TcType.lhs 39.3 KB
Newer Older
1
2
3
4
5
%
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
%
\section[TcType]{Types used in the typechecker}

6
7
This module provides the Type interface for front-end parts of the 
compiler.  These parts 
8

9
10
11
	* treat "source types" as opaque: 
		newtypes, and predicates are meaningful. 
	* look through usage types
12

13
14
The "tc" prefix is for "typechechecker", because the type checker
is the principal client.
15

16
17
\begin{code}
module TcType (
18
19
20
21
  --------------------------------
  -- TyThing
  TyThing(..),	-- instance NamedThing

22
  --------------------------------
23
  -- Types 
24
  TcType, TcSigmaType, TcRhoType, TcTauType, TcPredType, TcThetaType, 
25
  TcTyVar, TcTyVarSet, TcKind, 
26
27
28

  --------------------------------
  -- TyVarDetails
29
30
  TyVarDetails(..), isUserTyVar, isSkolemTyVar, isHoleTyVar, 
  tyVarBindingInfo,
31
32

  --------------------------------
33
  -- Builders
34
  mkPhiTy, mkSigmaTy, 
35

36
37
38
  --------------------------------
  -- Splitters  
  -- These are important because they do not look through newtypes
39
  tcSplitForAllTys, tcSplitPhiTy, 
40
41
  tcSplitFunTy_maybe, tcSplitFunTys, tcFunArgTy, tcFunResultTy,
  tcSplitTyConApp, tcSplitTyConApp_maybe, tcTyConAppTyCon, tcTyConAppArgs,
42
  tcSplitAppTy_maybe, tcSplitAppTy, tcSplitAppTys, tcSplitSigmaTy,
43
44
45
46
47
  tcSplitMethodTy, tcGetTyVar_maybe, tcGetTyVar,

  ---------------------------------
  -- Predicates. 
  -- Again, newtypes are opaque
48
  tcEqType, tcEqTypes, tcEqPred, tcCmpType, tcCmpTypes, tcCmpPred,
49
  isSigmaTy, isOverloadedTy, 
50
  isDoubleTy, isFloatTy, isIntTy,
51
  isIntegerTy, isAddrTy, isBoolTy, isUnitTy,
52
  isTauTy, tcIsTyVarTy, tcIsForAllTy,
53
  allDistinctTyVars,
54
55
56

  ---------------------------------
  -- Misc type manipulators
57
58
  deNoteType, classNamesOfTheta,
  tyClsNamesOfType, tyClsNamesOfDFunHead, 
59
60
61
62
  getDFunTyKey,

  ---------------------------------
  -- Predicate types  
63
  getClassPredTys_maybe, getClassPredTys, 
64
  isPredTy, isClassPred, isTyVarClassPred, predHasFDs,
65
  mkDictTy, tcSplitPredTy_maybe, 
66
  isDictTy, tcSplitDFunTy, predTyUnique, 
67
  mkClassPred, isInheritablePred, isLinearPred, isIPPred, mkPredName, 
68

69
70
71
72
73
74
75
76
77
78
  ---------------------------------
  -- Foreign import and export
  isFFIArgumentTy,     -- :: DynFlags -> Safety -> Type -> Bool
  isFFIImportResultTy, -- :: DynFlags -> Type -> Bool
  isFFIExportResultTy, -- :: Type -> Bool
  isFFIExternalTy,     -- :: Type -> Bool
  isFFIDynArgumentTy,  -- :: Type -> Bool
  isFFIDynResultTy,    -- :: Type -> Bool
  isFFILabelTy,        -- :: Type -> Bool

79
80
81
82
  ---------------------------------
  -- Unifier and matcher  
  unifyTysX, unifyTyListsX, unifyExtendTysX,
  matchTy, matchTys, match,
83

84
85
  --------------------------------
  -- Rexported from Type
86
87
88
  Kind, 	-- Stuff to do with kinds is insensitive to pre/post Tc
  unliftedTypeKind, liftedTypeKind, openTypeKind, mkArrowKind, mkArrowKinds, 
  superBoxity, liftedBoxity, hasMoreBoxityInfo, defaultKind, superKind,
89
  isTypeKind, isAnyTypeKind,
90
91

  Type, SourceType(..), PredType, ThetaType, 
92
93
  mkForAllTy, mkForAllTys, 
  mkFunTy, mkFunTys, zipFunTys, 
94
  mkTyConApp, mkGenTyConApp, mkAppTy, mkAppTys, mkSynTy, applyTy, applyTys,
95
  mkTyVarTy, mkTyVarTys, mkTyConTy, mkPredTy, mkPredTys, 
96

97
98
  isUnLiftedType,	-- Source types are always lifted
  isUnboxedTupleType,	-- Ditto
99
  isPrimitiveType, isTyVarTy,
100

101
  tidyTopType, tidyType, tidyPred, tidyTypes, tidyFreeTyVars, tidyOpenType, tidyOpenTypes,
102
  tidyTyVarBndr, tidyOpenTyVar, tidyOpenTyVars,
103
  typeKind, eqKind,
104
105

  tyVarsOfType, tyVarsOfTypes, tyVarsOfPred, tyVarsOfTheta
106
107
  ) where

108
#include "HsVersions.h"
109
110


111
import {-# SOURCE #-} PprType( pprType )
112
-- PprType imports TcType so that it can print intelligently
113

