- 31 Jul, 2014 1 commit
-
-
Simon Marlow authored
Summary: In this example we ended up with some code that was only reachable via an info table, because a branch had been optimised away by the native code generator. The register allocator then got confused because it was only considering the first block of the proc to be an entry point, when actually any of the info tables are entry points. Test Plan: validate Reviewers: simonpj, austin Subscribers: simonmar, relrod, carter Differential Revision: https://phabricator.haskell.org/D88
-
- 06 Jun, 2014 1 commit
-
-
Simon Marlow authored
A previous fix to this was wrong: f5879acd and left some unreachable code behind. So rather than try to be clever and do this at the same time as the strongly-connected-component analysis, I'm doing a separate reachability pass first.
-
- 15 May, 2014 1 commit
-
-
Herbert Valerio Riedel authored
In some cases, the layout of the LANGUAGE/OPTIONS_GHC lines has been reorganized, while following the convention, to - place `{-# LANGUAGE #-}` pragmas at the top of the source file, before any `{-# OPTIONS_GHC #-}`-lines. - Moreover, if the list of language extensions fit into a single `{-# LANGUAGE ... -#}`-line (shorter than 80 characters), keep it on one line. Otherwise split into `{-# LANGUAGE ... -#}`-lines for each individual language extension. In both cases, try to keep the enumeration alphabetically ordered. (The latter layout is preferable as it's more diff-friendly) While at it, this also replaces obsolete `{-# OPTIONS ... #-}` pragma occurences by `{-# OPTIONS_GHC ... #-}` pragmas.
-
- 19 Apr, 2014 1 commit
-
-
Jan Stolarek authored
This checks that all the required extensions are enabled for the inferred type signature. Updates binary and vector submodules.
-
- 23 Sep, 2013 1 commit
-
-
Simon Marlow authored
The problem with unreachable code is that it might refer to undefined registers. This happens accidentally: a block can be orphaned by an optimisation, for example when the result of a comparsion becomes known. The register allocator panics when it finds an undefined register, because they shouldn't occur in generated code. So we need to also discard unreachable code to prevent this panic being triggered by optimisations. The register alloator already does a strongly-connected component analysis, so it ought to be easy to make it discard unreachable code as part of that traversal. It turns out that we need a different variant of the scc algorithm to do that (see Digraph), however the new variant also generates slightly better code by putting the blocks within a loop in a better order for register allocation.
-
- 07 Apr, 2013 1 commit
-
-
Gabor Greif authored
-
- 12 Nov, 2012 1 commit
-
-
Simon Marlow authored
This removes the OldCmm data type and the CmmCvt pass that converts new Cmm to OldCmm. The backends (NCGs, LLVM and C) have all been converted to consume new Cmm. The main difference between the two data types is that conditional branches in new Cmm have both true/false successors, whereas in OldCmm the false case was a fallthrough. To generate slightly better code we occasionally need to invert a conditional to ensure that the branch-not-taken becomes a fallthrough; this was previously done in CmmCvt, and it is now done in CmmContFlowOpt. We could go further and use the Hoopl Block representation for native code, which would mean that we could use Hoopl's postorderDfs and analyses for native code, but for now I've left it as is, using the old ListGraph representation for native code.
-
- 30 Oct, 2012 1 commit
-
-
gmainlan@microsoft.com authored
All Cmm procedures now include the set of global registers that are live on procedure entry, i.e., the global registers used to pass arguments to the procedure. Only global registers that are use to pass arguments are included in this list.
-
- 20 Sep, 2012 2 commits
-
-
Simon Marlow authored
-
ian@well-typed.com authored
-
- 14 Sep, 2012 1 commit
-
-
ian@well-typed.com authored
-
- 21 Aug, 2012 1 commit
-
-
ian@well-typed.com authored
-
- 30 Jul, 2012 1 commit
-
-
Simon Marlow authored
Proc-point splitting is only required by backends that do not support having proc-points within a code block (that is, everything except the native backend, i.e. LLVM and C). Not doing proc-point splitting saves some compilation time, and might produce slightly better code in some cases.
