1. 21 Feb, 2020 1 commit
    • Simon Peyton Jones's avatar
      Re-implement unsafe coercions in terms of unsafe equality proofs · 74ad75e8
      Simon Peyton Jones authored
      (Commit message written by Omer, most of the code is written by Simon
      and Richard)
      
      See Note [Implementing unsafeCoerce] for how unsafe equality proofs and
      the new unsafeCoerce# are implemented.
      
      New notes added:
      
      - [Checking for levity polymorphism] in CoreLint.hs
      - [Implementing unsafeCoerce] in base/Unsafe/Coerce.hs
      - [Patching magic definitions] in Desugar.hs
      - [Wiring in unsafeCoerce#] in Desugar.hs
      
      Only breaking change in this patch is unsafeCoerce# is not exported from
      GHC.Exts, instead of GHC.Prim.
      
      Fixes #17443
      Fixes #16893
      
      NoFib
      -----
      
      --------------------------------------------------------------------------------
              Program           Size    Allocs    Instrs     Reads    Writes
      --------------------------------------------------------------------------------
                   CS          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
                  CSD          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
                   FS          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
                    S          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
                   VS          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
                  VSD          -0.1%      0.0%     -0.0%     -0.0%     -0.1%
                  VSM          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
                 anna          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
                 ansi          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
                 atom          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
               awards          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
               banner          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
           bernouilli          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
         binary-trees          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
                boyer          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
               boyer2          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
                 bspt          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
            cacheprof          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
             calendar          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
             cichelli          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
              circsim          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
             clausify          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
        comp_lab_zift          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
             compress          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
            compress2          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
          constraints          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
         cryptarithm1          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
         cryptarithm2          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
                  cse          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
         digits-of-e1          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
         digits-of-e2          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
               dom-lt          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
                eliza          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
                event          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
          exact-reals          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
               exp3_8          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
               expert          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
       fannkuch-redux          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
                fasta          -0.1%      0.0%     -0.5%     -0.3%     -0.4%
                  fem          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
                  fft          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
                 fft2          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
             fibheaps          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
                 fish          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
                fluid          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
               fulsom          -0.1%      0.0%     +0.0%     +0.0%     +0.0%
               gamteb          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
                  gcd          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
          gen_regexps          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
               genfft          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
                   gg          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
                 grep          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
               hidden          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
                  hpg          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
                  ida          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
                infer          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
              integer          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
            integrate          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
         k-nucleotide          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
                kahan          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
              knights          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
               lambda          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
           last-piece          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
                 lcss          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
                 life          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
                 lift          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
               linear          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
            listcompr          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
             listcopy          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
             maillist          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
               mandel          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
              mandel2          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
                 mate          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
              minimax          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
              mkhprog          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
           multiplier          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
               n-body          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
             nucleic2          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
                 para          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
            paraffins          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
               parser          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
              parstof          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
                  pic          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
             pidigits          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
                power          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
               pretty          -0.1%      0.0%     -0.1%     -0.1%     -0.1%
               primes          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
            primetest          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
               prolog          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
               puzzle          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
               queens          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
              reptile          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
      reverse-complem          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
              rewrite          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
                 rfib          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
                  rsa          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
                  scc          -0.1%      0.0%     -0.1%     -0.1%     -0.1%
                sched          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
                  scs          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
               simple          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
                solid          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
              sorting          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
        spectral-norm          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
               sphere          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
               symalg          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
                  tak          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
            transform          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
             treejoin          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
            typecheck          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
              veritas          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
                 wang          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
            wave4main          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
         wheel-sieve1          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
         wheel-sieve2          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
                 x2n1          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
      --------------------------------------------------------------------------------
                  Min          -0.1%      0.0%     -0.5%     -0.3%     -0.4%
                  Max          -0.0%      0.0%     +0.0%     +0.0%     +0.0%
       Geometric Mean          -0.1%     -0.0%     -0.0%     -0.0%     -0.0%
      
      Test changes
      ------------
      
      - break006 is marked as broken, see #17833
      - The compiler allocates less when building T14683 (an unsafeCoerce#-
        heavy happy-generated code) on 64-platforms. Allocates more on 32-bit
        platforms.
      - Rest of the increases are tiny amounts (still enough to pass the
        threshold) in micro-benchmarks. I briefly looked at each one in a
        profiling build: most of the increased allocations seem to be because
        of random changes in the generated code.
      
      Metric Decrease:
          T14683
      
      Metric Increase:
          T12150
          T12234
          T12425
          T13035
          T14683
          T5837
          T6048
      Co-Authored-By: Richard Eisenberg's avatarRichard Eisenberg <rae@cs.brynmawr.edu>
      Co-Authored-By: Ömer Sinan Ağacan's avatarÖmer Sinan Ağacan <omeragacan@gmail.com>
      74ad75e8
  2. 31 Jan, 2020 1 commit
    • Ömer Sinan Ağacan's avatar
      Do CafInfo/SRT analysis in Cmm · c846618a
      Ömer Sinan Ağacan authored
      This patch removes all CafInfo predictions and various hacks to preserve
      predicted CafInfos from the compiler and assigns final CafInfos to
      interface Ids after code generation. SRT analysis is extended to support
      static data, and Cmm generator is modified to allow generating
      static_link fields after SRT analysis.
      
