DsListComp.lhs 32.3 KB
Newer Older
1
%
Simon Marlow's avatar
Simon Marlow committed
2
% (c) The University of Glasgow 2006
3
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
4
%
Simon Marlow's avatar
Simon Marlow committed
5

6
Desugaring list comprehensions, monad comprehensions and array comprehensions
7 8

\begin{code}
Ian Lynagh's avatar
Ian Lynagh committed
9 10 11 12 13 14 15
{-# OPTIONS -fno-warn-tabs #-}
-- The above warning supression flag is a temporary kludge.
-- While working on this module you are encouraged to remove it and
-- detab the module (please do the detabbing in a separate patch). See
--     http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#TabsvsSpaces
-- for details

16
{-# LANGUAGE NamedFieldPuns #-}
17
{-# OPTIONS -fno-warn-incomplete-patterns #-}
18 19 20
-- The above warning supression flag is a temporary kludge.
-- While working on this module you are encouraged to remove it and fix
-- any warnings in the module. See
Ian Lynagh's avatar
Ian Lynagh committed
21
--     http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#Warnings
22 23
-- for details

24
module DsListComp ( dsListComp, dsPArrComp, dsMonadComp ) where
25

26 27
#include "HsVersions.h"

28
import {-# SOURCE #-} DsExpr ( dsExpr, dsLExpr, dsLocalBinds )
29

30
import HsSyn
Simon Marlow's avatar
Simon Marlow committed
31
import TcHsSyn
32
import CoreSyn
33
import MkCore
34

35
import DsMonad		-- the monadery used in the desugarer
36
import DsUtils
37

Simon Marlow's avatar
Simon Marlow committed
38 39
import DynFlags
import CoreUtils
40
import Id
Simon Marlow's avatar
Simon Marlow committed
41 42 43 44 45
import Type
import TysWiredIn
import Match
import PrelNames
import SrcLoc
46
import Outputable
47
import FastString
48
import TcType
49 50 51 52 53 54 55 56 57
\end{code}

List comprehensions may be desugared in one of two ways: ``ordinary''
(as you would expect if you read SLPJ's book) and ``with foldr/build
turned on'' (if you read Gill {\em et al.}'s paper on the subject).

There will be at least one ``qualifier'' in the input.

\begin{code}
58
dsListComp :: [LStmt Id] 
59
	   -> Type		-- Type of entire list 
60
	   -> DsM CoreExpr
61
dsListComp lquals res_ty = do 
62 63
    dflags <- getDOptsDs
    let quals = map unLoc lquals
64 65 66
        elt_ty = case tcTyConAppArgs res_ty of
                   [elt_ty] -> elt_ty
                   _ -> pprPanic "dsListComp" (ppr res_ty $$ ppr lquals)
67
    
68
    if not (dopt Opt_EnableRewriteRules dflags) || dopt Opt_IgnoreInterfacePragmas dflags
69 70 71 72 73
       -- Either rules are switched off, or we are ignoring what there are;
       -- Either way foldr/build won't happen, so use the more efficient
       -- Wadler-style desugaring
       || isParallelComp quals
       -- Foldr-style desugaring can't handle parallel list comprehensions
74 75
        then deListComp quals (mkNilExpr elt_ty)
        else mkBuildExpr elt_ty (\(c, _) (n, _) -> dfListComp c n quals) 
76 77
             -- Foldr/build should be enabled, so desugar 
             -- into foldrs and builds
78 79 80 81 82 83 84 85

  where 
    -- We must test for ParStmt anywhere, not just at the head, because an extension
    -- to list comprehensions would be to add brackets to specify the associativity
    -- of qualifier lists. This is really easy to do by adding extra ParStmts into the
    -- mix of possibly a single element in length, so we do this to leave the possibility open
    isParallelComp = any isParallelStmt
  
86 87
    isParallelStmt (ParStmt _ _ _ _) = True
    isParallelStmt _                 = False
88 89 90 91 92 93
    
    
-- This function lets you desugar a inner list comprehension and a list of the binders
-- of that comprehension that we need in the outer comprehension into such an expression
-- and the type of the elements that it outputs (tuples of binders)
dsInnerListComp :: ([LStmt Id], [Id]) -> DsM (CoreExpr, Type)
94
dsInnerListComp (stmts, bndrs)
95
  = do { expr <- dsListComp (stmts ++ [noLoc $ mkLastStmt (mkBigLHsVarTup bndrs)]) 
96
                            (mkListTy bndrs_tuple_type)
97 98 99
       ; return (expr, bndrs_tuple_type) }
  where
    bndrs_tuple_type = mkBigCoreVarTupTy bndrs
100 101 102 103
        
-- This function factors out commonality between the desugaring strategies for GroupStmt.
-- Given such a statement it gives you back an expression representing how to compute the transformed
-- list and the tuple that you need to bind from that list in order to proceed with your desugaring
104 105 106 107 108 109 110
dsTransStmt :: Stmt Id -> DsM (CoreExpr, LPat Id)
dsTransStmt (TransStmt { trS_form = form, trS_stmts = stmts, trS_bndrs = binderMap
                       , trS_by = by, trS_using = using }) = do
    let (from_bndrs, to_bndrs) = unzip binderMap
        from_bndrs_tys  = map idType from_bndrs
        to_bndrs_tys    = map idType to_bndrs
        to_bndrs_tup_ty = mkBigCoreTupTy to_bndrs_tys
111 112
    
    -- Desugar an inner comprehension which outputs a list of tuples of the "from" binders
113
    (expr, from_tup_ty) <- dsInnerListComp (stmts, from_bndrs)
114 115 116
    
