1. 24 Aug, 2011 3 commits
  2. 23 Aug, 2011 3 commits
  3. 22 Aug, 2011 9 commits
  4. 21 Aug, 2011 4 commits
  5. 20 Aug, 2011 1 commit
  6. 19 Aug, 2011 6 commits
  7. 18 Aug, 2011 2 commits
  8. 16 Aug, 2011 3 commits
    • tibbe's avatar
      Add popCnt# primop · 2d0438f3
      tibbe authored
      2d0438f3
    • Simon Peyton Jones's avatar
      Major improvement to pattern bindings · 49dbe605
      Simon Peyton Jones authored
      This patch makes a number of related improvements
      
      a) Implements the Haskell Prime semantics for pattern bindings
         (Trac #2357).  That is, a pattern binding p = e is typed
         just as if it had been written
              t = e
              f = case t of p -> f
              g = case t of p -> g
              ... etc ...
         where f,g are the variables bound by p. In paricular it's
         ok to say
            (f,g) = (\x -> x, \y -> True)
         and f and g will get propertly inferred types
            f :: a -> a
            g :: a -> Int
      
      b) Eliminates the MonoPatBinds flag altogether.  (For the moment
         it is deprecated and has no effect.)  Pattern bindings are now
         generalised as per (a).  Fixes Trac #2187 and #4940, in the
         way the users wanted!
      
      c) Improves the OutsideIn algorithm generalisation decision.
         Given a definition without a type signature (implying "infer
         the type"), the published algorithm rule is this:
            - generalise *top-level* functions, and
            - do not generalise *nested* functions
         The new rule is
            - generalise a binding whose free variables have
              Guaranteed Closed Types
            - do not generalise other bindings
      
         Generally, a top-level let-bound function has a Guaranteed
         Closed Type, and so does a nested function whose free vaiables
         are top-level functions, and so on. (However a top-level
         function that is bitten by the Monomorphism Restriction does
         not have a GCT.)
      
         Example:
           f x = let { foo y = y } in ...
         Here 'foo' has no free variables, so it is generalised despite
         being nested.
      
      d) When inferring a type f :: ty for a definition f = e, check that
         the compiler would accept f :: ty as a type signature for that
         same definition.  The type is rejected precisely when the type
         is ambiguous.
      
         Example:
            class Wob a b where
              to :: a -> b
              from :: b -> a
      
            foo x = [x, to (from x)]
         GHC 7.0 would infer the ambiguous type
            foo :: forall a b. Wob a b => b -> [b]
         but that type would give an error whenever it is called; and
         GHC 7.0 would reject that signature if given by the
         programmer.  The new type checker rejects it up front.
      
         Similarly, with the advent of type families, ambiguous types are
         easy to write by mistake.  See Trac #1897 and linked tickets for
         many examples.  Eg
            type family F a :: *
            f ::: F a -> Int
            f x = 3
         This is rejected because (F a ~ F b) does not imply a~b.  Previously
         GHC would *infer* the above type for f, but was unable to check it.
         Now even the inferred type is rejected -- correctly.
      
      The main implemenation mechanism is to generalise the abe_wrap
      field of ABExport (in HsBinds), from [TyVar] to HsWrapper. This
      beautiful generalisation turned out to make everything work nicely
      with minimal programming effort.  All the work was fiddling around
      the edges; the core change was easy!
      49dbe605
    • Simon Peyton Jones's avatar
  9. 15 Aug, 2011 3 commits
  10. 14 Aug, 2011 3 commits
  11. 12 Aug, 2011 3 commits