      This also fixes `-fcatch-bottoms`, which introduces error calls in case
      expressions in CorePrep, which runs *after* CoreTidy (which is where we
      decide on CafInfos) and turns previously non-CAFFY things into CAFFY.
      
      Fixes #17648
      Fixes #9718
      
      Evaluation
      ==========
      
      NoFib
      -----
      
      Boot with: `make boot mode=fast`
      Run: `make mode=fast EXTRA_RUNTEST_OPTS="-cachegrind" NoFibRuns=1`
      
      --------------------------------------------------------------------------------
              Program           Size    Allocs    Instrs     Reads    Writes
      --------------------------------------------------------------------------------
                   CS          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
                  CSD          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
                   FS          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
                    S          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
                   VS          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
                  VSD          -0.0%      0.0%     -0.0%     -0.0%     -0.5%
                  VSM          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
                 anna          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
                 ansi          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
                 atom          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
               awards          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
               banner          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
           bernouilli          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
         binary-trees          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
                boyer          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
               boyer2          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
                 bspt          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
            cacheprof          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
             calendar          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
             cichelli          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
              circsim          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
             clausify          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
        comp_lab_zift          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
             compress          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
            compress2          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
          constraints          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
         cryptarithm1          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
         cryptarithm2          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
                  cse          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
         digits-of-e1          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
         digits-of-e2          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
               dom-lt          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
                eliza          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
                event          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
          exact-reals          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
               exp3_8          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
               expert          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
       fannkuch-redux          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
                fasta          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
                  fem          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
                  fft          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
                 fft2          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
             fibheaps          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
                 fish          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
                fluid          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
               fulsom          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
               gamteb          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
                  gcd          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
          gen_regexps          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
               genfft          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
                   gg          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
                 grep          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
               hidden          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
                  hpg          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
                  ida          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
                infer          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
              integer          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
            integrate          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
         k-nucleotide          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
                kahan          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
              knights          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
               lambda          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
           last-piece          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
                 lcss          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
                 life          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
                 lift          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
               linear          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
            listcompr          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
             listcopy          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
             maillist          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
               mandel          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
              mandel2          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
                 mate          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
              minimax          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
              mkhprog          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
           multiplier          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
               n-body          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
             nucleic2          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
                 para          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
            paraffins          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
               parser          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
              parstof          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
                  pic          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
             pidigits          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
                power          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
               pretty          -0.0%      0.0%     -0.3%     -0.4%     -0.4%
               primes          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
            primetest          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
               prolog          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
               puzzle          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
               queens          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
              reptile          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
      reverse-complem          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
              rewrite          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
                 rfib          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
                  rsa          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
                  scc          -0.0%      0.0%     -0.3%     -0.5%     -0.4%
                sched          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
                  scs          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
               simple          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
                solid          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
              sorting          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
        spectral-norm          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
               sphere          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
               symalg          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
                  tak          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
            transform          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
             treejoin          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
            typecheck          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
              veritas          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
                 wang          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
            wave4main          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
         wheel-sieve1          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
         wheel-sieve2          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
                 x2n1          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
      --------------------------------------------------------------------------------
                  Min          -0.1%      0.0%     -0.3%     -0.5%     -0.5%
                  Max          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
       Geometric Mean          -0.0%     -0.0%     -0.0%     -0.0%     -0.0%
      
      --------------------------------------------------------------------------------
              Program           Size    Allocs    Instrs     Reads    Writes
      --------------------------------------------------------------------------------
              circsim          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
          constraints          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
             fibheaps          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
             gc_bench          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
                 hash          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
                 lcss          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
                power          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
           spellcheck          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
      --------------------------------------------------------------------------------
                  Min          -0.1%      0.0%     -0.0%     -0.0%     -0.0%
                  Max          -0.0%      0.0%     -0.0%     -0.0%     -0.0%
       Geometric Mean          -0.0%     +0.0%     -0.0%     -0.0%     -0.0%
      
      Manual inspection of programs in testsuite/tests/programs
      ---------------------------------------------------------
      
      I built these programs with a bunch of dump flags and `-O` and compared
      STG, Cmm, and Asm dumps and file sizes.
      
      (Below the numbers in parenthesis show number of modules in the program)
      
      These programs have identical compiler (same .hi and .o sizes, STG, and
      Cmm and Asm dumps):
      
      - Queens (1), andre_monad (1), cholewo-eval (2), cvh_unboxing (3),
        andy_cherry (7), fun_insts (1), hs-boot (4), fast2haskell (2),
        jl_defaults (1), jq_readsPrec (1), jules_xref (1), jtod_circint (4),
        jules_xref2 (1), lennart_range (1), lex (1), life_space_leak (1),
        bargon-mangler-bug (7), record_upd (1), rittri (1), sanders_array (1),
        strict_anns (1), thurston-module-arith (2), okeefe_neural (1),
        joao-circular (6), 10queens (1)
      
      Programs with different compiler outputs:
      
      - jl_defaults (1): For some reason GHC HEAD marks a lot of top-level
        `[Int]` closures as CAFFY for no reason. With this patch we no longer
        make them CAFFY and generate less SRT entries. For some reason Main.o
        is slightly larger with this patch (1.3%) and the executable sizes are
        the same. (I'd expect both to be smaller)
      
      - launchbury (1): Same as jl_defaults: top-level `[Int]` closures marked
        as CAFFY for no reason. Similarly `Main.o` is 1.4% larger but the
        executable sizes are the same.
      