    -- Work out what arguments should be supplied to that expression: i.e. is an extraction
    -- function required? If so, create that desugared function and add to arguments
117
    usingExpr' <- dsLExpr using
118 119 120
    usingArgs <- case by of
                   Nothing   -> return [expr]
 		   Just by_e -> do { by_e' <- dsLExpr by_e
121 122
                                   ; lam <- matchTuple from_bndrs by_e'
                                   ; return [lam, expr] }
123 124
    
    -- Create an unzip function for the appropriate arity and element types and find "map"
125
    unzip_stuff <- mkUnzipBind form from_bndrs_tys
126 127 128 129
    map_id <- dsLookupGlobalId mapName

    -- Generate the expressions to build the grouped list
    let -- First we apply the grouping function to the inner list
130
        inner_list_expr = mkApps usingExpr' usingArgs
131 132 133 134
        -- Then we map our "unzip" across it to turn the lists of tuples into tuples of lists
        -- We make sure we instantiate the type variable "a" to be a list of "from" tuples and
        -- the "b" to be a tuple of "to" lists!
        -- Then finally we bind the unzip function around that expression
135 136 137 138 139 140 141 142 143 144 145 146 147
        bound_unzipped_inner_list_expr 
          = case unzip_stuff of
              Nothing -> inner_list_expr
              Just (unzip_fn, unzip_rhs) -> Let (Rec [(unzip_fn, unzip_rhs)]) $
                                            mkApps (Var map_id) $
                                            [ Type (mkListTy from_tup_ty)
                                            , Type to_bndrs_tup_ty
                                            , Var unzip_fn
                                            , inner_list_expr]

    -- Build a pattern that ensures the consumer binds into the NEW binders, 
    -- which hold lists rather than single values
    let pat = mkBigLHsVarPatTup to_bndrs
148
    return (bound_unzipped_inner_list_expr, pat)
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
\end{code}

%************************************************************************
%*									*
\subsection[DsListComp-ordinary]{Ordinary desugaring of list comprehensions}
%*									*
%************************************************************************

Just as in Phil's chapter~7 in SLPJ, using the rules for
optimally-compiled list comprehensions.  This is what Kevin followed
as well, and I quite happily do the same.  The TQ translation scheme
transforms a list of qualifiers (either boolean expressions or
generators) into a single expression which implements the list
comprehension.  Because we are generating 2nd-order polymorphic
lambda-calculus, calls to NIL and CONS must be applied to a type
argument, as well as their usual value arguments.
\begin{verbatim}
TE << [ e | qs ] >>  =  TQ << [ e | qs ] ++ Nil (typeOf e) >>

(Rule C)
TQ << [ e | ] ++ L >> = Cons (typeOf e) TE <<e>> TE <<L>>

(Rule B)
TQ << [ e | b , qs ] ++ L >> =
    if TE << b >> then TQ << [ e | qs ] ++ L >> else TE << L >>

(Rule A')
TQ << [ e | p <- L1, qs ]  ++  L2 >> =
  letrec
    h = \ u1 ->
    	  case u1 of
	    []        ->  TE << L2 >>
	    (u2 : u3) ->
		  (( \ TE << p >> -> ( TQ << [e | qs]  ++  (h u3) >> )) u2)
		    [] (h u3)
  in
    h ( TE << L1 >> )

"h", "u1", "u2", and "u3" are new variables.
\end{verbatim}

@deListComp@ is the TQ translation scheme.  Roughly speaking, @dsExpr@
is the TE translation scheme.  Note that we carry around the @L@ list
already desugared.  @dsListComp@ does the top TE rule mentioned above.

194 195 196 197 198
To the above, we add an additional rule to deal with parallel list
comprehensions.  The translation goes roughly as follows:
     [ e | p1 <- e11, let v1 = e12, p2 <- e13
         | q1 <- e21, let v2 = e22, q2 <- e23]
     =>
199 200 201 202 203 204
     [ e | ((x1, .., xn), (y1, ..., ym)) <-
               zip [(x1,..,xn) | p1 <- e11, let v1 = e12, p2 <- e13]
                   [(y1,..,ym) | q1 <- e21, let v2 = e22, q2 <- e23]]
where (x1, .., xn) are the variables bound in p1, v1, p2
      (y1, .., ym) are the variables bound in q1, v2, q2

205
In the translation below, the ParStmt branch translates each parallel branch
206 207 208 209 210 211 212 213
into a sub-comprehension, and desugars each independently.  The resulting lists
are fed to a zip function, we create a binding for all the variables bound in all
the comprehensions, and then we hand things off the the desugarer for bindings.
The zip function is generated here a) because it's small, and b) because then we
don't have to deal with arbitrary limits on the number of zip functions in the
prelude, nor which library the zip function came from.
The introduced tuples are Boxed, but only because I couldn't get it to work
with the Unboxed variety.
214

215
\begin{code}
216

217 218 219
deListComp :: [Stmt Id] -> CoreExpr -> DsM CoreExpr

deListComp [] _ = panic "deListComp"
220

221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
deListComp (LastStmt body _ : quals) list 
  =     -- Figure 7.4, SLPJ, p 135, rule C above
    ASSERT( null quals )
    do { core_body <- dsLExpr body
       ; return (mkConsExpr (exprType core_body) core_body list) }

	-- Non-last: must be a guard
deListComp (ExprStmt guard _ _ _ : quals) list = do  -- rule B above
    core_guard <- dsLExpr guard
    core_rest <- deListComp quals list
    return (mkIfThenElse core_guard core_rest list)

