1. 13 Sep, 2002 1 commit
    • simonpj's avatar
      [project @ 2002-09-13 15:02:25 by simonpj] · 9af77fa4
      simonpj authored
      --------------------------------------
      	Make Template Haskell into the HEAD
      	--------------------------------------
      
      This massive commit transfers to the HEAD all the stuff that
      Simon and Tim have been doing on Template Haskell.  The
      meta-haskell-branch is no more!
      
      WARNING: make sure that you
      
        * Update your links if you are using link trees.
          Some modules have been added, some have gone away.
      
        * Do 'make clean' in all library trees.
          The interface file format has changed, and you can
          get strange panics (sadly) if GHC tries to read old interface files:
          e.g.  ghc-5.05: panic! (the `impossible' happened, GHC version 5.05):
      	  Binary.get(TyClDecl): ForeignType
      
        * You need to recompile the rts too; Linker.c has changed
      
      
      However the libraries are almost unaltered; just a tiny change in
      Base, and to the exports in Prelude.
      
      
      NOTE: so far as TH itself is concerned, expression splices work
      fine, but declaration splices are not complete.
      
      
      		---------------
      		The main change
      		---------------
      
      The main structural change: renaming and typechecking have to be
      interleaved, because we can't rename stuff after a declaration splice
      until after we've typechecked the stuff before (and the splice
      itself).
      
      * Combine the renamer and typecheker monads into one
      	(TcRnMonad, TcRnTypes)
        These two replace TcMonad and RnMonad
      
      * Give them a single 'driver' (TcRnDriver).  This driver
        replaces TcModule.lhs and Rename.lhs
      
      * The haskell-src library package has a module
      	Language/Haskell/THSyntax
        which defines the Haskell data type seen by the TH programmer.
      
      * New modules:
      	hsSyn/Convert.hs 	converts THSyntax -> HsSyn
      	deSugar/DsMeta.hs 	converts HsSyn -> THSyntax
      
      * New module typecheck/TcSplice type-checks Template Haskell splices.
      
      		-------------
      		Linking stuff
      		-------------
      
      * ByteCodeLink has been split into
      	ByteCodeLink	(which links)
      	ByteCodeAsm	(which assembles)
      
      * New module ghci/ObjLink is the object-code linker.
      
      * compMan/CmLink is removed entirely (was out of place)
        Ditto CmTypes (which was tiny)
      
      * Linker.c initialises the linker when it is first used (no need to call
        initLinker any more).  Template Haskell makes it harder to know when
        and whether to initialise the linker.
      
      
      	-------------------------------------
      	Gathering the LIE in the type checker
      	-------------------------------------
      
      * Instead of explicitly gathering constraints in the LIE
      	tcExpr :: RenamedExpr -> TcM (TypecheckedExpr, LIE)
        we now dump the constraints into a mutable varabiable carried
        by the monad, so we get
      	tcExpr :: RenamedExpr -> TcM TypecheckedExpr
      
        Much less clutter in the code, and more efficient too.
        (Originally suggested by Mark Shields.)
      
      
      		-----------------
      		Remove "SysNames"
      		-----------------
      
      Because the renamer and the type checker were entirely separate,
      we had to carry some rather tiresome implicit binders (or "SysNames")
      along inside some of the HsDecl data structures.  They were both
      tiresome and fragile.
      
      Now that the typechecker and renamer are more intimately coupled,
      we can eliminate SysNames (well, mostly... default methods still
      carry something similar).
      
      		-------------
      		Clean up HsPat
      		-------------
      
      One big clean up is this: instead of having two HsPat types (InPat and
      OutPat), they are now combined into one.  This is more consistent with
      the way that HsExpr etc is handled; there are some 'Out' constructors
      for the type checker output.
      
      So:
      	HsPat.InPat	--> HsPat.Pat
      	HsPat.OutPat	--> HsPat.Pat
      	No 'pat' type parameter in HsExpr, HsBinds, etc
      
      	Constructor patterns are nicer now: they use
      		HsPat.HsConDetails
      	for the three cases of constructor patterns:
      		prefix, infix, and record-bindings
      
      	The *same* data type HsConDetails is used in the type
      	declaration of the data type (HsDecls.TyData)
      
      Lots of associated clean-up operations here and there.  Less code.
      Everything is wonderful.
      9af77fa4
  2. 05 Sep, 2002 1 commit
    • simonmar's avatar
      [project @ 2002-09-05 10:25:01 by simonmar] · 5ac854ef
      simonmar authored
      In code style, print negative floating point literals in parentheses
      to avoid interacting with surrounding syntax.
      
