "(naughty)") ppWhen b (ptext (sLit "(newtype)"))
| otherwise = empty pp (RecSelId { sel_naughty = is_naughty })
= brackets $ ptext (sLit "RecSel")
<> ppWhen is_naughty (ptext (sLit "(naughty)"))
\end{code} \end{code}
...@@ -314,20 +310,12 @@ data IdInfo ...@@ -314,20 +310,12 @@ data IdInfo
= IdInfo { = IdInfo {
arityInfo :: !ArityInfo, -- ^ 'Id' arity arityInfo :: !ArityInfo, -- ^ 'Id' arity
specInfo :: SpecInfo, -- ^ Specialisations of the 'Id's function which exist specInfo :: SpecInfo, -- ^ Specialisations of the 'Id's function which exist
-- See Note [Specialisations and RULES in IdInfo]
#ifdef OLD_STRICTNESS #ifdef OLD_STRICTNESS
cprInfo :: CprInfo, -- ^ If the 'Id's function always constructs a product result cprInfo :: CprInfo, -- ^ If the 'Id's function always constructs a product result
demandInfo :: Demand.Demand, -- ^ Whether or not the 'Id' is definitely demanded demandInfo :: Demand.Demand, -- ^ Whether or not the 'Id' is definitely demanded
strictnessInfo :: StrictnessInfo, -- ^ 'Id' strictness properties strictnessInfo :: StrictnessInfo, -- ^ 'Id' strictness properties
#endif #endif
workerInfo :: WorkerInfo, -- ^ Pointer to worker function.
-- Within one module this is irrelevant; the
-- inlining of a worker is handled via the 'Unfolding'.
-- However, when the module is imported by others, the
-- 'WorkerInfo' is used /only/ to indicate the form of
-- the RHS, so that interface files don't actually
-- need to contain the RHS; it can be derived from
-- the strictness info
unfoldingInfo :: Unfolding, -- ^ The 'Id's unfolding unfoldingInfo :: Unfolding, -- ^ The 'Id's unfolding
cafInfo :: CafInfo, -- ^ 'Id' CAF info cafInfo :: CafInfo, -- ^ 'Id' CAF info
lbvarInfo :: LBVarInfo, -- ^ Info about a lambda-bound variable, if the 'Id' is one lbvarInfo :: LBVarInfo, -- ^ Info about a lambda-bound variable, if the 'Id' is one
...@@ -353,7 +341,6 @@ seqIdInfo (IdInfo {}) = () ...@@ -353,7 +341,6 @@ seqIdInfo (IdInfo {}) = ()
megaSeqIdInfo :: IdInfo -> () megaSeqIdInfo :: IdInfo -> ()
megaSeqIdInfo info megaSeqIdInfo info
= seqSpecInfo (specInfo info) `seq` = seqSpecInfo (specInfo info) `seq`
seqWorker (workerInfo info) `seq`
-- Omitting this improves runtimes a little, presumably because -- Omitting this improves runtimes a little, presumably because
-- some unfoldings are not calculated at all -- some unfoldings are not calculated at all
...@@ -376,8 +363,6 @@ megaSeqIdInfo info ...@@ -376,8 +363,6 @@ megaSeqIdInfo info
Setters Setters
\begin{code} \begin{code}
setWorkerInfo :: IdInfo -> WorkerInfo -> IdInfo
setWorkerInfo info wk = wk `seq` info { workerInfo = wk }
setSpecInfo :: IdInfo -> SpecInfo -> IdInfo setSpecInfo :: IdInfo -> SpecInfo -> IdInfo
setSpecInfo info sp = sp `seq` info { specInfo = sp } setSpecInfo info sp = sp `seq` info { specInfo = sp }
setInlinePragInfo :: IdInfo -> InlinePragma -> IdInfo setInlinePragInfo :: IdInfo -> InlinePragma -> IdInfo
...@@ -433,7 +418,6 @@ vanillaIdInfo ...@@ -433,7 +418,6 @@ vanillaIdInfo
strictnessInfo = NoStrictnessInfo, strictnessInfo = NoStrictnessInfo,
#endif #endif
specInfo = emptySpecInfo, specInfo = emptySpecInfo,
workerInfo = NoWorker,
unfoldingInfo = noUnfolding, unfoldingInfo = noUnfolding,
lbvarInfo = NoLBVarInfo, lbvarInfo = NoLBVarInfo,
inlinePragInfo = defaultInlinePragma, inlinePragInfo = defaultInlinePragma,
...@@ -505,6 +489,25 @@ type InlinePragInfo = InlinePragma ...@@ -505,6 +489,25 @@ type InlinePragInfo = InlinePragma
%* * %* *
%************************************************************************ %************************************************************************
Note [Specialisations and RULES in IdInfo]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Generally speaking, a GlobalIdshas an *empty* SpecInfo. All their
RULES are contained in the globally-built rule-base. In principle,
one could attach the to M.f the RULES for M.f that are defined in M.
But we don't do that for instance declarations and so we just treat
them all uniformly.
The EXCEPTION is PrimOpIds, which do have rules in their IdInfo. That is
jsut for convenience really.
However, LocalIds may have non-empty SpecInfo. We treat them
differently because:
a) they might be nested, in which case a global table won't work
b) the RULE might mention free variables, which we use to keep things alive
In TidyPgm, when the LocalId becomes a GlobalId, its RULES are stripped off
and put in the global list.
\begin{code} \begin{code}
-- | Records the specializations of this 'Id' that we know about -- | Records the specializations of this 'Id' that we know about
-- in the form of rewrite 'CoreRule's that target them -- in the form of rewrite 'CoreRule's that target them
...@@ -540,67 +543,6 @@ seqSpecInfo :: SpecInfo -> () ...@@ -540,67 +543,6 @@ seqSpecInfo :: SpecInfo -> ()
seqSpecInfo (SpecInfo rules fvs) = seqRules rules `seq` seqVarSet fvs seqSpecInfo (SpecInfo rules fvs) = seqRules rules `seq` seqVarSet fvs
\end{code} \end{code}
%************************************************************************
%* *
\subsection[worker-IdInfo]{Worker info about an @Id@}
%* *
%************************************************************************
There might not be a worker, even for a strict function, because:
(a) the function might be small enough to inline, so no need
for w/w split
(b) the strictness info might be "SSS" or something, so no w/w split.
Sometimes the arity of a wrapper changes from the original arity from
which it was generated, so we always emit the "original" arity into
the interface file, as part of the worker info.
How can this happen? Sometimes we get
f = coerce t (\x y -> $wf x y)
at the moment of w/w split; but the eta reducer turns it into
f = coerce t $wf
which is perfectly fine except that the exposed arity so far as
the code generator is concerned (zero) differs from the arity
when we did the split (2).