114
-- friends:
115
116
117
import TypeRep		( Type(..), TyNote(..), funTyCon )  -- friend

import Type		(	-- Re-exports
118
119
120
121
122
123
			  tyVarsOfType, tyVarsOfTypes, tyVarsOfPred,
			  tyVarsOfTheta, Kind, Type, SourceType(..),
			  PredType, ThetaType, unliftedTypeKind,
			  liftedTypeKind, openTypeKind, mkArrowKind,
			  mkArrowKinds, mkForAllTy, mkForAllTys,
			  defaultKind, isTypeKind, isAnyTypeKind,
124
			  mkFunTy, mkFunTys, zipFunTys, isTyVarTy,
125
126
127
128
129
			  mkTyConApp, mkGenTyConApp, mkAppTy,
			  mkAppTys, mkSynTy, applyTy, applyTys,
			  mkTyVarTy, mkTyVarTys, mkTyConTy, mkPredTy,
			  mkPredTys, isUnLiftedType,
			  isUnboxedTupleType, isPrimitiveType,
130
			  splitTyConApp_maybe,
131
132
133
			  tidyTopType, tidyType, tidyPred, tidyTypes,
			  tidyFreeTyVars, tidyOpenType, tidyOpenTypes,
			  tidyTyVarBndr, tidyOpenTyVar,
134
			  tidyOpenTyVars, eqKind, 
135
136
			  hasMoreBoxityInfo, liftedBoxity,
			  superBoxity, typeKind, superKind, repType
137
			)
138
import DataCon		( DataCon )
139
140
import TyCon		( TyCon, isUnLiftedTyCon )
import Class		( classHasFDs, Class )
141
import Var		( TyVar, Id, tyVarKind, isMutTyVar, mutTyVarDetails )
142
import ForeignCall	( Safety, playSafe )
143
144
import VarEnv
import VarSet
145
146

-- others:
147
import CmdLineOpts	( DynFlags, DynFlag( Opt_GlasgowExts ), dopt )
148
import Name		( Name, NamedThing(..), mkInternalName, getSrcLoc )
149
150
import OccName		( OccName, mkDictOcc )
import NameSet
151
import PrelNames	-- Lots (e.g. in isFFIArgumentTy)
152
import TysWiredIn	( ptrTyCon, funPtrTyCon, addrTyCon, unitTyCon )
153
import BasicTypes	( IPName(..), ipNameName )
154
import Unique		( Unique, Uniquable(..) )
155
import SrcLoc		( SrcLoc )
156
import Util		( cmpList, thenCmp, equalLength, snocView )
157
import Maybes		( maybeToBool, expectJust )
158
import Outputable
159
160
161
\end{code}


162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
%************************************************************************
%*									*
			TyThing
%*									*
%************************************************************************

\begin{code}
data TyThing = AnId     Id
	     | ADataCon DataCon
	     | ATyCon   TyCon
	     | AClass   Class

instance NamedThing TyThing where
  getName (AnId id)     = getName id
  getName (ATyCon tc)   = getName tc
  getName (AClass cl)   = getName cl
  getName (ADataCon dc) = getName dc
\end{code}


182
183
%************************************************************************
%*									*
184
185
186
187
\subsection{Types}
%*									*
%************************************************************************

188
189
190
The type checker divides the generic Type world into the 
following more structured beasts:

191
sigma ::= forall tyvars. phi
192
193
194
195
196
197
198
199
200
201
	-- A sigma type is a qualified type
	--
	-- Note that even if 'tyvars' is empty, theta
	-- may not be: e.g.   (?x::Int) => Int

	-- Note that 'sigma' is in prenex form:
	-- all the foralls are at the front.
	-- A 'phi' type has no foralls to the right of
	-- an arrow

202
203
204
phi :: theta => rho

rho ::= sigma -> rho
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
     |  tau

-- A 'tau' type has no quantification anywhere
-- Note that the args of a type constructor must be taus
tau ::= tyvar
     |  tycon tau_1 .. tau_n
     |  tau_1 tau_2
     |  tau_1 -> tau_2

-- In all cases, a (saturated) type synonym application is legal,
-- provided it expands to the required form.


\begin{code}
type SigmaType = Type
220
type RhoType   = Type
221
222
223
type TauType   = Type
\end{code}

224
225
226
227
228
229
230
231
232
233
234
235
\begin{code}
type TcTyVar    = TyVar		-- Might be a mutable tyvar
type TcTyVarSet = TyVarSet

type TcType = Type 		-- A TcType can have mutable type variables
	-- Invariant on ForAllTy in TcTypes:
	-- 	forall a. T
	-- a cannot occur inside a MutTyVar in T; that is,
	-- T is "flattened" before quantifying over a

type TcPredType     = PredType
type TcThetaType    = ThetaType
236
type TcSigmaType    = TcType
237
type TcRhoType      = TcType
238
type TcTauType      = TcType
239
240
241
242
243
244
245
type TcKind         = TcType
\end{code}


%************************************************************************
%*									*
\subsection{TyVarDetails}
246
247
248
%*									*
%************************************************************************

249
250
TyVarDetails gives extra info about type variables, used during type
checking.  It's attached to mutable type variables only.
251
252
It's knot-tied back to Var.lhs.  There is no reason in principle
why Var.lhs shouldn't actually have the definition, but it "belongs" here.
253