      Fixes SourceForge bug #604849
      
      MERGE TO STABLE
      5ac854ef
  3. 29 Apr, 2002 1 commit
    • simonmar's avatar
      [project @ 2002-04-29 14:03:38 by simonmar] · b085ee40
      simonmar authored
      FastString cleanup, stage 1.
      
      The FastString type is no longer a mixture of hashed strings and
      literal strings, it contains hashed strings only with O(1) comparison
      (except for UnicodeStr, but that will also go away in due course).  To
      create a literal instance of FastString, use FSLIT("..").
      
      By far the most common use of the old literal version of FastString
      was in the pattern
      
      	  ptext SLIT("...")
      
      this combination still works, although it doesn't go via FastString
      any more.  The next stage will be to remove the need to use this
      special combination at all, using a RULE.
      
      To convert a FastString into an SDoc, now use 'ftext' instead of
      'ptext'.
      
      I've also removed all the FAST_STRING related macros from HsVersions.h
      except for SLIT and FSLIT, just use the relevant functions from
      FastString instead.
      b085ee40
  4. 14 Mar, 2002 1 commit
  5. 04 Mar, 2002 1 commit
    • simonmar's avatar
      [project @ 2002-03-04 17:01:26 by simonmar] · 0171936c
      simonmar authored
      Binary Interface Files - stage 1
      --------------------------------
      
      This commit changes the default interface file format from text to
      binary, in order to improve compilation performace.
      
      To view an interface file, use 'ghc --show-iface Foo.hi'.
      
      utils/Binary.hs is the basic Binary I/O library, based on the nhc98
      binary I/O library but much stripped-down and working in terms of
      bytes rather than bits, and with some special features for GHC: it
      remembers which Module is being emitted to avoid dumping too many
      qualified names, and it keeps track of a "dictionary" of FastStrings
      so that we don't dump the same FastString more than once into the
      binary file.  I'll make a generic version of this for the libraries at
      some point.
      
      main/BinIface.hs contains most of the Binary instances.  Some
      instances are in the same module as the data type (RdrName, Name,
      OccName in particular).  Most instances were generated using a
      modified version of DrIFT, which I'll commit later.  However, editing
      them by hand isn't hard (certainly easier than modifying
      ParseIface.y).
      
      The first thing in a binary interface is the interface version, so
      nice error messages will be generated if the binary format changes and
      you still have old interfaces lying around.  The version also now
      includes the "way" as an extra sanity check.
      
      Other changes
      -------------
      
      I don't like the way FastStrings contain both hashed strings (with
      O(1) comparison) and literal C strings (with O(n) comparison).  So as
      a first step to separating these I made serveral "literal" type
      strings into hashed strings.  SLIT() still generates a literal, and
      now FSLIT() generates a hashed string.  With DEBUG on, you'll get a
      warning if you try to compare any SLIT()s with anything, and the
      compiler will fall over if you try to dump any literal C strings into
      an interface file (usually indicating a use of SLIT() which should be
      FSLIT()).
      
      mkSysLocal no longer re-encodes its FastString argument each time it
      is called.
      
      I also fixed the -pgm options so that the argument can now optionally
      be separted from the option.
      
      Bugfix: PrelNames declared Names for several comparison primops, eg.
      eqCharName, eqIntName etc. but these had different uniques from the
      real primop names.  I've moved these to PrimOps and defined them using
      mkPrimOpIdName instead, and deleted some for which we don't have real
      primops (Manuel: please check that things still work for you after
      this change).
      0171936c
  6. 24 Oct, 2001 1 commit
    • simonpj's avatar
      [project @ 2001-10-24 15:11:28 by simonpj] · fcfe1643
      simonpj authored
      ----------------
      	Division by zero
      	----------------
      
      Teach GHC that the division primops can't fail if the divisor
      is non-zero.  This can eliminate some thunks in an inner loop.
      fcfe1643
  7. 20 Aug, 2001 2 commits
    • simonpj's avatar
      [project @ 2001-08-20 14:18:30 by simonpj] · 6184716f
      simonpj authored
      Amplify comment on mkMachInt a little
      6184716f
    • simonmar's avatar
      [project @ 2001-08-20 14:10:02 by simonmar] · cc7aac1f
      simonmar authored
      Remove the in-range assertions on mkMachInt/mkMachWord.  They clearly
      aren't true, because there's nothing stopping you from writing an
      out-of-range Int# literal (although that's the only way I can see for
      these to arise).
      