-- [e | let B, qs] = let B in [e | qs]
deListComp (LetStmt binds : quals) list = do
    core_rest <- deListComp quals list
    dsLocalBinds binds core_rest

238 239
deListComp (stmt@(TransStmt {}) : quals) list = do
    (inner_list_expr, pat) <- dsTransStmt stmt
240 241 242 243 244 245 246
    deBindComp pat inner_list_expr quals list

deListComp (BindStmt pat list1 _ _ : quals) core_list2 = do -- rule A' above
    core_list1 <- dsLExpr list1
    deBindComp pat core_list1 quals core_list2

deListComp (ParStmt stmtss_w_bndrs _ _ _ : quals) list
247 248
  = do { exps_and_qual_tys <- mapM dsInnerListComp stmtss_w_bndrs
       ; let (exps, qual_tys) = unzip exps_and_qual_tys
249
    
250
       ; (zip_fn, zip_rhs) <- mkZipBind qual_tys
251 252

	-- Deal with [e | pat <- zip l1 .. ln] in example above
253 254
       ; deBindComp pat (Let (Rec [(zip_fn, zip_rhs)]) (mkApps (Var zip_fn) exps)) 
		    quals list }
255 256 257 258
  where 
	bndrs_s = map snd stmtss_w_bndrs

	-- pat is the pattern ((x1,..,xn), (y1,..,ym)) in the example above
259
	pat  = mkBigLHsPatTup pats
260
	pats = map mkBigLHsVarPatTup bndrs_s
261 262
\end{code}

263

264
\begin{code}
265 266 267 268 269
deBindComp :: OutPat Id
           -> CoreExpr
           -> [Stmt Id]
           -> CoreExpr
           -> DsM (Expr Id)
270
deBindComp pat core_list1 quals core_list2 = do
271 272
    let
        u3_ty@u1_ty = exprType core_list1	-- two names, same thing
273

274 275
        -- u1_ty is a [alpha] type, and u2_ty = alpha
        u2_ty = hsLPatType pat
276

277 278 279 280
        res_ty = exprType core_list2
        h_ty   = u1_ty `mkFunTy` res_ty
        
    [h, u1, u2, u3] <- newSysLocalsDs [h_ty, u1_ty, u2_ty, u3_ty]
281

282
    -- the "fail" value ...
283
    let
284 285 286
        core_fail   = App (Var h) (Var u3)
        letrec_body = App (Var h) core_list1
        
287
    rest_expr <- deListComp quals core_fail
288 289
    core_match <- matchSimply (Var u2) (StmtCtxt ListComp) pat rest_expr core_fail	
    
290
    let
291
        rhs = Lam u1 $
292 293 294
	      Case (Var u1) u1 res_ty
		   [(DataAlt nilDataCon,  [], 	    core_list2),
		    (DataAlt consDataCon, [u2, u3], core_match)]
295
			-- Increasing order of tag
296 297
            
    return (Let (Rec [(h, rhs)]) letrec_body)
298 299
\end{code}

300 301 302 303 304 305 306
%************************************************************************
%*									*
\subsection[DsListComp-foldr-build]{Foldr/Build desugaring of list comprehensions}
%*									*
%************************************************************************

@dfListComp@ are the rules used with foldr/build turned on:
307

308
\begin{verbatim}
309 310 311 312 313 314 315 316
TE[ e | ]            c n = c e n
TE[ e | b , q ]      c n = if b then TE[ e | q ] c n else n
TE[ e | p <- l , q ] c n = let 
				f = \ x b -> case x of
						  p -> TE[ e | q ] c b
						  _ -> b
			   in
			   foldr f n l
317
\end{verbatim}
318

319
\begin{code}
320 321 322
dfListComp :: Id -> Id -- 'c' and 'n'
        -> [Stmt Id]   -- the rest of the qual's
        -> DsM CoreExpr
323

324 325 326 327 328 329
dfListComp _ _ [] = panic "dfListComp"

dfListComp c_id n_id (LastStmt body _ : quals) 
  = ASSERT( null quals )
    do { core_body <- dsLExpr body
       ; return (mkApps (Var c_id) [core_body, Var n_id]) }
330

331
	-- Non-last: must be a guard
332
dfListComp c_id n_id (ExprStmt guard _ _ _  : quals) = do
333
    core_guard <- dsLExpr guard
334
    core_rest <- dfListComp c_id n_id quals
335 336
    return (mkIfThenElse core_guard core_rest (Var n_id))

337
dfListComp c_id n_id (LetStmt binds : quals) = do
338
    -- new in 1.3, local bindings
339
    core_rest <- dfListComp c_id n_id quals
340
    dsLocalBinds binds core_rest
341

342 343
dfListComp c_id n_id (stmt@(TransStmt {}) : quals) = do
    (inner_list_expr, pat) <- dsTransStmt stmt
344
    -- Anyway, we bind the newly grouped list via the generic binding function
345
    dfBindComp c_id n_id (pat, inner_list_expr) quals 
346
    
347
dfListComp c_id n_id (BindStmt pat list1 _ _ : quals) = do
348
    -- evaluate the two lists
349 350 351
    core_list1 <- dsLExpr list1
    