254
\begin{code}
255
data TyVarDetails
256
257
258
259
260
261
  = HoleTv	-- Used *only* by the type checker when passing in a type
		-- variable that should be side-effected to the result type.
		-- Always has kind openTypeKind.
		-- Never appears in types

  | SigTv	-- Introduced when instantiating a type signature,
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
		-- prior to checking that the defn of a fn does 
		-- have the expected type.  Should not be instantiated.
		--
		-- 	f :: forall a. a -> a
		-- 	f = e
		-- When checking e, with expected type (a->a), we 
		-- should not instantiate a

   | ClsTv	-- Scoped type variable introduced by a class decl
		--	class C a where ...

   | InstTv	-- Ditto, but instance decl

   | PatSigTv	-- Scoped type variable, introduced by a pattern
		-- type signature
		--	\ x::a -> e

   | VanillaTv	-- Everything else

281
282
283
284
285
286
287
isUserTyVar :: TcTyVar -> Bool	-- Avoid unifying these if possible
isUserTyVar tv = case mutTyVarDetails tv of
		   VanillaTv -> False
		   other     -> True

isSkolemTyVar :: TcTyVar -> Bool
isSkolemTyVar tv = case mutTyVarDetails tv of
288
289
290
		      SigTv  -> True
		      ClsTv  -> True
		      InstTv -> True
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
		      oteher -> False

isHoleTyVar :: TcTyVar -> Bool
-- NB:  the hole might be filled in by now, and this
--	function does not check for that
isHoleTyVar tv = ASSERT( isMutTyVar tv )
		 case mutTyVarDetails tv of
			HoleTv -> True
			other  -> False

tyVarBindingInfo :: TyVar -> SDoc	-- Used in checkSigTyVars
tyVarBindingInfo tv
  | isMutTyVar tv
  = sep [ptext SLIT("is bound by the") <+> details (mutTyVarDetails tv),
	 ptext SLIT("at") <+> ppr (getSrcLoc tv)]
  | otherwise
  = empty
  where
    details SigTv     = ptext SLIT("type signature")
    details ClsTv     = ptext SLIT("class declaration")
    details InstTv    = ptext SLIT("instance declaration")
    details PatSigTv  = ptext SLIT("pattern type signature")
    details HoleTv    = ptext SLIT("//hole//")		-- Should not happen
    details VanillaTv = ptext SLIT("//vanilla//")	-- Ditto
315
\end{code}
316

317
318
319
320
321
322
323
324

%************************************************************************
%*									*
\subsection{Tau, sigma and rho}
%*									*
%************************************************************************

\begin{code}
325
mkSigmaTy tyvars theta tau = mkForAllTys tyvars (mkPhiTy theta tau)
sof's avatar
sof committed
326

327
328
mkPhiTy :: [SourceType] -> Type -> Type
mkPhiTy theta ty = foldr (\p r -> FunTy (mkPredTy p) r) ty theta
329
330
331
332
\end{code}


@isTauTy@ tests for nested for-alls.
sof's avatar
sof committed
333

334
\begin{code}
335
336
337
338
339
isTauTy :: Type -> Bool
isTauTy (TyVarTy v)	 = True
isTauTy (TyConApp _ tys) = all isTauTy tys
isTauTy (AppTy a b)	 = isTauTy a && isTauTy b
isTauTy (FunTy a b)	 = isTauTy a && isTauTy b
340
isTauTy (SourceTy p)	 = True		-- Don't look through source types
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
isTauTy (NoteTy _ ty)	 = isTauTy ty
isTauTy other		 = False
\end{code}

\begin{code}
getDFunTyKey :: Type -> OccName	-- Get some string from a type, to be used to 
				-- construct a dictionary function name
getDFunTyKey (TyVarTy tv)    	     = getOccName tv
getDFunTyKey (TyConApp tc _) 	     = getOccName tc
getDFunTyKey (AppTy fun _)   	     = getDFunTyKey fun
getDFunTyKey (NoteTy _ t)    	     = getDFunTyKey t
getDFunTyKey (FunTy arg _)   	     = getOccName funTyCon
getDFunTyKey (ForAllTy _ t)  	     = getDFunTyKey t
getDFunTyKey (SourceTy (NType tc _)) = getOccName tc	-- Newtypes are quite reasonable
getDFunTyKey ty		     	     = pprPanic "getDFunTyKey" (pprType ty)
-- SourceTy shouldn't happen
sof's avatar
sof committed
357
358
359
\end{code}


360
361
%************************************************************************
%*									*
362
\subsection{Expanding and splitting}
363
364
%*									*
%************************************************************************
365

366
367
368
369
370
371
372
373
These tcSplit functions are like their non-Tc analogues, but
	a) they do not look through newtypes
	b) they do not look through PredTys
	c) [future] they ignore usage-type annotations

However, they are non-monadic and do not follow through mutable type
variables.  It's up to you to make sure this doesn't matter.