      - galois_raytrace (13): Differences are in the Parse module. There are a
        lot, but some of the changes are caused by the fact that for some
        reason (I think a bug) GHC HEAD marks the dictionary for `Functor
        Identity` as CAFFY. Parse.o is 0.4% larger, the executable size is the
        same.
      
      - north_array: We now generate less SRT entries because some of array
        primops used in this program like `NewArrayOp` get eliminated during
        Stg-to-Cmm and turn some CAFFY things into non-CAFFY. Main.o gets 24%
        larger (9224 bytes from 9000 bytes), executable sizes are the same.
      
      - seward-space-leak: Difference in this program is better shown by this
        smaller example:
      
            module Lib where
      
            data CDS
              = Case [CDS] [(Int, CDS)]
              | Call CDS CDS
      
            instance Eq CDS where
              Case sels1 rets1 == Case sels2 rets2 =
                  sels1 == sels2 && rets1 == rets2
              Call a1 b1 == Call a2 b2 =
                  a1 == a2 && b1 == b2
              _ == _ =
                  False
      
         In this program GHC HEAD builds a new SRT for the recursive group of
         `(==)`, `(/=)` and the dictionary closure. Then `/=` points to `==`
         in its SRT field, and `==` uses the SRT object as its SRT. With this
         patch we use the closure for `/=` as the SRT and add `==` there. Then
         `/=` gets an empty SRT field and `==` points to `/=` in its SRT
         field.
      
         This change looks fine to me.
      
         Main.o gets 0.07% larger, executable sizes are identical.
      
      head.hackage
      ------------
      
      head.hackage's CI script builds 428 packages from Hackage using this
      patch with no failures.
      
      Compiler performance
      --------------------
      
      The compiler perf tests report that the compiler allocates slightly more
      (worst case observed so far is 4%). However most programs in the test
      suite are small, single file programs. To benchmark compiler performance
      on something more realistic I build Cabal (the library, 236 modules)
      with different optimisation levels. For the "max residency" row I run
      GHC with `+RTS -s -A100k -i0 -h` for more accurate numbers. Other rows
      are generated with just `-s`. (This is because `-i0` causes running GC
      much more frequently and as a result "bytes copied" gets inflated by
      more than 25x in some cases)
      
      * -O0
      
      |                 | GHC HEAD       | This MR        | Diff   |
      | --------------- | -------------- | -------------- | ------ |
      | Bytes allocated | 54,413,350,872 | 54,701,099,464 | +0.52% |
      | Bytes copied    |  4,926,037,184 |  4,990,638,760 | +1.31% |
      | Max residency   |    421,225,624 |    424,324,264 | +0.73% |
      
      * -O1
      
      |                 | GHC HEAD        | This MR         | Diff   |
      | --------------- | --------------- | --------------- | ------ |
      | Bytes allocated | 245,849,209,992 | 246,562,088,672 | +0.28% |
      | Bytes copied    |  26,943,452,560 |  27,089,972,296 | +0.54% |
      | Max residency   |     982,643,440 |     991,663,432 | +0.91% |
      
      * -O2
      
      |                 | GHC HEAD        | This MR         | Diff   |
      | --------------- | --------------- | --------------- | ------ |
      | Bytes allocated | 291,044,511,408 | 291,863,910,912 | +0.28% |
      | Bytes copied    |  37,044,237,616 |  36,121,690,472 | -2.49% |
      | Max residency   |   1,071,600,328 |   1,086,396,256 | +1.38% |
      
      Extra compiler allocations
      --------------------------
      
      Runtime allocations of programs are as reported above (NoFib section).
      
      The compiler now allocates more than before. Main source of allocation
      in this patch compared to base commit is the new SRT algorithm
      (GHC.Cmm.Info.Build). Below is some of the extra work we do with this
      patch, numbers generated by profiled stage 2 compiler when building a
      pathological case (the test 'ManyConstructors') with '-O2':
      
      - We now sort the final STG for a module, which means traversing the
        entire program, generating free variable set for each top-level
        binding, doing SCC analysis, and re-ordering the program. In
        ManyConstructors this step allocates 97,889,952 bytes.
      
      - We now do SRT analysis on static data, which in a program like
        ManyConstructors causes analysing 10,000 bindings that we would
        previously just skip. This step allocates 70,898,352 bytes.
      
      - We now maintain an SRT map for the entire module as we compile Cmm
        groups:
      
            data ModuleSRTInfo = ModuleSRTInfo
              { ...
              , moduleSRTMap :: SRTMap
              }
      
         (SRTMap is just a strict Map from the 'containers' library)
      
         This map gets an entry for most bindings in a module (exceptions are
         THUNKs and CAFFY static functions). For ManyConstructors this map
         gets 50015 entries.
      
      - Once we're done with code generation we generate a NameSet from SRTMap
        for the non-CAFFY names in the current module. This set gets the same
        number of entries as the SRTMap.
      
      - Finally we update CafInfos in ModDetails for the non-CAFFY Ids, using
        the NameSet generated in the previous step. This usually does the
        least amount of allocation among the work listed here.
      
      Only place with this patch where we do less work in the CAF analysis in
      the tidying pass (CoreTidy). However that doesn't save us much, as the
      pass still needs to traverse the whole program and update IdInfos for
      other reasons. Only thing we don't here do is the `hasCafRefs` pass over
      the RHS of bindings, which is a stateless pass that returns a boolean
      value, so it doesn't allocate much.
      