-
- 13 Jun, 2012 3 commits
-
-
Ian Lynagh authored
-
Ian Lynagh authored
-
Ian Lynagh authored
We can now get the Platform from the DynFlags inside an SDoc, so we no longer need to pass the Platform in.
-
- 13 Dec, 2011 1 commit
-
-
Simon Marlow authored
-
- 02 Oct, 2011 1 commit
-
-
Ian Lynagh authored
And some knock-on changes
-
- 25 Aug, 2011 1 commit
-
-
Simon Peyton Jones authored
CmmTop -> CmmDecl CmmPgm -> CmmGroup
-
- 15 Jul, 2011 2 commits
-
-
Ian Lynagh authored
-
Ian Lynagh authored
There's now a variant of the Outputable class that knows what platform we're targetting: class PlatformOutputable a where pprPlatform :: Platform -> a -> SDoc pprPlatformPrec :: Platform -> Rational -> a -> SDoc and various instances have had to be converted to use that class, and we pass Platform around accordingly.
-
- 12 Jul, 2011 1 commit
-
-
Ian Lynagh authored
-
- 06 Jul, 2011 1 commit
-
-
batterseapower authored
I introduced this to support explicitly recording the info table label in RawCmm for another patch I am working on, but it turned out to lead to significant simplification in those parts of the compiler that consume RawCmm. Now, instead of lots of tests for null [CmmStatic] we have a simple test of a Maybe, and have reduced the number of guys that need to know how to convert entry->info labels by a TON. There are only 3 callers of that function now!
-
- 05 Jul, 2011 1 commit
-
-
batterseapower authored
I observed that the [CmmStatics] within CmmData uses the list in a very stylised way. The first item in the list is almost invariably a CmmDataLabel. Many parts of the compiler pattern match on this list and fail if this is not true. This patch makes the invariant explicit by introducing a structured type CmmStatics that holds the label and the list of remaining [CmmStatic]. There is one wrinkle: the x86 backend sometimes wants to output an alignment directive just before the label. However, this can be easily fixed up by parameterising the native codegen over the type of CmmStatics (though the GenCmmTop parameterisation) and using a pair (Alignment, CmmStatics) there instead. As a result, I think we will be able to remove CmmAlign and CmmDataLabel from the CmmStatic data type, thus nuking a lot of code and failing pattern matches. This change will come as part of my next patch.
-
- 24 Jan, 2011 1 commit
-
-
Simon Marlow authored
This changes the new code generator to make use of the Hoopl package for dataflow analysis. Hoopl is a new boot package, and is maintained in a separate upstream git repository (as usual, GHC has its own lagging darcs mirror in http://darcs.haskell.org/packages/hoopl). During this merge I squashed recent history into one patch. I tried to rebase, but the history had some internal conflicts of its own which made rebase extremely confusing, so I gave up. The history I squashed was: - Update new codegen to work with latest Hoopl - Add some notes on new code gen to cmm-notes - Enable Hoopl lag package. - Add SPJ note to cmm-notes - Improve GC calls on new code generator. Work in this branch was done by: - Milan Straka <fox@ucw.cz> - John Dias <dias@cs.tufts.edu> - David Terei <davidterei@gmail.com> Edward Z. Yang <ezyang@mit.edu> merged in further changes from GHC HEAD and fixed a few bugs.
-
- 13 Oct, 2010 1 commit
-
-
benl@ouroborus.net authored
-
- 13 Sep, 2010 1 commit
-
-
simonpj@microsoft.com authored
This major patch implements the new OutsideIn constraint solving algorithm in the typecheker, following our JFP paper "Modular type inference with local assumptions". Done with major help from Dimitrios Vytiniotis and Brent Yorgey.
-
- 24 Jun, 2010 3 commits
-
-
benl@ouroborus.net authored
-
benl@ouroborus.net authored
-
benl@ouroborus.net authored
computeLiveness requires the SCCs of blocks to be in reverse dependent order, and if they're not it was silently giving bad liveness info, yielding a bad allocation. Now it complains, loudly.