374
\begin{code}
375
376
377
378
379
380
381
382
383
384
385
tcSplitForAllTys :: Type -> ([TyVar], Type)
tcSplitForAllTys ty = split ty ty []
   where
     split orig_ty (ForAllTy tv ty) tvs = split ty ty (tv:tvs)
     split orig_ty (NoteTy n  ty)   tvs = split orig_ty ty tvs
     split orig_ty t		    tvs = (reverse tvs, orig_ty)

tcIsForAllTy (ForAllTy tv ty) = True
tcIsForAllTy (NoteTy n ty)    = tcIsForAllTy ty
tcIsForAllTy t		      = False

386
387
tcSplitPhiTy :: Type -> ([PredType], Type)
tcSplitPhiTy ty = split ty ty []
388
389
390
391
392
393
394
395
 where
  split orig_ty (FunTy arg res) ts = case tcSplitPredTy_maybe arg of
					Just p  -> split res res (p:ts)
					Nothing -> (reverse ts, orig_ty)
  split orig_ty (NoteTy n ty)	ts = split orig_ty ty ts
  split orig_ty ty		ts = (reverse ts, orig_ty)

tcSplitSigmaTy ty = case tcSplitForAllTys ty of
396
			(tvs, rho) -> case tcSplitPhiTy rho of
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
					(theta, tau) -> (tvs, theta, tau)

tcTyConAppTyCon :: Type -> TyCon
tcTyConAppTyCon ty = fst (tcSplitTyConApp ty)

tcTyConAppArgs :: Type -> [Type]
tcTyConAppArgs ty = snd (tcSplitTyConApp ty)

tcSplitTyConApp :: Type -> (TyCon, [Type])
tcSplitTyConApp ty = case tcSplitTyConApp_maybe ty of
			Just stuff -> stuff
			Nothing	   -> pprPanic "tcSplitTyConApp" (pprType ty)

tcSplitTyConApp_maybe :: Type -> Maybe (TyCon, [Type])
tcSplitTyConApp_maybe (TyConApp tc tys) 	= Just (tc, tys)
412
tcSplitTyConApp_maybe (FunTy arg res)   	= Just (funTyCon, [arg,res])
413
414
tcSplitTyConApp_maybe (NoteTy n ty)     	= tcSplitTyConApp_maybe ty
tcSplitTyConApp_maybe (SourceTy (NType tc tys)) = Just (tc,tys)
415
	-- Newtypes are opaque, so they may be split
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
	-- However, predicates are not treated
	-- as tycon applications by the type checker
tcSplitTyConApp_maybe other	        	= Nothing

tcSplitFunTys :: Type -> ([Type], Type)
tcSplitFunTys ty = case tcSplitFunTy_maybe ty of
			Nothing	       -> ([], ty)
			Just (arg,res) -> (arg:args, res')
				       where
					  (args,res') = tcSplitFunTys res

tcSplitFunTy_maybe :: Type -> Maybe (Type, Type)
tcSplitFunTy_maybe (FunTy arg res)  = Just (arg, res)
tcSplitFunTy_maybe (NoteTy n ty)    = tcSplitFunTy_maybe ty
tcSplitFunTy_maybe other	    = Nothing

tcFunArgTy    ty = case tcSplitFunTy_maybe ty of { Just (arg,res) -> arg }
tcFunResultTy ty = case tcSplitFunTy_maybe ty of { Just (arg,res) -> res }


tcSplitAppTy_maybe :: Type -> Maybe (Type, Type)
437
tcSplitAppTy_maybe (FunTy ty1 ty2)   	     = Just (TyConApp funTyCon [ty1], ty2)
438
439
tcSplitAppTy_maybe (AppTy ty1 ty2)   	     = Just (ty1, ty2)
tcSplitAppTy_maybe (NoteTy n ty)     	     = tcSplitAppTy_maybe ty
440
tcSplitAppTy_maybe (SourceTy (NType tc tys)) = tc_split_app tc tys	--- Don't forget that newtype!
441
442
443
tcSplitAppTy_maybe (TyConApp tc tys)	     = tc_split_app tc tys
tcSplitAppTy_maybe other	  	     = Nothing

444
445
446
tc_split_app tc tys = case snocView tys of
			Just (tys',ty') -> Just (TyConApp tc tys', ty')
			Nothing		-> Nothing
447
448
449
450
451

tcSplitAppTy ty = case tcSplitAppTy_maybe ty of
		    Just stuff -> stuff
		    Nothing    -> pprPanic "tcSplitAppTy" (pprType ty)

452
453
454
455
456
457
458
459
tcSplitAppTys :: Type -> (Type, [Type])
tcSplitAppTys ty
  = go ty []
  where
    go ty args = case tcSplitAppTy_maybe ty of
		   Just (ty', arg) -> go ty' (arg:args)
		   Nothing	   -> (ty,args)

460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
tcGetTyVar_maybe :: Type -> Maybe TyVar
tcGetTyVar_maybe (TyVarTy tv) 	= Just tv
tcGetTyVar_maybe (NoteTy _ t) 	= tcGetTyVar_maybe t
tcGetTyVar_maybe other	        = Nothing

tcGetTyVar :: String -> Type -> TyVar
tcGetTyVar msg ty = expectJust msg (tcGetTyVar_maybe ty)

tcIsTyVarTy :: Type -> Bool
tcIsTyVarTy ty = maybeToBool (tcGetTyVar_maybe ty)
\end{code}