      (Metric changes blow are all increased allocations)
      
      Metric changes
      --------------
      
      Metric Increase:
          ManyAlternatives
          ManyConstructors
          T13035
          T14683
          T1969
          T9961
      c846618a
  3. 13 Jan, 2020 1 commit
  4. 31 Dec, 2019 1 commit
  5. 11 Sep, 2019 1 commit
    • Ömer Sinan Ağacan's avatar
      Refactor bad coercion checking in a few places · c76cc0c6
      Ömer Sinan Ağacan authored
      We do bad coercion checking in a few places in the compiler, but they
      all checked it differently:
      
      - CoreToStg.coreToStgArgs:
      
        Disallowed lifted-to-unlifted, disallowed changing prim reps even when
        the sizes are the same.
      
      - StgCmmExpr.cgCase:
      
        Checked primRepSlot equality. This disallowed Int to Int64 coercions
        on 64-bit systems (and Int to Int32 on 32-bit) even though those are
        fine.
      
      - CoreLint:
      
        Only place where we do this right. Full rules are explained in Note
        [Bad unsafe coercion].
      
      This patch implements the check explained in Note [Bad unsafe coercion]
      in CoreLint and uses it in CoreToStg.coreToStgArgs and
      StgCmmExpr.cgCase.
      
      This fixes #16952 and unblocks !1381 (which fixes #16893).
      
      This is the most conservative and correct change I came up with that
      fixes #16952.
      
      One remaining problem with coercion checking is that it's currently done
      in seemingly random places. What's special about CoreToStg.coreToStgArgs
      and StgCmmExpr.cgCase? My guess is that adding assertions to those
      places caught bugs before so we left assertions in those places. I think
      we should remove these assertions and do coercion checking in CoreLint
      and StgLint only (#17041).
      c76cc0c6
  6. 18 Aug, 2019 1 commit
  7. 07 Aug, 2019 1 commit
  8. 09 Jul, 2019 1 commit
    • Ryan Scott's avatar
      Use an empty data type in TTG extension constructors (#15247) · 6a03d77b
      Ryan Scott authored
      To avoid having to `panic` any time a TTG extension constructor is
      consumed, this MR introduces an uninhabited 'NoExtCon' type and uses
      that in every extension constructor's type family instance where it
      is appropriate. This also introduces a 'noExtCon' function which
      eliminates a 'NoExtCon', much like 'Data.Void.absurd' eliminates
      a 'Void'.
      
      I also renamed the existing `NoExt` type to `NoExtField` to better
      distinguish it from `NoExtCon`. Unsurprisingly, there is a lot of
      code churn resulting from this.
      
      Bumps the Haddock submodule. Fixes #15247.
      6a03d77b
  9. 05 Jul, 2019 1 commit
    • Andreas Klebinger's avatar
      Dont gather ticks when only striping them in STG. · f002250a
      Andreas Klebinger authored
      Adds stripStgTicksTopE which only returns the stripped expression.
      So far we also allocated a list for the stripped ticks which was
      never used.
      
      Allocation difference is as expected very small but present.
      About 0.02% difference when compiling with -O.
      f002250a
  10. 26 Jun, 2019 2 commits
    • Ben Gamari's avatar
      Don't eta-expand unsaturated primops · cac8dc9f
      Ben Gamari authored
      Previously, as described in Note [Primop wrappers], `hasNoBinding` would
      return False in the case of `PrimOpId`s. This would result in eta
      expansion of unsaturated primop applications during CorePrep. Not only
      did this expansion result in unnecessary allocations, but it also meant
      lead to rather nasty inconsistencies between the CAFfy-ness
      determinations made by TidyPgm and CorePrep.
      
      This fixes #16846.
      cac8dc9f
    • Ben Gamari's avatar
      CoreToStg: Enable CAFfyness checking with -dstg-lint · 5ff0a171
      Ben Gamari authored
      The debugging involved in finding #16846 wouldn't have been necessary
      had the consistentCafInfo check been enabled. However, :wq
      5ff0a171
  11. 14 Jun, 2019 1 commit
  12. 12 Jun, 2019 1 commit
  13. 04 Jun, 2019 1 commit
    • Andrew Martin's avatar
      Use a better strategy for determining the offset applied to foreign function... · db78ac6f
      Andrew Martin authored
      Use a better strategy for determining the offset applied to foreign function arguments that have an unlifted boxed type. We used to use the type of the argument. We now use the type of the foreign function. Add a test to confirm that the roundtrip conversion between an unlifted boxed type and Any is sound in the presence of a foreign function call.
      db78ac6f
  14. 25 Mar, 2019 1 commit
    • Takenobu Tani's avatar
      Update Wiki URLs to point to GitLab · 3769e3a8
      Takenobu Tani authored
      This moves all URL references to Trac Wiki to their corresponding
      GitLab counterparts.
      
      This substitution is classified as follows:
      
      1. Automated substitution using sed with Ben's mapping rule [1]
          Old: ghc.haskell.org/trac/ghc/wiki/XxxYyy...
          New: gitlab.haskell.org/ghc/ghc/wikis/xxx-yyy...
      
      2. Manual substitution for URLs containing `#` index
          Old: ghc.haskell.org/trac/ghc/wiki/XxxYyy...#Zzz
          New: gitlab.haskell.org/ghc/ghc/wikis/xxx-yyy...#zzz
      
      3. Manual substitution for strings starting with `Commentary`
          Old: Commentary/XxxYyy...
          New: commentary/xxx-yyy...
      