-
- 23 Jun, 2010 1 commit
-
-
benl@ouroborus.net authored
-
- 17 Sep, 2009 4 commits
-
-
Ben.Lippmeier@anu.edu.au authored
-
Ben.Lippmeier@anu.edu.au authored
* I've pushed the SPILL and RELOAD instrs down into the LiveInstr type to make them easier to work with. * When the graph allocator does a spill cycle it now just re-annotates the LiveCmmTops instead of converting them to NatCmmTops and back. * This saves working out the SCCS again, and avoids rewriting the SPILL and RELOAD meta instructions into real machine instructions.
-
Ben.Lippmeier@anu.edu.au authored
-
Ben.Lippmeier@anu.edu.au authored
-
- 18 May, 2009 1 commit
-
-
Ben.Lippmeier@anu.edu.au authored
* The old Reg type is now split into VirtualReg and RealReg. * For the graph coloring allocator, the type of the register graph is now (Graph VirtualReg RegClass RealReg), which shows that it colors in nodes representing virtual regs with colors representing real regs. (as was intended) * RealReg contains two contructors, RealRegSingle and RealRegPair, where RealRegPair is used to represent a SPARC double reg constructed from two single precision FP regs. * On SPARC we can now allocate double regs into an arbitrary register pair, instead of reserving some reg ranges to only hold float/double values.
-
- 15 Feb, 2009 1 commit
-
-
Ben.Lippmeier@anu.edu.au authored
- nativeGen/Instruction defines a type class for a generic instruction set. Each of the instruction sets we have, X86, PPC and SPARC are instances of it. - The register alloctors use this type class when they need info about a certain register or instruction, such as regUsage, mkSpillInstr, mkJumpInstr, patchRegs.. - nativeGen/Platform defines some data types enumerating the architectures and operating systems supported by the native code generator. - DynFlags now keeps track of the current build platform, and the PositionIndependentCode module uses this to decide what to do instead of relying of #ifdefs. - It's not totally retargetable yet. Some info info about the build target is still hardwired, but I've tried to contain most of it to a single module, TargetRegs. - Moved the SPILL and RELOAD instructions into LiveInstr. - Reg and RegClass now have their own modules, and are shared across all architectures.
-
- 04 Feb, 2009 2 commits
-
-
Ben.Lippmeier@anu.edu.au authored
-
Ben.Lippmeier@anu.edu.au authored
-
- 13 Oct, 2008 1 commit
-
-
dias@eecs.harvard.edu authored
o Fixed bug that emitted the copy-in code for closure entry in the wrong place -- at the initialization of the closure. o Refactored some of the closure entry code. o Added code to check that no LocalRegs are live-in to a procedure -- trip up some buggy programs earlier o Fixed environment bindings for thunks -- we weren't (re)binding the free variables in a thunk o Fixed a bug in proc-point splitting that dropped some updates to the entry block in a procedure. o Fixed improper calls to code that generates CmmLit's for strings o New invariant on cg_loc in CgIdInfo: the expression is always tagged o Code to load free vars on entry to a thunk was (wrongly) placed before the heap check. o Some of the StgCmm code was redundantly passing around Id's along with CgIdInfo's; no more. o Initialize the LocalReg's that point to a closure before allocating and initializing the closure itself -- otherwise, we have problems with recursive closure bindings o BlockEnv and BlockSet types are now abstract. o Update frames: - push arguments in Old call area - keep track of the return sp in the FCode monad - keep the return sp in every call, tail call, and return (because it might be different at different call sites, e.g. tail calls to the gc after a heap check are performed before pushing the update frame) - set the sp appropriately on returns and tail calls o Reduce call, tail call, and return to a single LastCall node o Added slow entry code, using different calling conventions on entry and tail call o More fixes to the calling convention code. The tricky stuff is all about the closure environment: it must be passed in R1, but in non-closures, there is no such argument, so we can't treat all arguments the same way: the closure environment is special. Maybe the right step forward would be to define a different calling convention for closure arguments. o Let-no-escapes need to be emitted out-of-line -- otherwise, we drop code. o Respect RTS requirement of word alignment for pointers My stack allocation can pack sub-word values into a single word on the stack, but it wasn't requiring word-alignment for pointers. It does now, by word-aligning both pointer registers and call areas. o CmmLint was over-aggresively ruling out non-word-aligned memory references, which may be kosher now that we can spill small values into a single word. o Wrong label order on a conditional branch when compiling switches. o void args weren't dropped in many cases. To help prevent this kind of mistake, I defined a NonVoid wrapper, which I'm applying only to Id's for now, although there are