The type of a method for class C is always of the form:
	Forall a1..an. C a1..an => sig_ty
where sig_ty is the type given by the method's signature, and thus in general
is a ForallTy.  At the point that splitMethodTy is called, it is expected
that the outer Forall has already been stripped off.  splitMethodTy then
477
returns (C a1..an, sig_ty') where sig_ty' is sig_ty with any Notes stripped off.
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

\begin{code}
tcSplitMethodTy :: Type -> (PredType, Type)
tcSplitMethodTy ty = split ty
 where
  split (FunTy arg res) = case tcSplitPredTy_maybe arg of
			    Just p  -> (p, res)
			    Nothing -> panic "splitMethodTy"
  split (NoteTy n ty)	= split ty
  split _               = panic "splitMethodTy"

tcSplitDFunTy :: Type -> ([TyVar], [SourceType], Class, [Type])
-- Split the type of a dictionary function
tcSplitDFunTy ty 
  = case tcSplitSigmaTy ty       of { (tvs, theta, tau) ->
    case tcSplitPredTy_maybe tau of { Just (ClassP clas tys) -> 
    (tvs, theta, clas, tys) }}
495
496
\end{code}

497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
(allDistinctTyVars tys tvs) = True 
	iff 
all the types tys are type variables, 
distinct from each other and from tvs.

This is useful when checking that unification hasn't unified signature
type variables.  For example, if the type sig is
	f :: forall a b. a -> b -> b
we want to check that 'a' and 'b' havn't 
	(a) been unified with a non-tyvar type
	(b) been unified with each other (all distinct)
	(c) been unified with a variable free in the environment

\begin{code}
allDistinctTyVars :: [Type] -> TyVarSet -> Bool

allDistinctTyVars []       acc
  = True
allDistinctTyVars (ty:tys) acc 
  = case tcGetTyVar_maybe ty of
	Nothing 		      -> False 	-- (a)
	Just tv | tv `elemVarSet` acc -> False	-- (b) or (c)
		| otherwise           -> allDistinctTyVars tys (acc `extendVarSet` tv)
\end{code}    

522
523
524

%************************************************************************
%*									*
525
\subsection{Predicate types}
526
527
%*									*
%************************************************************************
528

529
"Predicates" are particular source types, namelyClassP or IParams
530

531
\begin{code}
532
533
534
isPred :: SourceType -> Bool
isPred (ClassP _ _) = True
isPred (IParam _ _) = True
535
isPred (NType _ _)  = False
536
537
538
539
540
541
542
543
544
545
546

isPredTy :: Type -> Bool
isPredTy (NoteTy _ ty)  = isPredTy ty
isPredTy (SourceTy sty) = isPred sty
isPredTy _	        = False

tcSplitPredTy_maybe :: Type -> Maybe PredType
   -- Returns Just for predicates only
tcSplitPredTy_maybe (NoteTy _ ty)  	    = tcSplitPredTy_maybe ty
tcSplitPredTy_maybe (SourceTy p) | isPred p = Just p
tcSplitPredTy_maybe other	      	    = Nothing
547
	
548
predTyUnique :: PredType -> Unique
549
predTyUnique (IParam n _)      = getUnique (ipNameName n)
550
551
552
553
554
555
556
557
558
predTyUnique (ClassP clas tys) = getUnique clas

predHasFDs :: PredType -> Bool
-- True if the predicate has functional depenencies; 
-- I.e. should participate in improvement
predHasFDs (IParam _ _)   = True
predHasFDs (ClassP cls _) = classHasFDs cls

mkPredName :: Unique -> SrcLoc -> SourceType -> Name
559
560
mkPredName uniq loc (ClassP cls tys) = mkInternalName uniq (mkDictOcc (getOccName cls)) loc
mkPredName uniq loc (IParam ip ty)   = mkInternalName uniq (getOccName (ipNameName ip)) loc
561
562
\end{code}

563
564

--------------------- Dictionary types ---------------------------------
565
566

\begin{code}
567
mkClassPred clas tys = ClassP clas tys
568
569
570
571
572

isClassPred :: SourceType -> Bool
isClassPred (ClassP clas tys) = True
isClassPred other	      = False

573
isTyVarClassPred (ClassP clas tys) = all tcIsTyVarTy tys
574
575
576
577
578
579
580
581
582
583
isTyVarClassPred other		   = False

getClassPredTys_maybe :: SourceType -> Maybe (Class, [Type])
getClassPredTys_maybe (ClassP clas tys) = Just (clas, tys)
getClassPredTys_maybe _		        = Nothing

getClassPredTys :: PredType -> (Class, [Type])
getClassPredTys (ClassP clas tys) = (clas, tys)

mkDictTy :: Class -> [Type] -> Type
584
mkDictTy clas tys = mkPredTy (ClassP clas tys)
585
586
587
588
589

isDictTy :: Type -> Bool
isDictTy (SourceTy p)   = isClassPred p
isDictTy (NoteTy _ ty)	= isDictTy ty
isDictTy other		= False
590
\end{code}
591

592
593
594
595
596
597
598
--------------------- Implicit parameters ---------------------------------

\begin{code}
isIPPred :: SourceType -> Bool
isIPPred (IParam _ _) = True
isIPPred other	      = False