      See also !539
      
      [1]: https://gitlab.haskell.org/bgamari/gitlab-migration/blob/master/wiki-mapping.json
      3769e3a8
  15. 15 Mar, 2019 1 commit
  16. 23 Jan, 2019 1 commit
  17. 23 Nov, 2018 1 commit
    • Sebastian Graf's avatar
      Implement late lambda lift · b2950e03
      Sebastian Graf authored
      Summary:
      This implements a selective lambda-lifting pass late in the STG
      pipeline.
      
      Lambda lifting has the effect of avoiding closure allocation at the cost
      of having to make former free vars available at call sites, possibly
      enlarging closures surrounding call sites in turn.
      
      We identify beneficial cases by means of an analysis that estimates
      closure growth.
      
      There's a Wiki page at
      https://ghc.haskell.org/trac/ghc/wiki/LateLamLift.
      
      Reviewers: simonpj, bgamari, simonmar
      
      Reviewed By: simonpj
      
      Subscribers: rwbarton, carter
      
      GHC Trac Issues: #9476
      
      Differential Revision: https://phabricator.haskell.org/D5224
      b2950e03
  18. 22 Nov, 2018 1 commit
    • Sylvain Henry's avatar
      Rename literal constructors · 13bb4bf4
      Sylvain Henry authored
      In a previous patch we replaced some built-in literal constructors
      (MachInt, MachWord, etc.) with a single LitNumber constructor.
      
      In this patch we replace the `Mach` prefix of the remaining constructors
      with `Lit` for consistency (e.g., LitChar, LitLabel, etc.).
      
      Sadly the name `LitString` was already taken for a kind of FastString
      and it would become misleading to have both `LitStr` (literal
      constructor renamed after `MachStr`) and `LitString` (FastString
      variant). Hence this patch renames the FastString variant `PtrString`
      (which is more accurate) and the literal string constructor now uses the
      least surprising `LitString` name.
      
      Both `Literal` and `LitString/PtrString` have recently seen breaking
      changes so doing this kind of renaming now shouldn't harm much.
      
      Reviewers: hvr, goldfire, bgamari, simonmar, jrtc27, tdammers
      
      Subscribers: tdammers, rwbarton, thomie, carter
      
      Differential Revision: https://phabricator.haskell.org/D4881
      13bb4bf4
  19. 19 Nov, 2018 1 commit
    • Sebastian Graf's avatar
      Don't track free variables in STG syntax by default · 47bbc709
      Sebastian Graf authored
      Summary:
      Currently, `CoreToStg` annotates `StgRhsClosure`s with their set of non-global
      free variables.  This free variable information is only needed in the final
      code generation step (i.e. `StgCmm.codeGen`), which leads to transformations
      such as `StgCse` and `StgUnarise` having to maintain this information.
      
      This is tiresome and unnecessary, so this patch introduces a trees-to-grow-like
      approach that only introduces the free variable set into the syntax tree in the
      code gen pass, along with a free variable analysis on STG terms to generate
      that information.
      
      Fixes #15754.
      
      Reviewers: simonpj, osa1, bgamari, simonmar
      
      Reviewed By: osa1
      
      Subscribers: rwbarton, carter
      
      GHC Trac Issues: #15754
      
      Differential Revision: https://phabricator.haskell.org/D5324
      47bbc709
  20. 12 Nov, 2018 1 commit
    • Ömer Sinan Ağacan's avatar
      Remove StgBinderInfo and related computation in CoreToStg · d30352ad
      Ömer Sinan Ağacan authored
      - The StgBinderInfo type was never used in the code gen, so the type, related
        computation in CoreToStg, and some comments about it are removed. See #15770
        for more details.
      
      - Simplified CoreToStg after removing the StgBinderInfo computation: removed
        StgBinderInfo arguments and mfix stuff.
      
      The StgBinderInfo values were not used in the code gen, but I still run nofib
      just to make sure: 0.0% change in allocations and binary sizes.
      
      Test Plan: Validated locally
      
      Reviewers: simonpj, simonmar, bgamari, sgraf
      
      Reviewed By: sgraf
      
      Subscribers: AndreasK, sgraf, rwbarton, carter
      
      Differential Revision: https://phabricator.haskell.org/D5232
      d30352ad
  21. 14 Oct, 2018 1 commit
    • Sebastian Graf's avatar
      Add RubbishLit for absent bindings of UnliftedRep · 448b77b9
      Sebastian Graf authored
      Summary:
      Trac #9279 reminded us that the worker wrapper transformation copes
      really badly with absent unlifted boxed bindings.
      
      As `Note [Absent errors]` in WwLib.hs points out, we can't just use
      `absentError` for unlifted bindings because there is no bottom to hide
      the error in.
      So instead, we synthesise a new `RubbishLit` of type
      `forall (a :: TYPE 'UnliftedRep). a`, which code-gen may subsitute for
      any boxed value. We choose `()`, so that there is a good chance that
      the program crashes instead instead of leading to corrupt data, should
      absence analysis have been too optimistic (#11126).
      
