RnBinds.lhs 20.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
%
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
%
\section[RnBinds]{Renaming and dependency analysis of bindings}

This module does renaming and dependency analysis on value bindings in
the abstract syntax.  It does {\em not} do cycle-checks on class or
type-synonym declarations; those cannot be done at this stage because
they may be affected by renaming (which isn't fully worked out yet).

\begin{code}
module RnBinds (
	rnTopBinds, rnTopMonoBinds,
14
	rnMethodBinds, renameSigs, renameSigsFVs,
15
16
17
18
19
20
	rnBinds,
	unknownSigErr
   ) where

#include "HsVersions.h"

21
import {-# SOURCE #-} RnSource ( rnHsSigType, rnHsType )
22
23

import HsSyn
24
import HsBinds		( eqHsSig, sigName, hsSigDoc )
25
26
27
28
import RdrHsSyn
import RnHsSyn
import RnMonad
import RnExpr		( rnMatch, rnGRHSs, rnPat, checkPrecMatch )
29
import RnEnv		( bindLocatedLocalsRn, lookupBndrRn, 
30
			  lookupGlobalOccRn, lookupSigOccRn,
31
			  warnUnusedLocalBinds, mapFvRn, extendTyVarEnvFVRn,
32
			)
33
import CmdLineOpts	( DynFlag(..) )
34
import Digraph		( stronglyConnComp, SCC(..) )
35
import Name		( Name, nameOccName, nameSrcLoc )
36
import NameSet
37
import RdrName		( RdrName, rdrNameOcc )
38
import BasicTypes	( RecFlag(..) )
39
40
import List		( partition )
import Outputable
41
import PrelNames	( isUnboundName )
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
\end{code}

-- ToDo: Put the annotations into the monad, so that they arrive in the proper
-- place and can be used when complaining.

The code tree received by the function @rnBinds@ contains definitions
in where-clauses which are all apparently mutually recursive, but which may
not really depend upon each other. For example, in the top level program
\begin{verbatim}
f x = y where a = x
	      y = x
\end{verbatim}
the definitions of @a@ and @y@ do not depend on each other at all.
Unfortunately, the typechecker cannot always check such definitions.
\footnote{Mycroft, A. 1984. Polymorphic type schemes and recursive
definitions. In Proceedings of the International Symposium on Programming,
Toulouse, pp. 217-39. LNCS 167. Springer Verlag.}
However, the typechecker usually can check definitions in which only the
strongly connected components have been collected into recursive bindings.
This is precisely what the function @rnBinds@ does.

ToDo: deal with case where a single monobinds binds the same variable
twice.

The vertag tag is a unique @Int@; the tags only need to be unique
within one @MonoBinds@, so that unique-Int plumbing is done explicitly
(heavy monad machinery not needed).

\begin{code}
type VertexTag	= Int
\end{code}

%************************************************************************
%*									*
%* naming conventions							*
%*									*
%************************************************************************

\subsection[name-conventions]{Name conventions}

The basic algorithm involves walking over the tree and returning a tuple
containing the new tree plus its free variables. Some functions, such
as those walking polymorphic bindings (HsBinds) and qualifier lists in
list comprehensions (@Quals@), return the variables bound in local
environments. These are then used to calculate the free variables of the
expression evaluated in these environments.

Conventions for variable names are as follows:
\begin{itemize}
\item
new code is given a prime to distinguish it from the old.

\item
a set of variables defined in @Exp@ is written @dvExp@

\item
a set of variables free in @Exp@ is written @fvExp@
\end{itemize}

%************************************************************************
%*									*
%* analysing polymorphic bindings (HsBinds, Bind, MonoBinds)		*
%*									*
%************************************************************************

\subsubsection[dep-HsBinds]{Polymorphic bindings}

Non-recursive expressions are reconstructed without any changes at top
level, although their component expressions may have to be altered.
However, non-recursive expressions are currently not expected as
\Haskell{} programs, and this code should not be executed.

Monomorphic bindings contain information that is returned in a tuple
(a @FlatMonoBindsInfo@) containing:

\begin{enumerate}
\item
a unique @Int@ that serves as the ``vertex tag'' for this binding.