probably other good candidates. o A little code refactoring: separate modules for procpoint analysis splitting, stack layout, and building infotables. o Stack limit check: insert along with the heap limit check, using a symbolic constant (a special CmmLit), then replace it when the stack layout is known. o Removed last node: MidAddToContext o Adding block id as a literal: means that the lowering of the calling conventions no longer has to produce labels early, which was inhibiting common-block elimination. Will also make it easier for the non-procpoint-splitting path. o Info tables: don't try to describe the update frame! o Over aggressive use of NonVoid!!!! Don't drop the non-void args before setting the type of the closure!!! o Sanity checking: Added a pass to stub dead dead slots on the stack (only ~10 lines with the dataflow framework) o More sanity checking: Check that incoming pointer arguments are non-stubbed. Note: these checks are still subject to dead-code removal, but they should still be quite helpful. o Better sanity checking: why stop at function arguments? Instead, in mkAssign, check that _any_ assignment to a pointer type is non-null -- the sooner the crash, the easier it is to debug. Still need to add the debugging flag to turn these checks on explicitly. o Fixed yet another calling convention bug. This time, the calls to the GC were wrong. I've added a new convention for GC calls and invoked it where appropriate. We should really straighten out the calling convention stuff: some of the code (and documentation) is spread across the compiler, and there's some magical use of the node register that should really be handled (not avoided) by calling conventions. o Switch bug: the arms in mkCmmLitSwitch weren't returning to a single join point. o Environment shadowing problem in Stg->Cmm: When a closure f is bound at the top-level, we should not bind f to the node register on entry to the closure. Why? Because if the body of f contains a let-bound closure g that refers to f, we want to make sure that it refers to the static closure for f. Normally, this would all be fine, because when we compile a closure, we rebind free variables in the environment. But f doesn't look like a free variable because it's a static value. So, the binding for f remains in the environment when we compile g, inconveniently referring to the wrong thing. Now, I bind the variable in the local environment only if the closure is not bound at the top level. It's still okay to make assumptions about the node holding the closure environment; we just won't find the binding in the environment, so code that names the closure will now directly get the label of the static closure, not the node register holding a pointer to the static closure. o Don't generate bogus Cmm code containing SRTs during the STG -> Cmm pass! The tables made reference to some labels that don't exist when we compute and generate the tables in the back end. o Safe foreign calls need some special treatment (at least until we have the integrated codegen). In particular: o they need info tables o they are not procpoints -- the successor had better be in the same procedure o we cannot (yet) implement the calling conventions early, which means we have to carry the calling-conv info all the way to the end o We weren't following the old convention when registering a module. Now, we use update frames to push any new modules that have to be registered and enter the youngest one on the stack. We also use the update frame machinery to specify that the return should pop the return address off the stack. o At each safe foreign call, an infotable must be at the bottom of the stack, and the TSO->sp must point to it. o More problems with void args in a direct call to a function: We were checking the args (minus voids) to check whether the call was saturated, which caused problems when the function really wasn't saturated because it took an extra void argument. o Forgot to distinguish integer != from floating != during Stg->Cmm o Updating slotEnv and areaMap to include safe foreign calls The dataflow analyses that produce the slotEnv and areaMap give results for each basic block, but we also need the results for a safe foreign call, which is a middle node. After running the dataflow analysis, we have another pass that updates the results to includ any safe foreign calls. o Added a static flag for the debugging technique that inserts instructions to stub dead slots on the stack and crashes when a stubbed value is loaded into a pointer-typed LocalReg. o C back end expects to see return continuations before their call sites. Sorted the flowgraphs appropriately after splitting. o PrimOp calling conventions are special -- unlimited registers, no stack Yet another calling convention... o More void value problems: if the RHS of a case arm is a void-typed variable, don't try to return it. o When calling some primOp, they may allocate memory; if so, we need to do a heap check when we return from the call.
-