      The wider issue is what should be done about out-of-range Int#
      literals; I vaguely remember that at some point we disallowed them,
      but I can't find anything in the logs.  The case which triggered the
      assertion, namely "intToWord# 0xffff0000" would appear to be a
      legitimate use for an out-of-range Int# literal though, given that
      you can't write Word# literals directly.
      cc7aac1f
  8. 17 Aug, 2001 1 commit
    • apt's avatar
      [project @ 2001-08-17 17:18:51 by apt] · 1dfaee31
      apt authored
      How I spent my summer vacation.
      
      Primops
      -------
      
      The format of the primops.txt.pp file has been enhanced to allow
      (latex-style) primop descriptions to be included.  There is a new flag
      to genprimopcode that generates documentation including these
      descriptions. A first cut at descriptions of the more interesting
      primops has been made, and the file has been reordered a bit.
      
      31-bit words
      ------------
      
      The front end now can cope with the possibility of 31-bit (or even 30-bit)
      Int# and Word# types.  The only current use of this is to generate
      external .core files that can be translated into OCAML source files
      (OCAML uses a one-bit tag to distinguish integers from pointers).
      The only way to get this right now is by hand-defining the preprocessor
      symbol WORD_SIZE_IN_BITS, which is normally set automatically from
      the familiar WORD_SIZE_IN_BYTES.
      
      Just in case 31-bit words are used, we now have Int32# and Word32# primitive types
      and an associated family of operators, paralleling the existing 64-bit
      stuff.  Of course, none of the operators actually need to be implemented
      in the absence of a 31-bit backend.
      There has also been some minor re-jigging of the 32 vs. 64 bit stuff.
      See the description at the top of primops.txt.pp file for more details.
      Note that, for the first time, the *type* of a primop can now depend
      on the target word size.
      
      Also, the family of primops intToInt8#, intToInt16#, etc.
      have been renamed narrow8Int#, narrow16Int#, etc., to emphasize
      that they work on Int#'s and don't actually convert between types.
      
      Addresses
      ---------
      
      As another part of coping with the possibility of 31-bit ints,
      the addr2Int# and int2Addr# primops are now thoroughly deprecated
      (and not even defined in the 31-bit case) and all uses
      of them have been removed except from the (deprecated) module
      hslibs/lang/Addr
      
      Addr# should now be treated as a proper abstract type, and has these suitable operators:
      
      nullAddr# : Int# -> Addr# (ignores its argument; nullary primops cause problems at various places)
      plusAddr# :  Addr# -> Int# -> Addr#
      minusAddr : Addr# -> Addr# -> Int#
      remAddr# : Addr# -> Int# -> Int#
      
      Obviously, these don't allow completely arbitrary offsets if 31-bit ints are
      in use, but they should do for all practical purposes.
      
      It is also still possible to generate an address constant, and there is a built-in rule
      that makes use of this to remove the nullAddr# calls.
      
      Misc
      ----
      There is a new compile flag -fno-code that causes GHC to quit after generating .hi files
      and .core files (if requested) but before generating STG.
      
      Z-encoded names for tuples have been rationalized; e.g.,
      Z3H now means an unboxed 3-tuple, rather than an unboxed
      tuple with 3 commas (i.e., a 4-tuple)!
      
      Removed misc. litlits in hslibs/lang
      
      Misc. small changes to external core format.  The external core description
      has also been substantially updated, and incorporates the automatically-generated
      primop documentation; its in the repository at /papers/ext-core/core.tex.
      
      A little make-system addition to allow passing CPP options to compiler and
      library builds.
      1dfaee31
  9. 19 Jul, 2001 1 commit
  10. 25 Jun, 2001 1 commit
    • simonpj's avatar
      [project @ 2001-06-25 08:09:57 by simonpj] · d069cec2
      simonpj authored
      ----------------
      	Squash newtypes
      	----------------
      
      This commit squashes newtypes and their coerces, from the typechecker
      onwards.  The original idea was that the coerces would not get in the
      way of optimising transformations, but despite much effort they continue
      to do so.   There's no very good reason to retain newtype information
      beyond the typechecker, so now we don't.
      