\item
the name of a function or the names in a pattern. These are a set
referred to as @dvLhs@, the defined variables of the left hand side.

\item
the free variables of the body. These are referred to as @fvBody@.

\item
the definition's actual code. This is referred to as just @code@.
\end{enumerate}

The function @nonRecDvFv@ returns two sets of variables. The first is
the set of variables defined in the set of monomorphic bindings, while the
second is the set of free variables in those bindings.

The set of variables defined in a non-recursive binding is just the
union of all of them, as @union@ removes duplicates. However, the
free variables in each successive set of cumulative bindings is the
union of those in the previous set plus those of the newest binding after
the defined variables of the previous set have been removed.

@rnMethodBinds@ deals only with the declarations in class and
instance declarations.	It expects only to see @FunMonoBind@s, and
it expects the global environment to contain bindings for the binders
(which are all class operations).

%************************************************************************
%*									*
\subsubsection{ Top-level bindings}
%*									*
%************************************************************************

@rnTopBinds@ assumes that the environment already
contains bindings for the binders of this particular binding.

\begin{code}
rnTopBinds    :: RdrNameHsBinds -> RnMS (RenamedHsBinds, FreeVars)

rnTopBinds EmptyBinds		       	  = returnRn (EmptyBinds, emptyFVs)
rnTopBinds (MonoBind bind sigs _) 	  = rnTopMonoBinds bind sigs
  -- The parser doesn't produce other forms


rnTopMonoBinds mbinds sigs
165
166
167
168
 =  mapRn lookupBndrRn binder_rdr_names		`thenRn` \ binder_names ->
    let
	bndr_name_set = mkNameSet binder_names
    in
169
170
    renameSigsFVs (okBindSig bndr_name_set) sigs 	`thenRn` \ (siglist, sig_fvs) ->
    doptRn Opt_WarnMissingSigs				`thenRn` \ warnMissing ->
171
    let
172
	type_sig_vars	= [n | Sig n _ _ <- siglist]
173
174
175
	un_sigd_binders | warnMissing = nameSetToList (delListFromNameSet 
                                                          bndr_name_set type_sig_vars)
			| otherwise   = []
176
    in
177
    mapRn_ missingSigWarn un_sigd_binders	`thenRn_`
178

179
180
181
    rn_mono_binds siglist mbinds		   `thenRn` \ (final_binds, bind_fvs) ->
    returnRn (final_binds, bind_fvs `plusFV` sig_fvs)
  where
182
    binder_rdr_names = collectMonoBinders mbinds
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
\end{code}

%************************************************************************
%*									*
%* 		Nested binds
%*									*
%************************************************************************

\subsubsection{Nested binds}

@rnMonoBinds@
\begin{itemize}
\item collects up the binders for this declaration group,
\item checks that they form a set
\item extends the environment to bind them to new local names
\item calls @rnMonoBinds@ to do the real work
\end{itemize}
%
\begin{code}
rnBinds	      :: RdrNameHsBinds 
	      -> (RenamedHsBinds -> RnMS (result, FreeVars))
	      -> RnMS (result, FreeVars)

rnBinds EmptyBinds	       thing_inside = thing_inside EmptyBinds
rnBinds (MonoBind bind sigs _) thing_inside = rnMonoBinds bind sigs thing_inside
  -- the parser doesn't produce other forms


rnMonoBinds :: RdrNameMonoBinds 
            -> [RdrNameSig]
	    -> (RenamedHsBinds -> RnMS (result, FreeVars))
	    -> RnMS (result, FreeVars)

rnMonoBinds mbinds sigs	thing_inside -- Non-empty monobinds
  =	-- Extract all the binders in this group,
	-- and extend current scope, inventing new names for the new binders
	-- This also checks that the names form a set
220
221
    bindLocatedLocalsRn (text "a binding group") 
			mbinders_w_srclocs	$ \ new_mbinders ->
222
    let
223
	binder_set = mkNameSet new_mbinders
224
    in
225
	-- Rename the signatures
226
    renameSigsFVs (okBindSig binder_set) sigs	`thenRn` \ (siglist, sig_fvs) ->
227
228
229
230
231