    -- Do the rest of the work in the generic binding builder
352
    dfBindComp c_id n_id (pat, core_list1) quals
353 354 355 356 357
               
dfBindComp :: Id -> Id	        -- 'c' and 'n'
       -> (LPat Id, CoreExpr)
	   -> [Stmt Id] 	        -- the rest of the qual's
	   -> DsM CoreExpr
358
dfBindComp c_id n_id (pat, core_list1) quals = do
359
    -- find the required type
360
    let x_ty   = hsLPatType pat
361
        b_ty   = idType n_id
362 363

    -- create some new local id's
364
    [b, x] <- newSysLocalsDs [b_ty, x_ty]
365 366

    -- build rest of the comprehesion
367
    core_rest <- dfListComp c_id b quals
368 369

    -- build the pattern match
370 371
    core_expr <- matchSimply (Var x) (StmtCtxt ListComp)
		pat core_rest (Var b)
372 373

    -- now build the outermost foldr, and return
374
    mkFoldrExpr x_ty b_ty (mkLams [x, b] core_expr) (Var n_id) core_list1
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
\end{code}

%************************************************************************
%*									*
\subsection[DsFunGeneration]{Generation of zip/unzip functions for use in desugaring}
%*									*
%************************************************************************

\begin{code}

mkZipBind :: [Type] -> DsM (Id, CoreExpr)
-- mkZipBind [t1, t2] 
-- = (zip, \as1:[t1] as2:[t2] 
--	   -> case as1 of 
--		[] -> []
--		(a1:as'1) -> case as2 of
--				[] -> []
--				(a2:as'2) -> (a1, a2) : zip as'1 as'2)]

mkZipBind elt_tys = do
395 396 397
    ass  <- mapM newSysLocalDs  elt_list_tys
    as'  <- mapM newSysLocalDs  elt_tys
    as's <- mapM newSysLocalDs  elt_list_tys
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
    
    zip_fn <- newSysLocalDs zip_fn_ty
    
    let inner_rhs = mkConsExpr elt_tuple_ty 
			(mkBigCoreVarTup as')
			(mkVarApps (Var zip_fn) as's)
        zip_body  = foldr mk_case inner_rhs (zip3 ass as' as's)
    
    return (zip_fn, mkLams ass zip_body)
  where
    elt_list_tys      = map mkListTy elt_tys
    elt_tuple_ty      = mkBigCoreTupTy elt_tys
    elt_tuple_list_ty = mkListTy elt_tuple_ty
    
    zip_fn_ty         = mkFunTys elt_list_tys elt_tuple_list_ty

    mk_case (as, a', as') rest
	  = Case (Var as) as elt_tuple_list_ty
		  [(DataAlt nilDataCon,  [],        mkNilExpr elt_tuple_ty),
		   (DataAlt consDataCon, [a', as'], rest)]
			-- Increasing order of tag
            
            
421
mkUnzipBind :: TransForm -> [Type] -> DsM (Maybe (Id, CoreExpr))
422 423 424 425 426 427 428 429 430
-- mkUnzipBind [t1, t2] 
-- = (unzip, \ys :: [(t1, t2)] -> foldr (\ax :: (t1, t2) axs :: ([t1], [t2])
--     -> case ax of
--      (x1, x2) -> case axs of
--                (xs1, xs2) -> (x1 : xs1, x2 : xs2))
--      ([], [])
--      ys)
-- 
-- We use foldr here in all cases, even if rules are turned off, because we may as well!
431 432 433 434 435 436 437 438
mkUnzipBind ThenForm _
 = return Nothing    -- No unzipping for ThenForm
mkUnzipBind _ elt_tys 
  = do { ax  <- newSysLocalDs elt_tuple_ty
       ; axs <- newSysLocalDs elt_list_tuple_ty
       ; ys  <- newSysLocalDs elt_tuple_list_ty
       ; xs  <- mapM newSysLocalDs elt_tys
       ; xss <- mapM newSysLocalDs elt_list_tys
439
    
440 441 442 443 444 445 446 447 448 449 450 451 452 453
       ; unzip_fn <- newSysLocalDs unzip_fn_ty

       ; [us1, us2] <- sequence [newUniqueSupply, newUniqueSupply]

       ; let nil_tuple = mkBigCoreTup (map mkNilExpr elt_tys)
    	     concat_expressions = map mkConcatExpression (zip3 elt_tys (map Var xs) (map Var xss))
    	     tupled_concat_expression = mkBigCoreTup concat_expressions
    	    
    	     folder_body_inner_case = mkTupleCase us1 xss tupled_concat_expression axs (Var axs)
    	     folder_body_outer_case = mkTupleCase us2 xs folder_body_inner_case ax (Var ax)
    	     folder_body = mkLams [ax, axs] folder_body_outer_case
    	    
       ; unzip_body <- mkFoldrExpr elt_tuple_ty elt_list_tuple_ty folder_body nil_tuple (Var ys)
       ; return (Just (unzip_fn, mkLams [ys] unzip_body)) }
454 455 456 457 458 459 460 461 462
  where
    elt_tuple_ty       = mkBigCoreTupTy elt_tys
    elt_tuple_list_ty  = mkListTy elt_tuple_ty
    elt_list_tys       = map mkListTy elt_tys
    elt_list_tuple_ty  = mkBigCoreTupTy elt_list_tys
    
    unzip_fn_ty        = elt_tuple_list_ty `mkFunTy` elt_list_tuple_ty
            
    mkConcatExpression (list_element_ty, head, tail) = mkConsExpr list_element_ty head tail
463 464
\end{code}

chak's avatar
chak committed
465 466 467 468 469 470 471 472 473 474 475 476
%************************************************************************
%*									*
\subsection[DsPArrComp]{Desugaring of array comprehensions}
%*									*
%************************************************************************

\begin{code}

-- entry point for desugaring a parallel array comprehension
--
--   [:e | qss:] = <<[:e | qss:]>> () [:():]
--
477 478
dsPArrComp :: [Stmt Id] 
            -> DsM CoreExpr
479 480 481