      Reviewers: simonpj, hvr, goldfire, bgamari, simonmar
      
      Reviewed By: simonpj
      
      Subscribers: osa1, rwbarton, carter
      
      GHC Trac Issues: #15627, #9279, #4306, #11126
      
      Differential Revision: https://phabricator.haskell.org/D5153
      448b77b9
  22. 15 Jun, 2018 1 commit
    • Sylvain Henry's avatar
      Built-in Natural literals in Core · fe770c21
      Sylvain Henry authored
      Add support for built-in Natural literals in Core.
      
      - Replace MachInt,MachWord, LitInteger, etc. with a single LitNumber
        constructor with a LitNumType field
      - Support built-in Natural literals
      - Add desugar warning for negative literals
      - Move Maybe(..) from GHC.Base to GHC.Maybe for module dependency
        reasons
      
      This patch introduces only a few rules for Natural literals (compared
      to Integer's rules). Factorization of the built-in rules for numeric
      literals will be done in another patch as this one is already big to
      review.
      
      Test Plan:
        validate
        test build with integer-simple
      
      Reviewers: hvr, bgamari, goldfire, Bodigrim, simonmar
      
      Reviewed By: bgamari
      
      Subscribers: phadej, simonpj, RyanGlScott, carter, hsyl20, rwbarton,
      thomie
      
      GHC Trac Issues: #14170, #14465
      
      Differential Revision: https://phabricator.haskell.org/D4212
      fe770c21
  23. 16 May, 2018 1 commit
    • Simon Marlow's avatar
      An overhaul of the SRT representation · eb8e692c
      Simon Marlow authored
      Summary:
      - Previously we would hvae a single big table of pointers per module,
        with a set of bitmaps to reference entries within it. The new
        representation is identical to a static constructor, which is much
        simpler for the GC to traverse, and we get to remove the complicated
        bitmap-traversal code from the GC.
      
      - Rewrite all the code to generate SRTs in CmmBuildInfoTables, and
        document it much better (see Note [SRTs]). This has been something
        I've wanted to do since we moved to the new code generator, I
        finally had the opportunity to finish it while on a transatlantic
        flight recently :)
      
      There are a series of 4 diffs:
      
      1. D4632 (this one), which does the bulk of the changes
      
      2. D4633 which adds support for smaller `CmmLabelDiffOff` constants
      
      3. D4634 which takes advantage of D4632 and D4633 to save a word in
         info tables that have an SRT on x86_64. This is where most of the
         binary size improvement comes from.
      
      4. D4637 which makes a further optimisation to merge some SRTs with
         static FUN closures.  This adds some complexity and the benefits
         are fairly modest, so it's not clear yet whether we should do this.
      
      Results (after (3), on x86_64)
      
      - GHC itself (staticaly linked) is 5.2% smaller
      
      - -1.7% binary sizes in nofib, -2.9% module sizes. Full nofib results: P176
      
      - I measured the overhead of traversing all the static objects in a
        major GC in GHC itself by doing `replicateM_ 1000 performGC` as the
        first thing in `Main.main`.  The new version was 5-10% faster, but
        the results did vary quite a bit.
      
      - I'm not sure if there's a compile-time difference, the results are
        too unreliable.
      
      Test Plan: validate
      
      Reviewers: bgamari, michalt, niteria, simonpj, erikd, osa1
      
      Subscribers: thomie, carter
      
      Differential Revision: https://phabricator.haskell.org/D4632
      eb8e692c
  24. 26 Mar, 2018 1 commit
  25. 06 Mar, 2018 1 commit
    • niteria's avatar
      Allow top level ticked string literals · 5bc195a2
      niteria authored
      This reverts f5b275a2
      and changes the places that looked for `Lit (MachStr _))`
      to use `exprIsMbTickedLitString_maybe` to unwrap ticks as
      necessary.
      Also updated relevant comments.
      
      Test Plan:
      I added 3 new tests that previously reproduced.
      GHC HEAD now builds with -g
      
      Reviewers: simonpj, simonmar, bgamari, hvr, goldfire
      
      Subscribers: rwbarton, thomie, carter
      
      GHC Trac Issues: #14779
      
      Differential Revision: https://phabricator.haskell.org/D4470
      5bc195a2
  26. 02 Mar, 2018 1 commit
    • shlevy's avatar
      Make cost centre symbol names deterministic. · d8e47a2e
      shlevy authored
      Previously, non-CAF cost centre symbol names contained a unique,
      leading to non-deterministic object files which, among other issues,
      can lead to an inconsistency causing linking failure when using cached
      builds sourced from multiple machines, such as with nix. Now, each
      cost centre symbol is annotated with the type of cost centre it
      is (CAF, expression annotation, declaration annotation, or HPC) and,
      when a single module has multiple cost centres with the same name and
      type, a 0-based index.
      
      Reviewers: bgamari, simonmar
      
      Reviewed By: bgamari
      
      Subscribers: niteria, simonmar, RyanGlScott, osa1, rwbarton, thomie, carter
      
      GHC Trac Issues: #4012, #12935
      
      Differential Revision: https://phabricator.haskell.org/D4388
      d8e47a2e
  27. 13 Feb, 2018 1 commit
    • Ömer Sinan Ağacan's avatar
      Collect CCs in CorePrep, including CCs in unfoldings · 59574058
      Ömer Sinan Ağacan authored
      This patch includes two changes:
      
      1. Move cost centre collection from `SCCfinal` to `CorePrep`, to be able
         to collect cost centres in unfoldings. `CorePrep` drops unfoldings, so
         that's the latest stage in the compilation pipeline for this.
      