	-- Report the fixity declarations in this group that 
	-- don't refer to any of the group's binders.
	-- Then install the fixity declarations that do apply here
	-- Notice that they scope over thing_inside too
232
233
234
    let
	fixity_sigs = [(name,sig) | FixSig sig@(FixitySig name _ _) <- siglist ]
    in
235
236
237
    extendFixityEnv fixity_sigs $

    rn_mono_binds siglist mbinds	   `thenRn` \ (binds, bind_fvs) ->
238
239

    -- Now do the "thing inside", and deal with the free-variable calculations
240
    thing_inside binds 			   `thenRn` \ (result,result_fvs) ->
241
242
243
244
245
246
247
    let
	all_fvs        = result_fvs `plusFV` bind_fvs `plusFV` sig_fvs
	unused_binders = nameSetToList (binder_set `minusNameSet` all_fvs)
    in
    warnUnusedLocalBinds unused_binders	`thenRn_`
    returnRn (result, delListFromNameSet all_fvs new_mbinders)
  where
248
    mbinders_w_srclocs = collectLocatedMonoBinders mbinds
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
\end{code}


%************************************************************************
%*									*
\subsubsection{		MonoBinds -- the main work is done here}
%*									*
%************************************************************************

@rn_mono_binds@ is used by {\em both} top-level and nested bindings.
It assumes that all variables bound in this group are already in scope.
This is done {\em either} by pass 3 (for the top-level bindings),
{\em or} by @rnMonoBinds@ (for the nested ones).

\begin{code}
rn_mono_binds :: [RenamedSig]	        -- Signatures attached to this group
	      -> RdrNameMonoBinds	
266
267
	      -> RnMS (RenamedHsBinds, 	-- Dependency analysed
		       FreeVars)	-- Free variables
268
269
270
271
272
273
274
275
276
277
278
279

rn_mono_binds siglist mbinds
  =
	 -- Rename the bindings, returning a MonoBindsInfo
	 -- which is a list of indivisible vertices so far as
	 -- the strongly-connected-components (SCC) analysis is concerned
    flattenMonoBinds siglist mbinds		`thenRn` \ mbinds_info ->

	 -- Do the SCC analysis
    let 
        edges	    = mkEdges (mbinds_info `zip` [(0::Int)..])
	scc_result  = stronglyConnComp edges
280
	final_binds = foldr (ThenBinds . reconstructCycle) EmptyBinds scc_result
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313

	 -- Deal with bound and free-var calculation
	rhs_fvs = plusFVs [fvs | (_,fvs,_,_) <- mbinds_info]
    in
    returnRn (final_binds, rhs_fvs)
\end{code}

@flattenMonoBinds@ is ever-so-slightly magical in that it sticks
unique ``vertex tags'' on its output; minor plumbing required.

Sigh --- need to pass along the signatures for the group of bindings,
in case any of them \fbox{\ ???\ } 

\begin{code}
flattenMonoBinds :: [RenamedSig]		-- Signatures
		 -> RdrNameMonoBinds
		 -> RnMS [FlatMonoBindsInfo]

flattenMonoBinds sigs EmptyMonoBinds = returnRn []

flattenMonoBinds sigs (AndMonoBinds bs1 bs2)
  = flattenMonoBinds sigs bs1	`thenRn` \ flat1 ->
    flattenMonoBinds sigs bs2	`thenRn` \ flat2 ->
    returnRn (flat1 ++ flat2)

flattenMonoBinds sigs (PatMonoBind pat grhss locn)
  = pushSrcLocRn locn		 	$
    rnPat pat				`thenRn` \ (pat', pat_fvs) ->