      Main points:
      
      * The post-typechecker suite of Type-manipulating functions is in
      types/Type.lhs, as before.   But now there's a new suite in types/TcType.lhs.
      The difference is that in the former, newtype are transparent, while in
      the latter they are opaque.  The typechecker should only import TcType,
      not Type.
      
      * The operations in TcType are all non-monadic, and most of them start with
      "tc" (e.g. tcSplitTyConApp).  All the monadic operations (used exclusively
      by the typechecker) are in a new module, typecheck/TcMType.lhs
      
      * I've grouped newtypes with predicate types, thus:
      	data Type = TyVarTy Tyvar | ....
      		  | SourceTy SourceType
      
      	data SourceType = NType TyCon [Type]
      			| ClassP Class [Type]
      			| IParam Type
      
      [SourceType was called PredType.]  This is a little wierd in some ways,
      because NTypes can't occur in qualified types.   However, the idea is that
      a SourceType is a type that is opaque to the type checker, but transparent
      to the rest of the compiler, and newtypes fit that as do implicit parameters
      and dictionaries.
      
      * Recursive newtypes still retain their coreces, exactly as before. If
      they were transparent we'd get a recursive type, and that would make
      various bits of the compiler diverge (e.g. things which do type comparison).
      
      * I've removed types/Unify.lhs (non-monadic type unifier and matcher),
      merging it into TcType.
      
      Ditto typecheck/TcUnify.lhs (monadic unifier), merging it into TcMType.
      d069cec2
  11. 27 Apr, 2001 1 commit
  12. 26 Apr, 2001 1 commit
  13. 05 Feb, 2001 1 commit
  14. 20 Dec, 2000 1 commit
  15. 12 Oct, 2000 1 commit
    • simonmar's avatar
      [project @ 2000-10-12 13:11:45 by simonmar] · 30d55993
      simonmar authored
      Move FAST_INT and FAST_BOOL into their own module FastTypes, replacing
      the macro definitions in HsVersions.h with real definitions.  Change
      most of the names in the process.
      
      Now we don't get bogus imports of GlaExts all over the place, and
      -fwarn-unused-imports is less noisy.
      30d55993
  16. 07 Aug, 2000 1 commit
    • qrczak's avatar
      [project @ 2000-08-07 23:37:19 by qrczak] · 4b172698
      qrczak authored
      Now Char, Char#, StgChar have 31 bits (physically 32).
      "foo"# is still an array of bytes.
      
      CharRep represents 32 bits (on a 64-bit arch too). There is also
      Int8Rep, used in those places where bytes were originally meant.
      readCharArray, indexCharOffAddr etc. still use bytes. Storable and
      {I,M}Array use wide Chars.
      
      In future perhaps all sized integers should be primitive types. Then
      some usages of indexing primops scattered through the code could
      be changed to then-available Int8 ones, and then Char variants of
      primops could be made wide (other usages that handle text should use
      conversion that will be provided later).
      
      I/O and _ccall_ arguments assume ISO-8859-1. UTF-8 is internally used
      for string literals (only).
      
      Z-encoding is ready for Unicode identifiers.
      
      Ranges of intlike and charlike closures are more easily configurable.
      
      I've probably broken nativeGen/MachCode.lhs:chrCode for Alpha but I
      don't know the Alpha assembler to fix it (what is zapnot?). Generally
      I'm not sure if I've done the NCG changes right.
      
      This commit breaks the binary compatibility (of course).
      
      TODO:
      * is* and to{Lower,Upper} in Char (in progress).
      * Libraries for text conversion (in design / experiments),
        to be plugged to I/O and a higher level foreign library.
      * PackedString.
      * StringBuffer and accepting source in encodings other than ISO-8859-1.
      4b172698
  17. 06 Aug, 2000 1 commit
  18. 01 Aug, 2000 1 commit
    • simonpj's avatar
      [project @ 2000-08-01 09:08:25 by simonpj] · fe69f3c1
      simonpj authored
      Simon's Marktoberdorf Commits
      
      1.  Tidy up the renaming story for "system binders", such as
      dictionary functions, default methods, constructor workers etc.  These
      are now documented in HsDecls.  The main effect of the change, apart
      from tidying up, is to make the *type-checker* (instead of the
      renamer) generate names for dict-funs and default-methods.  This is
      good because Sergei's generic-class stuff generates new classes at
      typecheck time.
      