         After this change `SCCfinal` no longer collects all cost centres, but
         it still generates & collects CAF cost centres + updates cost centre
         stacks of `StgRhsClosure` and `StgRhsCon`s.
      
         This fixes #5889.
      
      2. Initialize cost centre stack fields of `StgRhs` in `coreToStg`. With
         this we no longer need to update cost centre stack fields in
         `SCCfinal`, so that module is removed.
      
         Cost centre initialization explained in Note [Cost-centre
         initialization plan].
      
         Because with -fcaf-all we need to attach a new cost-centre to each
         CAF, `coreTopBindToStg` now returns `CollectedCCs`.
      
      Test Plan: validate
      
      Reviewers: simonpj, bgamari, simonmar
      
      Reviewed By: simonpj, bgamari
      
      Subscribers: rwbarton, thomie, carter
      
      GHC Trac Issues: #5889
      
      Differential Revision: https://phabricator.haskell.org/D4325
      59574058
  28. 19 Sep, 2017 1 commit
    • Herbert Valerio Riedel's avatar
      compiler: introduce custom "GhcPrelude" Prelude · f63bc730
      Herbert Valerio Riedel authored
      This switches the compiler/ component to get compiled with
      -XNoImplicitPrelude and a `import GhcPrelude` is inserted in all
      modules.
      
      This is motivated by the upcoming "Prelude" re-export of
      `Semigroup((<>))` which would cause lots of name clashes in every
      modulewhich imports also `Outputable`
      
      Reviewers: austin, goldfire, bgamari, alanz, simonmar
      
      Reviewed By: bgamari
      
      Subscribers: goldfire, rwbarton, thomie, mpickering, bgamari
      
      Differential Revision: https://phabricator.haskell.org/D3989
      f63bc730
  29. 01 Feb, 2017 1 commit
  30. 20 Jan, 2017 1 commit
    • takano-akio's avatar
      Allow top-level string literals in Core (#8472) · d49b2bb2
      takano-akio authored
      This commits relaxes the invariants of the Core syntax so that a
      top-level variable can be bound to a primitive string literal of type
      Addr#.
      
      This commit:
      
      * Relaxes the invatiants of the Core, and allows top-level bindings whose
        type is Addr# as long as their RHS is either a primitive string literal or
        another variable.
      
      * Allows the simplifier and the full-laziness transformer to float out
        primitive string literals to the top leve.
      
      * Introduces the new StgGenTopBinding type to accomodate top-level Addr#
        bindings.
      
      * Introduces a new type of labels in the object code, with the suffix "_bytes",
        for exported top-level Addr# bindings.
      
      * Makes some built-in rules more robust. This was necessary to keep them
        functional after the above changes.
      
      This is a continuation of D2554.
      
      Rebasing notes:
      This had two slightly suspicious performance regressions:
      
      * T12425: bytes allocated regressed by roughly 5%
      * T4029: bytes allocated regressed by a bit over 1%
      * T13035: bytes allocated regressed by a bit over 5%
      
      These deserve additional investigation.
      
      Rebased by: bgamari.
      
      Test Plan: ./validate --slow
      
      Reviewers: goldfire, trofi, simonmar, simonpj, austin, hvr, bgamari
      
      Reviewed By: trofi, simonpj, bgamari
      
      Subscribers: trofi, simonpj, gridaphobe, thomie
      
      Differential Revision: https://phabricator.haskell.org/D2605
      
      GHC Trac Issues: #8472
      d49b2bb2
  31. 19 Jan, 2017 1 commit
    • Richard Eisenberg's avatar
      Update levity polymorphism · e7985ed2
      Richard Eisenberg authored
      This commit implements the proposal in
      https://github.com/ghc-proposals/ghc-proposals/pull/29 and
      https://github.com/ghc-proposals/ghc-proposals/pull/35.
      
      Here are some of the pieces of that proposal:
      
      * Some of RuntimeRep's constructors have been shortened.
      
      * TupleRep and SumRep are now parameterized over a list of RuntimeReps.
      * This
      means that two types with the same kind surely have the same
      representation.
      Previously, all unboxed tuples had the same kind, and thus the fact
      above was
      false.
      
      * RepType.typePrimRep and friends now return a *list* of PrimReps. These
      functions can now work successfully on unboxed tuples. This change is
      necessary because we allow abstraction over unboxed tuple types and so
      cannot
      always handle unboxed tuples specially as we did before.
      
      * We sometimes have to create an Id from a PrimRep. I thus split PtrRep
      * into
      LiftedRep and UnliftedRep, so that the created Ids have the right
      strictness.
      
      * The RepType.RepType type was removed, as it didn't seem to help with
      * much.
      
      * The RepType.repType function is also removed, in favor of typePrimRep.
      
      * I have waffled a good deal on whether or not to keep VoidRep in
      TyCon.PrimRep. In the end, I decided to keep it there. PrimRep is *not*
      represented in RuntimeRep, and typePrimRep will never return a list
      including
      VoidRep. But it's handy to have in, e.g., ByteCodeGen and friends. I can
      imagine another design choice where we have a PrimRepV type that is
      PrimRep
      with an extra constructor. That seemed to be a heavier design, though,
      and I'm
      not sure what the benefit would be.
      
      * The last, unused vestiges of # (unliftedTypeKind) have been removed.
      
      * There were several pretty-printing bugs that this change exposed;
      * these are fixed.
      