	 -- Find which things are bound in this group
    let
	names_bound_here = mkNameSet (collectPatBinders pat')
    in
314
    sigsForMe names_bound_here sigs	`thenRn` \ sigs_for_me ->
315
316
317
318
319
320
321
322
323
324
325
326
    rnGRHSs grhss			`thenRn` \ (grhss', fvs) ->
    returnRn 
	[(names_bound_here,
	  fvs `plusFV` pat_fvs,
	  PatMonoBind pat' grhss' locn,
	  sigs_for_me
	 )]

flattenMonoBinds sigs (FunMonoBind name inf matches locn)
  = pushSrcLocRn locn				 	$
    lookupBndrRn name					`thenRn` \ new_name ->
    let
327
	names_bound_here = unitNameSet new_name
328
    in
329
    sigsForMe names_bound_here sigs			`thenRn` \ sigs_for_me ->
330
331
332
333
334
335
336
337
    mapFvRn rnMatch matches				`thenRn` \ (new_matches, fvs) ->
    mapRn_ (checkPrecMatch inf new_name) new_matches	`thenRn_`
    returnRn
      [(unitNameSet new_name,
	fvs,
	FunMonoBind new_name inf new_matches locn,
	sigs_for_me
	)]
338
339
340
341
342
343
344
345
346


sigsForMe names_bound_here sigs
  = foldlRn check [] (filter (sigForThisGroup names_bound_here) sigs)
  where
    check sigs sig = case filter (eqHsSig sig) sigs of
			[]    -> returnRn (sig:sigs)
			other -> dupSigDeclErr sig	`thenRn_`
				 returnRn sigs
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
\end{code}


@rnMethodBinds@ is used for the method bindings of a class and an instance
declaration.   Like @rnMonoBinds@ but without dependency analysis.

NOTA BENE: we record each {\em binder} of a method-bind group as a free variable.
That's crucial when dealing with an instance decl:
\begin{verbatim}
	instance Foo (T a) where
	   op x = ...
\end{verbatim}
This might be the {\em sole} occurrence of @op@ for an imported class @Foo@,
and unless @op@ occurs we won't treat the type signature of @op@ in the class
decl for @Foo@ as a source of instance-decl gates.  But we should!  Indeed,
in many ways the @op@ in an instance decl is just like an occurrence, not
a binder.

\begin{code}
366
367
368
rnMethodBinds :: [Name]			-- Names for generic type variables
	      -> RdrNameMonoBinds
	      -> RnMS (RenamedMonoBinds, FreeVars)
369

370
rnMethodBinds gen_tyvars EmptyMonoBinds = returnRn (EmptyMonoBinds, emptyFVs)
371

372
373
374
rnMethodBinds gen_tyvars (AndMonoBinds mb1 mb2)
  = rnMethodBinds gen_tyvars mb1	`thenRn` \ (mb1', fvs1) ->
    rnMethodBinds gen_tyvars mb2	`thenRn` \ (mb2', fvs2) ->
375
376
    returnRn (mb1' `AndMonoBinds` mb2', fvs1 `plusFV` fvs2)

377
rnMethodBinds gen_tyvars (FunMonoBind name inf matches locn)
378
379
380
381
382
  = pushSrcLocRn locn				   	$

    lookupGlobalOccRn name				`thenRn` \ sel_name -> 
	-- We use the selector name as the binder

383
    mapFvRn rn_match matches				`thenRn` \ (new_matches, fvs) ->
384
385
    mapRn_ (checkPrecMatch inf sel_name) new_matches	`thenRn_`
    returnRn (FunMonoBind sel_name inf new_matches locn, fvs `addOneFV` sel_name)
386
387
  where
	-- Gruesome; bring into scope the correct members of the generic type variables
388
	-- See comments in RnSource.rnSourceDecl(ClassDecl)
389
390
391
392
393
394
395
396
    rn_match match@(Match _ (TypePatIn ty : _) _ _)
	= extendTyVarEnvFVRn gen_tvs (rnMatch match)
	where
	  tvs     = map rdrNameOcc (extractHsTyRdrNames ty)
	  gen_tvs = [tv | tv <- gen_tyvars, nameOccName tv `elem` tvs] 

    rn_match match = rnMatch match
	
397
398

-- Can't handle method pattern-bindings which bind multiple methods.
399
rnMethodBinds gen_tyvars mbind@(PatMonoBind other_pat _ locn)
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
  = pushSrcLocRn locn	$
    failWithRn (EmptyMonoBinds, emptyFVs) (methodBindErr mbind)
\end{code}


%************************************************************************
%*									*
\subsection[reconstruct-deps]{Reconstructing dependencies}
%*									*
%************************************************************************