-- Special case for parallel comprehension
dsPArrComp (ParStmt qss _ _ _ : quals) = dePArrParComp qss quals
482 483 484 485 486 487 488 489 490 491

-- Special case for simple generators:
--
--  <<[:e' | p <- e, qs:]>> = <<[: e' | qs :]>> p e
--
-- if matching again p cannot fail, or else
--
--  <<[:e' | p <- e, qs:]>> = 
--    <<[:e' | qs:]>> p (filterP (\x -> case x of {p -> True; _ -> False}) e)
--
492
dsPArrComp (BindStmt p e _ _ : qs) = do
493
    filterP <- dsLookupDPHId filterPName
494 495 496 497 498 499 500 501
    ce <- dsLExpr e
    let ety'ce  = parrElemType ce
        false   = Var falseDataConId
        true    = Var trueDataConId
    v <- newSysLocalDs ety'ce
    pred <- matchSimply (Var v) (StmtCtxt PArrComp) p true false
    let gen | isIrrefutableHsPat p = ce
            | otherwise            = mkApps (Var filterP) [Type ety'ce, mkLams [v] pred, ce]
502
    dePArrComp qs p gen
503

504
dsPArrComp qs = do -- no ParStmt in `qs'
505
    sglP <- dsLookupDPHId singletonPName
506
    let unitArray = mkApps (Var sglP) [Type unitTy, mkCoreTup []]
507
    dePArrComp qs (noLoc $ WildPat unitTy) unitArray
508

509 510


chak's avatar
chak committed
511 512
-- the work horse
--
513 514 515
dePArrComp :: [Stmt Id] 
	   -> LPat Id		-- the current generator pattern
	   -> CoreExpr		-- the current generator expression
chak's avatar
chak committed
516
	   -> DsM CoreExpr
517 518 519

dePArrComp [] _ _ = panic "dePArrComp"

chak's avatar
chak committed
520 521 522
--
--  <<[:e' | :]>> pa ea = mapP (\pa -> e') ea
--
523 524 525 526 527 528
dePArrComp (LastStmt e' _ : quals) pa cea
  = ASSERT( null quals )
    do { mapP <- dsLookupDPHId mapPName
       ; let ty = parrElemType cea
       ; (clam, ty'e') <- deLambda ty pa e'
       ; return $ mkApps (Var mapP) [Type ty, Type ty'e', clam, cea] }
chak's avatar
chak committed
529 530 531
--
--  <<[:e' | b, qs:]>> pa ea = <<[:e' | qs:]>> pa (filterP (\pa -> b) ea)
--
532
dePArrComp (ExprStmt b _ _ _ : qs) pa cea = do
533
    filterP <- dsLookupDPHId filterPName
534 535
    let ty = parrElemType cea
    (clam,_) <- deLambda ty pa b
536
    dePArrComp qs pa (mkApps (Var filterP) [Type ty, clam, cea])
537 538 539 540 541 542 543 544

--
--  <<[:e' | p <- e, qs:]>> pa ea =
--    let ef = \pa -> e
--    in
--    <<[:e' | qs:]>> (pa, p) (crossMap ea ef)
--
-- if matching again p cannot fail, or else
chak's avatar
chak committed
545 546
--
--  <<[:e' | p <- e, qs:]>> pa ea = 
547
--    let ef = \pa -> filterP (\x -> case x of {p -> True; _ -> False}) e
chak's avatar
chak committed
548
--    in
549
--    <<[:e' | qs:]>> (pa, p) (crossMapP ea ef)
chak's avatar
chak committed
550
--
551
dePArrComp (BindStmt p e _ _ : qs) pa cea = do
552 553
    filterP <- dsLookupDPHId filterPName
    crossMapP <- dsLookupDPHId crossMapPName
554 555 556 557 558 559 560 561 562 563 564 565 566
    ce <- dsLExpr e
    let ety'cea = parrElemType cea
        ety'ce  = parrElemType ce
        false   = Var falseDataConId
        true    = Var trueDataConId
    v <- newSysLocalDs ety'ce
    pred <- matchSimply (Var v) (StmtCtxt PArrComp) p true false
    let cef | isIrrefutableHsPat p = ce
            | otherwise            = mkApps (Var filterP) [Type ety'ce, mkLams [v] pred, ce]
    (clam, _) <- mkLambda ety'cea pa cef
    let ety'cef = ety'ce		    -- filter doesn't change the element type
        pa'     = mkLHsPatTup [pa, p]