      * We previously checked for levity polymorphism in the types of binders.
      * But we
      also must exclude levity polymorphism in function arguments. This is
      hard to check
      for, requiring a good deal of care in the desugarer. See Note [Levity
      polymorphism
      checking] in DsMonad.
      
      * In order to efficiently check for levity polymorphism in functions, it
      * was necessary
      to add a new bit of IdInfo. See Note [Levity info] in IdInfo.
      
      * It is now safe for unlifted types to be unsaturated in Core. Core Lint
      * is updated
      accordingly.
      
      * We can only know strictness after zonking, so several checks around
      * strictness
      in the type-checker (checkStrictBinds, the check for unlifted variables
      under a ~
      pattern) have been moved to the desugarer.
      
      * Along the way, I improved the treatment of unlifted vs. banged
      * bindings. See
      Note [Strict binds checks] in DsBinds and #13075.
      
      * Now that we print type-checked source, we must be careful to print
      * ConLikes correctly.
      This is facilitated by a new HsConLikeOut constructor to HsExpr.
      Particularly troublesome
      are unlifted pattern synonyms that get an extra void# argument.
      
      * Includes a submodule update for haddock, getting rid of #.
      
      * New testcases:
        typecheck/should_fail/StrictBinds
        typecheck/should_fail/T12973
        typecheck/should_run/StrictPats
        typecheck/should_run/T12809
        typecheck/should_fail/T13105
        patsyn/should_fail/UnliftedPSBind
        typecheck/should_fail/LevPolyBounded
        typecheck/should_compile/T12987
        typecheck/should_compile/T11736
      
      * Fixed tickets:
        #12809
        #12973
        #11736
        #13075
        #12987
      
      * This also adds a test case for #13105. This test case is
      * "compile_fail" and
      succeeds, because I want the testsuite to monitor the error message.
      When #13105 is fixed, the test case will compile cleanly.
      e7985ed2
  32. 18 Jan, 2017 1 commit
  33. 02 Nov, 2016 1 commit
  34. 22 Jul, 2016 1 commit
    • Erik de Castro Lopo's avatar
      Fix the non-Linux build · d068220f
      Erik de Castro Lopo authored
      Summary:
      The recent Compact Regions commit (cf989ffe) builds fine on Linux
      but doesn't build on OS X r Windows.
      
      * rts/sm/CNF.c: Drop un-needed #includes.
      * Fix parenthesis usage with CPP ASSERT macro.
      * Fix format string in debugBelch messages.
      * Use stg_max() instead hand rolled inline max() function.
      
      Test Plan: Build on Linux, OS X and Windows
      
      Reviewers: gcampax, simonmar, austin, bgamari
      
      Subscribers: thomie
      
      Differential Revision: https://phabricator.haskell.org/D2421
      d068220f
  35. 21 Jul, 2016 1 commit
    • Ömer Sinan Ağacan's avatar
      Implement unboxed sum primitive type · 714bebff
      Ömer Sinan Ağacan authored
      Summary:
      This patch implements primitive unboxed sum types, as described in
      https://ghc.haskell.org/trac/ghc/wiki/UnpackedSumTypes.
      
      Main changes are:
      
      - Add new syntax for unboxed sums types, terms and patterns. Hidden
        behind `-XUnboxedSums`.
      
      - Add unlifted unboxed sum type constructors and data constructors,
        extend type and pattern checkers and desugarer.
      
      - Add new RuntimeRep for unboxed sums.
      
      - Extend unarise pass to translate unboxed sums to unboxed tuples right
        before code generation.
      
      - Add `StgRubbishArg` to `StgArg`, and a new type `CmmArg` for better
        code generation when sum values are involved.
      
      - Add user manual section for unboxed sums.
      
      Some other changes:
      
      - Generalize `UbxTupleRep` to `MultiRep` and `UbxTupAlt` to
        `MultiValAlt` to be able to use those with both sums and tuples.
      
      - Don't use `tyConPrimRep` in `isVoidTy`: `tyConPrimRep` is really
        wrong, given an `Any` `TyCon`, there's no way to tell what its kind
        is, but `kindPrimRep` and in turn `tyConPrimRep` returns `PtrRep`.
      
      - Fix some bugs on the way: #12375.
      
      Not included in this patch:
      
      - Update Haddock for new the new unboxed sum syntax.
      
      - `TemplateHaskell` support is left as future work.
      
      For reviewers:
      
      - Front-end code is mostly trivial and adapted from unboxed tuple code
        for type checking, pattern checking, renaming, desugaring etc.
      
      - Main translation routines are in `RepType` and `UnariseStg`.
        Documentation in `UnariseStg` should be enough for understanding
        what's going on.
      
      Credits:
      
      - Johan Tibell wrote the initial front-end and interface file
        extensions.
      
      - Simon Peyton Jones reviewed this patch many times, wrote some code,
        and helped with debugging.
      
      Reviewers: bgamari, alanz, goldfire, RyanGlScott, simonpj, austin,
                 simonmar, hvr, erikd
      
      Reviewed By: simonpj
      
      Subscribers: Iceland_jack, ggreif, ezyang, RyanGlScott, goldfire,
                   thomie, mpickering
      
      Differential Revision: https://phabricator.haskell.org/D2259
      714bebff
  36. 05 Jul, 2016 1 commit
  37. 10 Jun, 2016 1 commit
  38. 07 Jun, 2016 1 commit
  39. 24 Feb, 2016 1 commit