This @MonoBinds@- and @ClassDecls@-specific code is segregated here,
as the two cases are similar.

\begin{code}
reconstructCycle :: SCC FlatMonoBindsInfo
		 -> RenamedHsBinds

reconstructCycle (AcyclicSCC (_, _, binds, sigs))
  = MonoBind binds sigs NonRecursive

reconstructCycle (CyclicSCC cycle)
  = MonoBind this_gp_binds this_gp_sigs Recursive
  where
    this_gp_binds      = foldr1 AndMonoBinds [binds | (_, _, binds, _) <- cycle]
    this_gp_sigs       = foldr1 (++)	     [sigs  | (_, _, _, sigs) <- cycle]
\end{code}

%************************************************************************
%*									*
\subsubsection{	Manipulating FlatMonoBindInfo}
%*									*
%************************************************************************

During analysis a @MonoBinds@ is flattened to a @FlatMonoBindsInfo@.
The @RenamedMonoBinds@ is always an empty bind, a pattern binding or
a function binding, and has itself been dependency-analysed and
renamed.

\begin{code}
type FlatMonoBindsInfo
  = (NameSet,			-- Set of names defined in this vertex
     NameSet,			-- Set of names used in this vertex
     RenamedMonoBinds,
     [RenamedSig])		-- Signatures, if any, for this vertex

mkEdges :: [(FlatMonoBindsInfo, VertexTag)] -> [(FlatMonoBindsInfo, VertexTag, [VertexTag])]

mkEdges flat_info
  = [ (info, tag, dest_vertices (nameSetToList names_used))
    | (info@(names_defined, names_used, mbind, sigs), tag) <- flat_info
    ]
  where
 	 -- An edge (v,v') indicates that v depends on v'
    dest_vertices src_mentions = [ target_vertex
			         | ((names_defined, _, _, _), target_vertex) <- flat_info,
				   mentioned_name <- src_mentions,
				   mentioned_name `elemNameSet` names_defined
			         ]
\end{code}


%************************************************************************
%*									*
\subsubsection[dep-Sigs]{Signatures (and user-pragmas for values)}
%*									*
%************************************************************************

@renameSigs@ checks for:
\begin{enumerate}
\item more than one sig for one thing;
\item signatures given for things not bound here;
\item with suitably flaggery, that all top-level things have type signatures.
\end{enumerate}
%
At the moment we don't gather free-var info from the types in
signatures.  We'd only need this if we wanted to report unused tyvars.

\begin{code}
479
480
481
482
renameSigsFVs ok_sig sigs
  = renameSigs ok_sig sigs	`thenRn` \ sigs' ->
    returnRn (sigs', hsSigsFVs sigs')

483
renameSigs ::  (RenamedSig -> Bool)		-- OK-sig predicate
484
	    -> [RdrNameSig]
485
	    -> RnMS [RenamedSig]
486

487
renameSigs ok_sig [] = returnRn []
488

489
renameSigs ok_sig sigs
490
  =	 -- Rename the signatures
491
    mapRn renameSig sigs   	`thenRn` \ sigs' ->
492
493
494
495

	-- Check for (a) duplicate signatures
	--	     (b) signatures for things not in this group
    let
496
497
498
499
	in_scope	 = filter is_in_scope sigs'
	is_in_scope sig	 = case sigName sig of
				Just n  -> not (isUnboundName n)
				Nothing -> True
500
	(goods, bads)	 = partition ok_sig in_scope
501
    in
502
    mapRn_ unknownSigErr bads			`thenRn_`
503
    returnRn goods
504

505
-- We use lookupSigOccRn in the signatures, which is a little bit unsatisfactory
506
507
508
509
510
511
512
513
-- because this won't work for:
--	instance Foo T where
--	  {-# INLINE op #-}
--	  Baz.op = ...
-- We'll just rename the INLINE prag to refer to whatever other 'op'
-- is in scope.  (I'm assuming that Baz.op isn't in scope unqualified.)
-- Doesn't seem worth much trouble to sort this.