567
    dePArrComp qs pa' (mkApps (Var crossMapP) 
568
                                 [Type ety'cea, Type ety'cef, cea, clam])
chak's avatar
chak committed
569 570 571
--
--  <<[:e' | let ds, qs:]>> pa ea = 
--    <<[:e' | qs:]>> (pa, (x_1, ..., x_n)) 
572
--		      (mapP (\v@pa -> let ds in (v, (x_1, ..., x_n))) ea)
chak's avatar
chak committed
573 574 575
--  where
--    {x_1, ..., x_n} = DV (ds)		-- Defined Variables
--
576
dePArrComp (LetStmt ds : qs) pa cea = do
577
    mapP <- dsLookupDPHId mapPName
578
    let xs     = collectLocalBinders ds
579 580 581 582
        ty'cea = parrElemType cea
    v <- newSysLocalDs ty'cea
    clet <- dsLocalBinds ds (mkCoreTup (map Var xs))
    let'v <- newSysLocalDs (exprType clet)
583
    let projBody = mkCoreLet (NonRec let'v clet) $ 
584 585
                   mkCoreTup [Var v, Var let'v]
        errTy    = exprType projBody
586
        errMsg   = ptext (sLit "DsListComp.dePArrComp: internal error!")
587 588 589 590
    cerr <- mkErrorAppDs pAT_ERROR_ID errTy errMsg
    ccase <- matchSimply (Var v) (StmtCtxt PArrComp) pa projBody cerr
    let pa'    = mkLHsPatTup [pa, mkLHsPatTup (map nlVarPat xs)]
        proj   = mkLams [v] ccase
591
    dePArrComp qs pa' (mkApps (Var mapP) 
592
                                   [Type ty'cea, Type errTy, proj, cea])
chak's avatar
chak committed
593
--
594 595 596 597
-- The parser guarantees that parallel comprehensions can only appear as
-- singeltons qualifier lists, which we already special case in the caller.
-- So, encountering one here is a bug.
--
598
dePArrComp (ParStmt _ _ _ _ : _) _ _ = 
599 600
  panic "DsListComp.dePArrComp: malformed comprehension AST"

chak's avatar
chak committed
601 602 603 604 605 606
--  <<[:e' | qs | qss:]>> pa ea = 
--    <<[:e' | qss:]>> (pa, (x_1, ..., x_n)) 
--		       (zipP ea <<[:(x_1, ..., x_n) | qs:]>>)
--    where
--      {x_1, ..., x_n} = DV (qs)
--
607 608
dePArrParComp :: [([LStmt Id], [Id])] -> [Stmt Id] -> DsM CoreExpr
dePArrParComp qss quals = do
609
    (pQss, ceQss) <- deParStmt qss
610
    dePArrComp quals pQss ceQss
chak's avatar
chak committed
611 612
  where
    deParStmt []             =
613
      -- empty parallel statement lists have no source representation
chak's avatar
chak committed
614
      panic "DsListComp.dePArrComp: Empty parallel list comprehension"
615
    deParStmt ((qs, xs):qss) = do        -- first statement
616
      let res_expr = mkLHsVarTuple xs
617
      cqs <- dsPArrComp (map unLoc qs ++ [mkLastStmt res_expr])
618
      parStmts qss (mkLHsVarPatTup xs) cqs
chak's avatar
chak committed
619 620
    ---
    parStmts []             pa cea = return (pa, cea)
621
    parStmts ((qs, xs):qss) pa cea = do  -- subsequent statements (zip'ed)
622
      zipP <- dsLookupDPHId zipPName
623
      let pa'      = mkLHsPatTup [pa, mkLHsVarPatTup xs]
624
          ty'cea   = parrElemType cea
625
          res_expr = mkLHsVarTuple xs
626
      cqs <- dsPArrComp (map unLoc qs ++ [mkLastStmt res_expr])
chak's avatar
chak committed
627
      let ty'cqs = parrElemType cqs
628
          cea'   = mkApps (Var zipP) [Type ty'cea, Type ty'cqs, cea, cqs]
chak's avatar
chak committed
629
      parStmts qss pa' cea'
chak's avatar
chak committed
630 631 632

-- generate Core corresponding to `\p -> e'
--
633 634 635 636 637
deLambda :: Type			-- type of the argument
	  -> LPat Id			-- argument pattern
	  -> LHsExpr Id			-- body
	  -> DsM (CoreExpr, Type)
deLambda ty p e =
638
    mkLambda ty p =<< dsLExpr e
639 640 641 642 643 644 645

-- generate Core for a lambda pattern match, where the body is already in Core
--
mkLambda :: Type			-- type of the argument
	 -> LPat Id			-- argument pattern
	 -> CoreExpr			-- desugared body
	 -> DsM (CoreExpr, Type)
646 647
mkLambda ty p ce = do
    v <- newSysLocalDs ty
648
    let errMsg = ptext (sLit "DsListComp.deLambda: internal error!")
649 650 651 652
        ce'ty  = exprType ce
    cerr <- mkErrorAppDs pAT_ERROR_ID ce'ty errMsg
    res <- matchSimply (Var v) (StmtCtxt PArrComp) p ce cerr
    return (mkLams [v] res, ce'ty)
chak's avatar
chak committed
653 654 655 656 657 658 659

-- obtain the element type of the parallel array produced by the given Core
-- expression
--
parrElemType   :: CoreExpr -> Type
parrElemType e  = 
  case splitTyConApp_maybe (exprType e) of
660
    Just (tycon, [ty]) | tycon == parrTyCon -> ty
chak's avatar
chak committed
661 662 663
    _							  -> panic
      "DsListComp.parrElemType: not a parallel array type"
\end{code}
664 665 666 667 668

Translation for monad comprehensions

\begin{code}
-- Entry point for monad comprehension desugaring
669 670
dsMonadComp :: [LStmt Id] -> DsM CoreExpr
dsMonadComp stmts = dsMcStmts stmts
671

672 673 674
dsMcStmts :: [LStmt Id] -> DsM CoreExpr
dsMcStmts []                    = panic "dsMcStmts"
dsMcStmts (L loc stmt : lstmts) = putSrcSpanDs loc (dsMcStmt stmt lstmts)
675