599
isInheritablePred :: PredType -> Bool
600
601
602
603
604
605
606
607
-- Can be inherited by a context.  For example, consider
--	f x = let g y = (?v, y+x)
--	      in (g 3 with ?v = 8, 
--		  g 4 with ?v = 9)
-- The point is that g's type must be quantifed over ?v:
--	g :: (?v :: a) => a -> a
-- but it doesn't need to be quantified over the Num a dictionary
-- which can be free in g's rhs, and shared by both calls to g
608
609
610
611
612
613
isInheritablePred (ClassP _ _) = True
isInheritablePred other	     = False

isLinearPred :: TcPredType -> Bool
isLinearPred (IParam (Linear n) _) = True
isLinearPred other		   = False
614
\end{code}
615
616


617
618
%************************************************************************
%*									*
619
\subsection{Comparison}
620
621
%*									*
%************************************************************************
622

623
624
625
Comparison, taking note of newtypes, predicates, etc,
But ignoring usage types

626
\begin{code}
627
628
629
tcEqType :: Type -> Type -> Bool
tcEqType ty1 ty2 = case ty1 `tcCmpType` ty2 of { EQ -> True; other -> False }

630
631
632
tcEqTypes :: [Type] -> [Type] -> Bool
tcEqTypes ty1 ty2 = case ty1 `tcCmpTypes` ty2 of { EQ -> True; other -> False }

633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
tcEqPred :: PredType -> PredType -> Bool
tcEqPred p1 p2 = case p1 `tcCmpPred` p2 of { EQ -> True; other -> False }

-------------
tcCmpType :: Type -> Type -> Ordering
tcCmpType ty1 ty2 = cmpTy emptyVarEnv ty1 ty2

tcCmpTypes tys1 tys2 = cmpTys emptyVarEnv tys1 tys2

tcCmpPred p1 p2 = cmpSourceTy emptyVarEnv p1 p2
-------------
cmpTys env tys1 tys2 = cmpList (cmpTy env) tys1 tys2

-------------
cmpTy :: TyVarEnv TyVar -> Type -> Type -> Ordering
  -- The "env" maps type variables in ty1 to type variables in ty2
  -- So when comparing for-alls.. (forall tv1 . t1) (forall tv2 . t2)
  -- we in effect substitute tv2 for tv1 in t1 before continuing

652
    -- Look through NoteTy
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
cmpTy env (NoteTy _ ty1) ty2 = cmpTy env ty1 ty2
cmpTy env ty1 (NoteTy _ ty2) = cmpTy env ty1 ty2

    -- Deal with equal constructors
cmpTy env (TyVarTy tv1) (TyVarTy tv2) = case lookupVarEnv env tv1 of
					  Just tv1a -> tv1a `compare` tv2
					  Nothing   -> tv1  `compare` tv2

cmpTy env (SourceTy p1) (SourceTy p2) = cmpSourceTy env p1 p2
cmpTy env (AppTy f1 a1) (AppTy f2 a2) = cmpTy env f1 f2 `thenCmp` cmpTy env a1 a2
cmpTy env (FunTy f1 a1) (FunTy f2 a2) = cmpTy env f1 f2 `thenCmp` cmpTy env a1 a2
cmpTy env (TyConApp tc1 tys1) (TyConApp tc2 tys2) = (tc1 `compare` tc2) `thenCmp` (cmpTys env tys1 tys2)
cmpTy env (ForAllTy tv1 t1)   (ForAllTy tv2 t2)   = cmpTy (extendVarEnv env tv1 tv2) t1 t2
    
    -- Deal with the rest: TyVarTy < AppTy < FunTy < TyConApp < ForAllTy < SourceTy
cmpTy env (AppTy _ _) (TyVarTy _) = GT
    
cmpTy env (FunTy _ _) (TyVarTy _) = GT
cmpTy env (FunTy _ _) (AppTy _ _) = GT
    
cmpTy env (TyConApp _ _) (TyVarTy _) = GT
cmpTy env (TyConApp _ _) (AppTy _ _) = GT
cmpTy env (TyConApp _ _) (FunTy _ _) = GT
    
cmpTy env (ForAllTy _ _) (TyVarTy _)    = GT
cmpTy env (ForAllTy _ _) (AppTy _ _)    = GT
cmpTy env (ForAllTy _ _) (FunTy _ _)    = GT
cmpTy env (ForAllTy _ _) (TyConApp _ _) = GT

cmpTy env (SourceTy _)   t2		= GT

cmpTy env _ _ = LT
685
686
687
\end{code}

\begin{code}
688
cmpSourceTy :: TyVarEnv TyVar -> SourceType -> SourceType -> Ordering
689
cmpSourceTy env (IParam n1 ty1) (IParam n2 ty2) = (n1 `compare` n2) `thenCmp` (cmpTy env ty1 ty2)
690
691
692
693
694
695
696
697
698
699
700
701
	-- Compare types as well as names for implicit parameters
	-- This comparison is used exclusively (I think) for the
	-- finite map built in TcSimplify
cmpSourceTy env (IParam _ _)     sty		  = LT

cmpSourceTy env (ClassP _ _)     (IParam _ _)     = GT
cmpSourceTy env (ClassP c1 tys1) (ClassP c2 tys2) = (c1 `compare` c2) `thenCmp` (cmpTys env tys1 tys2)
cmpSourceTy env (ClassP _ _)     (NType _ _)      = LT

cmpSourceTy env (NType tc1 tys1) (NType tc2 tys2) = (tc1 `compare` tc2) `thenCmp` (cmpTys env tys1 tys2)
cmpSourceTy env (NType _ _)	 sty		  = GT
\end{code}
702