      
      2.  Fix the CSE pass so it does not require the no-shadowing invariant.
      Keith discovered that the simplifier occasionally returns a result
      with shadowing.  After much fiddling around (which has improved the
      code in the simplifier a bit) I found that it is nearly impossible to
      arrange that it really does do no-shadowing.  So I gave up and fixed
      the CSE pass (which is the only one to rely on it) instead.
      
      
      3. Fix a performance bug in the simplifier.  The change is in
      SimplUtils.interestingArg.  It computes whether an argment should 
      be considered "interesting"; if a function is applied to an interesting
      argument, we are more likely to inline that function.
      Consider this case
      	let x = 3 in f x
      The 'x' argument was considered "uninteresting" for a silly reason.
      Since x only occurs once, it was unconditionally substituted, but
      interestingArg didn't take account of that case.  Now it does.
      
      I also made interestingArg a bit more liberal.  Let's see if we
      get too much inlining now.
      
      
      4.  In the occurrence analyser, we were choosing a bad loop breaker.
      Here's the comment that's now in OccurAnal.reOrderRec
      
          score ((bndr, rhs), _, _)
      	| exprIsTrivial rhs 	   = 3	-- Practically certain to be inlined
      		-- Used to have also: && not (isExportedId bndr)
      		-- But I found this sometimes cost an extra iteration when we have
      		--	rec { d = (a,b); a = ...df...; b = ...df...; df = d }
      		-- where df is the exported dictionary. Then df makes a really
      		-- bad choice for loop breaker
      
      I also increased the score for bindings with a non-functional type, so that
      dictionaries have a better chance of getting inlined early
      
      
      5. Add a hash code to the InScopeSet (and make it properly abstract)
      This should make uniqAway a lot more robust.  Simple experiments suggest
      that uniqAway no longer gets into the long iteration chains that it used
      to.
      
      
      6.  Fix a bug in the inliner that made the simplifier tend to get into
      a loop where it would keep iterating ("4 iterations, bailing out" message).
      In SimplUtils.mkRhsTyLam we float bindings out past a big lambda, thus:
      	x = /\ b -> let g = \x -> f x x
      		    in E
      becomes
      	g* = /\a -> \x -> f x x
      	x = /\ b -> let g = g* b in E
      	
      It's essential that we don't simply inling g* back into the RHS of g,
      else we will be back to square 1.  The inliner is meant not to do this
      because there's no benefit to the inlining, but the size calculation
      was a little off in CoreUnfold.
      
      
      7.  In SetLevels we were bogus-ly building a Subst with an empty in-scope
      set, so a WARNING popped up when compiling some modules.  (knights/ChessSetList
      was the example that tickled it.)  Now in fact the warning wasn't an error,
      but the Right Thing to do is to carry down a proper Subst in SetLevels, so
      that is what I have now done.  It is very little more expensive.
      fe69f3c1
  19. 11 Jul, 2000 1 commit
  20. 06 Jul, 2000 1 commit
    • simonmar's avatar
      [project @ 2000-07-06 14:08:31 by simonmar] · 5d42ac16
      simonmar authored
      New form of literal: MachLabel, for addresses of labels.  Used by
      foreign label instead of MachLitLit now.
      
      Real lit-lits now cause the NCG to panic.
      
      Also: removed CLitLit from AbsCSyn; it was only used in one place for
      a purpose it shouldn't have been used for in the first place.
      5d42ac16
  21. 02 Jul, 2000 1 commit
    • panne's avatar
      [project @ 2000-07-02 18:59:10 by panne] · 2a0ffd1c
      panne authored
      Don't use addr2Integer for large integral literals anymore, use a
      Horner schema with numbers in the Int range instead. This improves
      constant folding, so e.g.  (0x87654321 :: Word32) is evaluated at
      compile time now. In theory we can completely say Good-bye to
      addr2Integer, but for the time being it's still there. Feel free to
      nuke it...  >:-)
      2a0ffd1c
  22. 29 May, 2000 1 commit
  23. 28 May, 2000 1 commit
  24. 25 May, 2000 1 commit
    • simonpj's avatar
      [project @ 2000-05-25 12:41:14 by simonpj] · 495ef8bd
      simonpj authored
      ~~~~~~~~~~~~
      		Apr/May 2000
      		~~~~~~~~~~~~
      
      This is a pretty big commit!  It adds stuff I've been working on
      over the last month or so.  DO NOT MERGE IT WITH 4.07!
      
      Interface file formats have changed a little; you'll need
      to make clean before remaking.
      