676
---------------
677 678 679 680 681 682 683
dsMcStmt :: Stmt Id -> [LStmt Id] -> DsM CoreExpr

dsMcStmt (LastStmt body ret_op) stmts
  = ASSERT( null stmts )
    do { body' <- dsLExpr body
       ; ret_op' <- dsExpr ret_op
       ; return (App ret_op' body') }
684 685

--   [ .. | let binds, stmts ]
686 687
dsMcStmt (LetStmt binds) stmts 
  = do { rest <- dsMcStmts stmts
688 689 690
       ; dsLocalBinds binds rest }

--   [ .. | a <- m, stmts ]
691 692 693
dsMcStmt (BindStmt pat rhs bind_op fail_op) stmts
  = do { rhs' <- dsLExpr rhs
       ; dsMcBindStmt pat rhs' bind_op fail_op stmts }
694 695 696 697 698

-- Apply `guard` to the `exp` expression
--
--   [ .. | exp, stmts ]
--
699
dsMcStmt (ExprStmt exp then_exp guard_exp _) stmts 
700 701 702
  = do { exp'       <- dsLExpr exp
       ; guard_exp' <- dsExpr guard_exp
       ; then_exp'  <- dsExpr then_exp
703
       ; rest       <- dsMcStmts stmts
704 705 706 707 708
       ; return $ mkApps then_exp' [ mkApps guard_exp' [exp']
                                   , rest ] }

-- Group statements desugar like this:
--
709 710
--   [| (q, then group by e using f); rest |]
--   --->  f {qt} (\qv -> e) [| q; return qv |] >>= \ n_tup -> 
711
--         case unzip n_tup of qv' -> [| rest |]
712 713 714 715 716 717 718 719
--
-- where   variables (v1:t1, ..., vk:tk) are bound by q
--         qv = (v1, ..., vk)
--         qt = (t1, ..., tk)
--         (>>=) :: m2 a -> (a -> m3 b) -> m3 b
--         f :: forall a. (a -> t) -> m1 a -> m2 (n a)
--         n_tup :: n qt
--         unzip :: n qt -> (n t1, ..., n tk)    (needs Functor n)
720

721 722 723 724
dsMcStmt (TransStmt { trS_stmts = stmts, trS_bndrs = bndrs
                    , trS_by = by, trS_using = using
                    , trS_ret = return_op, trS_bind = bind_op
                    , trS_fmap = fmap_op, trS_form = form }) stmts_rest
725 726
  = do { let (from_bndrs, to_bndrs) = unzip bndrs
             from_bndr_tys          = map idType from_bndrs	-- Types ty
727 728

       -- Desugar an inner comprehension which outputs a list of tuples of the "from" binders
729
       ; expr <- dsInnerMonadComp stmts from_bndrs return_op
730 731 732

       -- Work out what arguments should be supplied to that expression: i.e. is an extraction
       -- function required? If so, create that desugared function and add to arguments
733
       ; usingExpr' <- dsLExpr using
734 735 736
       ; usingArgs <- case by of
                        Nothing   -> return [expr]
                        Just by_e -> do { by_e' <- dsLExpr by_e
737
                                        ; lam <- matchTuple from_bndrs by_e'
738
                                        ; return [lam, expr] }
739 740

       -- Generate the expressions to build the grouped list
741 742 743
       -- Build a pattern that ensures the consumer binds into the NEW binders, 
       -- which hold monads rather than single values
       ; bind_op' <- dsExpr bind_op
744
       ; let bind_ty  = exprType bind_op'    -- m2 (n (a,b,c)) -> (n (a,b,c) -> r1) -> r2
745 746 747 748 749 750
             n_tup_ty = funArgTy $ funArgTy $ funResultTy bind_ty   -- n (a,b,c)
             tup_n_ty = mkBigCoreVarTupTy to_bndrs

       ; body       <- dsMcStmts stmts_rest
       ; n_tup_var  <- newSysLocalDs n_tup_ty
       ; tup_n_var  <- newSysLocalDs tup_n_ty
751
       ; tup_n_expr <- mkMcUnzipM form fmap_op n_tup_var from_bndr_tys
752 753 754
       ; us         <- newUniqueSupply
       ; let rhs'  = mkApps usingExpr' usingArgs
             body' = mkTupleCase us to_bndrs body tup_n_var tup_n_expr
755 756
		   
       ; return (mkApps bind_op' [rhs', Lam n_tup_var body']) }
757 758 759 760 761

-- Parallel statements. Use `Control.Monad.Zip.mzip` to zip parallel
-- statements, for example:
--
--   [ body | qs1 | qs2 | qs3 ]
762 763
--     ->  [ body | (bndrs1, (bndrs2, bndrs3)) 
--                     <- [bndrs1 | qs1] `mzip` ([bndrs2 | qs2] `mzip` [bndrs3 | qs3]) ]
764
--
765 766 767
-- where `mzip` has type
--   mzip :: forall a b. m a -> m b -> m (a,b)
-- NB: we need a polymorphic mzip because we call it several times
768

769
dsMcStmt (ParStmt pairs mzip_op bind_op return_op) stmts_rest
770 771
 = do  { exps_w_tys  <- mapM ds_inner pairs   -- Pairs (exp :: m ty, ty)
       ; mzip_op'    <- dsExpr mzip_op
772 773

       ; let -- The pattern variables
774
             pats = map (mkBigLHsVarPatTup . snd) pairs
775 776
             -- Pattern with tuples of variables
             -- [v1,v2,v3]  =>  (v1, (v2, v3))
777 778 779 780 781
             pat = foldr1 (\p1 p2 -> mkLHsPatTup [p1, p2]) pats
	     (rhs, _) = foldr1 (\(e1,t1) (e2,t2) -> 
                                 (mkApps mzip_op' [Type t1, Type t2, e1, e2],
                                  mkBoxedTupleTy [t1,t2])) 
                               exps_w_tys
782