703
704
705
706
707
708
PredTypes are used as a FM key in TcSimplify, 
so we take the easy path and make them an instance of Ord

\begin{code}
instance Eq  SourceType where { (==)    = tcEqPred }
instance Ord SourceType where { compare = tcCmpPred }
709
710
\end{code}

711

712
713
714
715
716
%************************************************************************
%*									*
\subsection{Predicates}
%*									*
%************************************************************************
717

718
isSigmaTy returns true of any qualified type.  It doesn't *necessarily* have 
719
720
any foralls.  E.g.
	f :: (?x::Int) => Int -> Int
721

722
\begin{code}
723
724
725
726
727
isSigmaTy :: Type -> Bool
isSigmaTy (ForAllTy tyvar ty) = True
isSigmaTy (FunTy a b)	      = isPredTy a
isSigmaTy (NoteTy n ty)	      = isSigmaTy ty
isSigmaTy _		      = False
728
729
730
731
732
733
734

isOverloadedTy :: Type -> Bool
isOverloadedTy (ForAllTy tyvar ty) = isOverloadedTy ty
isOverloadedTy (FunTy a b)	   = isPredTy a
isOverloadedTy (NoteTy n ty)	   = isOverloadedTy ty
isOverloadedTy _		   = False
\end{code}
735
736

\begin{code}
737
738
739
740
741
742
isFloatTy      = is_tc floatTyConKey
isDoubleTy     = is_tc doubleTyConKey
isIntegerTy    = is_tc integerTyConKey
isIntTy        = is_tc intTyConKey
isAddrTy       = is_tc addrTyConKey
isBoolTy       = is_tc boolTyConKey
743
isUnitTy       = is_tc unitTyConKey
744
745
746
747
748
749
750

is_tc :: Unique -> Type -> Bool
-- Newtypes are opaque to this
is_tc uniq ty = case tcSplitTyConApp_maybe ty of
			Just (tc, _) -> uniq == getUnique tc
			Nothing	     -> False
\end{code}
751

752

753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
%************************************************************************
%*									*
\subsection{Misc}
%*									*
%************************************************************************

\begin{code}
deNoteType :: Type -> Type
	-- Remove synonyms, but not source types
deNoteType ty@(TyVarTy tyvar)	= ty
deNoteType (TyConApp tycon tys) = TyConApp tycon (map deNoteType tys)
deNoteType (SourceTy p)		= SourceTy (deNoteSourceType p)
deNoteType (NoteTy _ ty)	= deNoteType ty
deNoteType (AppTy fun arg)	= AppTy (deNoteType fun) (deNoteType arg)
deNoteType (FunTy fun arg)	= FunTy (deNoteType fun) (deNoteType arg)
deNoteType (ForAllTy tv ty)	= ForAllTy tv (deNoteType ty)

deNoteSourceType :: SourceType -> SourceType
771
772
773
deNoteSourceType (ClassP c tys)   = ClassP c (map deNoteType tys)
deNoteSourceType (IParam n ty)    = IParam n (deNoteType ty)
deNoteSourceType (NType tc tys)   = NType tc (map deNoteType tys)
774
775
\end{code}

776
777
Find the free tycons and classes of a type.  This is used in the front
end of the compiler.
778

779
\begin{code}
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
tyClsNamesOfType :: Type -> NameSet
tyClsNamesOfType (TyVarTy tv)		    = emptyNameSet
tyClsNamesOfType (TyConApp tycon tys)	    = unitNameSet (getName tycon) `unionNameSets` tyClsNamesOfTypes tys
tyClsNamesOfType (NoteTy (SynNote ty1) ty2) = tyClsNamesOfType ty1
tyClsNamesOfType (NoteTy other_note    ty2) = tyClsNamesOfType ty2
tyClsNamesOfType (SourceTy (IParam n ty))   = tyClsNamesOfType ty
tyClsNamesOfType (SourceTy (ClassP cl tys)) = unitNameSet (getName cl) `unionNameSets` tyClsNamesOfTypes tys
tyClsNamesOfType (SourceTy (NType tc tys))  = unitNameSet (getName tc) `unionNameSets` tyClsNamesOfTypes tys
tyClsNamesOfType (FunTy arg res)	    = tyClsNamesOfType arg `unionNameSets` tyClsNamesOfType res
tyClsNamesOfType (AppTy fun arg)	    = tyClsNamesOfType fun `unionNameSets` tyClsNamesOfType arg
tyClsNamesOfType (ForAllTy tyvar ty)	    = tyClsNamesOfType ty

tyClsNamesOfTypes tys = foldr (unionNameSets . tyClsNamesOfType) emptyNameSet tys

tyClsNamesOfDFunHead :: Type -> NameSet
795
796
797
798
799
800
-- Find the free type constructors and classes 
-- of the head of the dfun instance type
-- The 'dfun_head_type' is because of
--	instance Foo a => Baz T where ...
-- The decl is an orphan if Baz and T are both not locally defined,
--	even if Foo *is* locally defined
801
802
803
804
805
806
807
tyClsNamesOfDFunHead dfun_ty 
  = case tcSplitSigmaTy dfun_ty of
	(tvs,_,head_ty) -> tyClsNamesOfType head_ty

classNamesOfTheta :: ThetaType -> [Name]
-- Looks just for ClassP things; maybe it should check
classNamesOfTheta preds = [ getName c | ClassP c _ <- preds ]
808
809
810
\end{code}