514
renameSig :: Sig RdrName -> RnMS (Sig Name)
515
-- ClassOpSig is renamed elsewhere.
516
renameSig (Sig v ty src_loc)
517
  = pushSrcLocRn src_loc $
518
    lookupSigOccRn v				`thenRn` \ new_v ->
519
520
    rnHsSigType (quotes (ppr v)) ty		`thenRn` \ new_ty ->
    returnRn (Sig new_v new_ty src_loc)
521

522
renameSig (SpecInstSig ty src_loc)
523
  = pushSrcLocRn src_loc $
524
525
    rnHsType (text "A SPECIALISE instance pragma") ty `thenRn` \ new_ty ->
    returnRn (SpecInstSig new_ty src_loc)
526

527
528
529
renameSig (InlineInstSig p src_loc)
  = returnRn (InlineInstSig p src_loc)

530
renameSig (SpecSig v ty src_loc)
531
  = pushSrcLocRn src_loc $
532
    lookupSigOccRn v			`thenRn` \ new_v ->
533
534
    rnHsSigType (quotes (ppr v)) ty	`thenRn` \ new_ty ->
    returnRn (SpecSig new_v new_ty src_loc)
535

536
renameSig (FixSig (FixitySig v fix src_loc))
537
  = pushSrcLocRn src_loc $
538
    lookupSigOccRn v		`thenRn` \ new_v ->
539
    returnRn (FixSig (FixitySig new_v fix src_loc))
540

541
renameSig (InlineSig v p src_loc)
542
  = pushSrcLocRn src_loc $
543
    lookupSigOccRn v		`thenRn` \ new_v ->
544
    returnRn (InlineSig new_v p src_loc)
545

546
renameSig (NoInlineSig v p src_loc)
547
  = pushSrcLocRn src_loc $
548
    lookupSigOccRn v		`thenRn` \ new_v ->
549
    returnRn (NoInlineSig new_v p src_loc)
550
551
\end{code}

552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
\begin{code}
renameIE :: (RdrName -> RnMS Name) -> IE RdrName -> RnMS (IE Name, FreeVars)
renameIE lookup_occ_nm (IEVar v)
  = lookup_occ_nm v		`thenRn` \ new_v ->
    returnRn (IEVar new_v, unitFV new_v)

renameIE lookup_occ_nm (IEThingAbs v)
  = lookup_occ_nm v		`thenRn` \ new_v ->
    returnRn (IEThingAbs new_v, unitFV new_v)

renameIE lookup_occ_nm (IEThingAll v)
  = lookup_occ_nm v		`thenRn` \ new_v ->
    returnRn (IEThingAll new_v, unitFV new_v)

renameIE lookup_occ_nm (IEThingWith v vs)
  = lookup_occ_nm v		`thenRn` \ new_v ->
    mapRn lookup_occ_nm vs	`thenRn` \ new_vs ->
    returnRn (IEThingWith new_v new_vs, plusFVs [ unitFV x | x <- new_v:new_vs ])

renameIE lookup_occ_nm (IEModuleContents m)
  = returnRn (IEModuleContents m, emptyFVs)
\end{code}

575
576
577
578
579
580
581
582

%************************************************************************
%*									*
\subsection{Error messages}
%*									*
%************************************************************************

\begin{code}
583
dupSigDeclErr sig
584
585
586
587
  = pushSrcLocRn loc $
    addErrRn (sep [ptext SLIT("Duplicate") <+> ptext what_it_is <> colon,
		   ppr sig])
  where
588
    (what_it_is, loc) = hsSigDoc sig
589
590
591

unknownSigErr sig
  = pushSrcLocRn loc $
592
    addErrRn (sep [ptext SLIT("Misplaced") <+> ptext what_it_is <> colon,
593
594
		   ppr sig])
  where
595
    (what_it_is, loc) = hsSigDoc sig
596
597

missingSigWarn var
598
599
  = pushSrcLocRn (nameSrcLoc var) $
    addWarnRn (sep [ptext SLIT("Definition but no type signature for"), quotes (ppr var)])
600
601
602
603
604

methodBindErr mbind
 =  hang (ptext SLIT("Can't handle multiple methods defined by one pattern binding"))
       4 (ppr mbind)
\end{code}