783 784
       ; dsMcBindStmt pat rhs bind_op noSyntaxExpr stmts_rest }
  where
785 786
    ds_inner (stmts, bndrs) = do { exp <- dsInnerMonadComp stmts bndrs mono_ret_op
                                 ; return (exp, tup_ty) }
787
       where 
788 789
         mono_ret_op = HsWrap (WpTyApp tup_ty) return_op
         tup_ty      = mkBigCoreVarTupTy bndrs
790

791 792 793 794 795 796 797 798 799
dsMcStmt stmt _ = pprPanic "dsMcStmt: unexpected stmt" (ppr stmt)


matchTuple :: [Id] -> CoreExpr -> DsM CoreExpr
-- (matchTuple [a,b,c] body)
--       returns the Core term
--  \x. case x of (a,b,c) -> body 
matchTuple ids body
  = do { us <- newUniqueSupply
800
       ; tup_id <- newSysLocalDs (mkBigCoreVarTupTy ids)
801
       ; return (Lam tup_id $ mkTupleCase us ids body tup_id (Var tup_id)) }
802 803 804 805 806 807 808 809 810

-- general `rhs' >>= \pat -> stmts` desugaring where `rhs'` is already a
-- desugared `CoreExpr`
dsMcBindStmt :: LPat Id
             -> CoreExpr        -- ^ the desugared rhs of the bind statement
             -> SyntaxExpr Id
             -> SyntaxExpr Id
             -> [LStmt Id]
             -> DsM CoreExpr
811 812
dsMcBindStmt pat rhs' bind_op fail_op stmts
  = do  { body     <- dsMcStmts stmts 
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
        ; bind_op' <- dsExpr bind_op
        ; var      <- selectSimpleMatchVarL pat
        ; let bind_ty = exprType bind_op' 	-- rhs -> (pat -> res1) -> res2
              res1_ty = funResultTy (funArgTy (funResultTy bind_ty))
        ; match <- matchSinglePat (Var var) (StmtCtxt DoExpr) pat
                                  res1_ty (cantFailMatchResult body)
        ; match_code <- handle_failure pat match fail_op
        ; return (mkApps bind_op' [rhs', Lam var match_code]) }

  where
    -- In a monad comprehension expression, pattern-match failure just calls
    -- the monadic `fail` rather than throwing an exception
    handle_failure pat match fail_op
      | matchCanFail match
        = do { fail_op' <- dsExpr fail_op
             ; fail_msg <- mkStringExpr (mk_fail_msg pat)
             ; extractMatchResult match (App fail_op' fail_msg) }
      | otherwise
        = extractMatchResult match (error "It can't fail") 

    mk_fail_msg :: Located e -> String
    mk_fail_msg pat = "Pattern match failure in monad comprehension at " ++ 
                      showSDoc (ppr (getLoc pat))

-- Desugar nested monad comprehensions, for example in `then..` constructs
838 839 840 841 842 843
--    dsInnerMonadComp quals [a,b,c] ret_op
-- returns the desugaring of 
--       [ (a,b,c) | quals ]

dsInnerMonadComp :: [LStmt Id]
                 -> [Id]	-- Return a tuple of these variables
844
                 -> HsExpr Id	-- The monomorphic "return" operator
845 846
                 -> DsM CoreExpr
dsInnerMonadComp stmts bndrs ret_op
847
  = dsMcStmts (stmts ++ [noLoc (LastStmt (mkBigLHsVarTup bndrs) ret_op)])
848 849 850 851 852 853 854 855

-- The `unzip` function for `GroupStmt` in a monad comprehensions
--
--   unzip :: m (a,b,..) -> (m a,m b,..)
--   unzip m_tuple = ( liftM selN1 m_tuple
--                   , liftM selN2 m_tuple
--                   , .. )
--
856 857 858 859
--   mkMcUnzipM fmap ys [t1, t2]
--     = ( fmap (selN1 :: (t1, t2) -> t1) ys
--       , fmap (selN2 :: (t1, t2) -> t2) ys )

860 861
mkMcUnzipM :: TransForm
           -> SyntaxExpr TcId	-- fmap
862 863 864
	   -> Id		-- Of type n (a,b,c)
	   -> [Type]		-- [a,b,c]
	   -> DsM CoreExpr	-- Of type (n a, n b, n c)
865 866 867 868 869 870
mkMcUnzipM ThenForm _ ys _ 	
  = return (Var ys) -- No unzipping to do

mkMcUnzipM _ fmap_op ys elt_tys
  = do { fmap_op' <- dsExpr fmap_op
       ; xs       <- mapM newSysLocalDs elt_tys
871 872 873 874 875
       ; let tup_ty = mkBigCoreTupTy elt_tys
       ; tup_xs   <- newSysLocalDs tup_ty
 
       ; let mk_elt i = mkApps fmap_op'  -- fmap :: forall a b. (a -> b) -> n a -> n b
                           [ Type tup_ty, Type (elt_tys !! i)
876 877 878 879
                           , mk_sel i, Var ys]

             mk_sel n = Lam tup_xs $ 
                        mkTupleSelector xs (xs !! n) tup_xs (Var tup_xs)
880

881
       ; return (mkBigCoreTup (map mk_elt [0..length elt_tys - 1])) }
882
\end{code}