      						Simon PJ
      
      Recompilation checking
      ~~~~~~~~~~~~~~~~~~~~~~
      Substantial improvement in recompilation checking.  The version management
      is now entirely internal to GHC.  ghc-iface.lprl is dead!
      
      The trick is to generate the new interface file in two steps:
        - first convert Types etc to HsTypes etc, and thereby
      	build a new ParsedIface
        - then compare against the parsed (but not renamed) version of the old
      	interface file
      Doing this meant adding code to convert *to* HsSyn things, and to
      compare HsSyn things for equality.  That is the main tedious bit.
      
      Another improvement is that we now track version info for
      fixities and rules, which was missing before.
      
      
      Interface file reading
      ~~~~~~~~~~~~~~~~~~~~~~
      Make interface files reading more robust.
        * If the old interface file is unreadable, don't fail. [bug fix]
      
        * If the old interface file mentions interfaces
          that are unreadable, don't fail. [bug fix]
      
        * When we can't find the interface file,
          print the directories we are looking in.  [feature]
      
      
      Type signatures
      ~~~~~~~~~~~~~~~
        * New flag -ddump-types to print type signatures
      
      
      Type pruning
      ~~~~~~~~~~~~
      When importing
      	data T = T1 A | T2 B | T3 C
      it seems excessive to import the types A, B, C as well, unless
      the constructors T1, T2 etc are used.  A,B,C might be more types,
      and importing them may mean reading more interfaces, and so on.
       So the idea is that the renamer will just import the decl
      	data T
      unless one of the constructors is used.  This turns out to be quite
      easy to implement.  The downside is that we must make sure the
      constructors are always available if they are really needed, so
      I regard this as an experimental feature.
      
      
      Elimininate ThinAir names
      ~~~~~~~~~~~~~~~~~~~~~~~~~
      Eliminate ThinAir.lhs and all its works.  It was always a hack, and now
      the desugarer carries around an environment I think we can nuke ThinAir
      altogether.
      
      As part of this, I had to move all the Prelude RdrName defns from PrelInfo
      to PrelMods --- so I renamed PrelMods as PrelNames.
      
      I also had to move the builtinRules so that they are injected by the renamer
      (rather than appearing out of the blue in SimplCore).  This is if anything simpler.
      
      Miscellaneous
      ~~~~~~~~~~~~~
      * Tidy up the data types involved in Rules
      
      * Eliminate RnEnv.better_provenance; use Name.hasBetterProv instead
      
      * Add Unique.hasKey :: Uniquable a => a -> Unique -> Bool
        It's useful in a lot of places
      
      * Fix a bug in interface file parsing for __U[!]
      495ef8bd
  25. 11 May, 2000 1 commit
    • panne's avatar
      [project @ 2000-05-11 15:11:24 by panne] · 70bad8db
      panne authored
      Added rules for constant folding with the folloging ops:
      WordQuotOp, WordRemOp, AndOp, OrOp, XorOp, Int2AddrOp, Addr2IntOp,
      Float2IntOp, DoubleNegOp, Double2IntOp, Double2FloatOp, Float2DoubleOp
      70bad8db
  26. 24 Mar, 2000 1 commit
  27. 02 Dec, 1998 1 commit
  28. 14 Aug, 1998 1 commit
  29. 08 Jan, 1998 1 commit
    • simonm's avatar
      [project @ 1998-01-08 18:03:08 by simonm] · 9dd6e1c2
      simonm authored
      The Great Multi-Parameter Type Classes Merge.
      
      Notes from Simon (abridged):
      
      * Multi-parameter type classes are fully implemented.
      * Error messages from the type checker should be noticeably improved
      * Warnings for unused bindings (-fwarn-unused-names)
      * many other minor bug fixes.
      
      Internally there are the following changes
      
      * Removal of Haskell 1.2 compatibility.
      * Dramatic clean-up of the PprStyle stuff.
      * The type Type has been substantially changed.
      * The dictionary for each class is represented by a new
        data type for that purpose, rather than by a tuple.
      9dd6e1c2
  30. 26 May, 1997 1 commit
  31. 19 May, 1997 1 commit
  32. 14 Mar, 1997 1 commit
  33. 06 Jan, 1997 1 commit
  34. 26 Jun, 1996 1 commit
  35. 05 Jun, 1996 1 commit
  36. 19 Mar, 1996 1 commit
  37. 08 Jan, 1996 1 commit