811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
%************************************************************************
%*									*
\subsection[TysWiredIn-ext-type]{External types}
%*									*
%************************************************************************

The compiler's foreign function interface supports the passing of a
restricted set of types as arguments and results (the restricting factor
being the )

\begin{code}
isFFIArgumentTy :: DynFlags -> Safety -> Type -> Bool
-- Checks for valid argument type for a 'foreign import'
isFFIArgumentTy dflags safety ty 
   = checkRepTyCon (legalOutgoingTyCon dflags safety) ty

isFFIExternalTy :: Type -> Bool
-- Types that are allowed as arguments of a 'foreign export'
isFFIExternalTy ty = checkRepTyCon legalFEArgTyCon ty

isFFIImportResultTy :: DynFlags -> Type -> Bool
isFFIImportResultTy dflags ty 
  = checkRepTyCon (legalFIResultTyCon dflags) ty

isFFIExportResultTy :: Type -> Bool
isFFIExportResultTy ty = checkRepTyCon legalFEResultTyCon ty

isFFIDynArgumentTy :: Type -> Bool
-- The argument type of a foreign import dynamic must be Ptr, FunPtr, Addr,
-- or a newtype of either.
isFFIDynArgumentTy = checkRepTyCon (\tc -> tc == ptrTyCon || tc == funPtrTyCon || tc == addrTyCon)

isFFIDynResultTy :: Type -> Bool
-- The result type of a foreign export dynamic must be Ptr, FunPtr, Addr,
-- or a newtype of either.
isFFIDynResultTy = checkRepTyCon (\tc -> tc == ptrTyCon || tc == funPtrTyCon || tc == addrTyCon)

isFFILabelTy :: Type -> Bool
-- The type of a foreign label must be Ptr, FunPtr, Addr,
-- or a newtype of either.
isFFILabelTy = checkRepTyCon (\tc -> tc == ptrTyCon || tc == funPtrTyCon || tc == addrTyCon)

checkRepTyCon :: (TyCon -> Bool) -> Type -> Bool
	-- Look through newtypes
	-- Non-recursive ones are transparent to splitTyConApp,
856
	-- but recursive ones aren't
857
checkRepTyCon check_tc ty 
858
859
  | Just (tc,_) <- splitTyConApp_maybe (repType ty) = check_tc tc
  | otherwise				  	    = False
860
861
862
863
864
865
866
867
868
869
870
871
\end{code}

----------------------------------------------
These chaps do the work; they are not exported
----------------------------------------------

\begin{code}
legalFEArgTyCon :: TyCon -> Bool
-- It's illegal to return foreign objects and (mutable)
-- bytearrays from a _ccall_ / foreign declaration
-- (or be passed them as arguments in foreign exported functions).
legalFEArgTyCon tc
872
  | getUnique tc `elem` [ byteArrayTyConKey, mutableByteArrayTyConKey ] 
873
874
875
876
877
878
879
880
881
  = False
  -- It's also illegal to make foreign exports that take unboxed
  -- arguments.  The RTS API currently can't invoke such things.  --SDM 7/2000
  | otherwise
  = boxedMarshalableTyCon tc

legalFIResultTyCon :: DynFlags -> TyCon -> Bool
legalFIResultTyCon dflags tc
  | getUnique tc `elem`
882
	[ byteArrayTyConKey, mutableByteArrayTyConKey ]  = False
883
884
885
886
887
888
  | tc == unitTyCon = True
  | otherwise	    = marshalableTyCon dflags tc

legalFEResultTyCon :: TyCon -> Bool
legalFEResultTyCon tc
  | getUnique tc `elem` 
889
	[ byteArrayTyConKey, mutableByteArrayTyConKey ]  = False
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
  | tc == unitTyCon = True
  | otherwise       = boxedMarshalableTyCon tc

legalOutgoingTyCon :: DynFlags -> Safety -> TyCon -> Bool
-- Checks validity of types going from Haskell -> external world
legalOutgoingTyCon dflags safety tc
  | playSafe safety && getUnique tc `elem` [byteArrayTyConKey, mutableByteArrayTyConKey]
  = False
  | otherwise
  = marshalableTyCon dflags tc

marshalableTyCon dflags tc
  =  (dopt Opt_GlasgowExts dflags && isUnLiftedTyCon tc)
  || boxedMarshalableTyCon tc

boxedMarshalableTyCon tc
   = getUnique tc `elem` [ intTyConKey, int8TyConKey, int16TyConKey
			 , int32TyConKey, int64TyConKey
			 , wordTyConKey, word8TyConKey, word16TyConKey
			 , word32TyConKey, word64TyConKey
			 , floatTyConKey, doubleTyConKey
			 , addrTyConKey, ptrTyConKey, funPtrTyConKey
912
			 , charTyConKey
913
914
915
916
917
918
919
			 , stablePtrTyConKey
			 , byteArrayTyConKey, mutableByteArrayTyConKey
			 , boolTyConKey
			 ]
\end{code}


920
921
922
923
924
925
926
927
%************************************************************************
%*									*
\subsection{Unification with an explicit substitution}
%*									*
%************************************************************************

Unify types with an explicit substitution and no monad.
Ignore usage annotations.
928
929

\begin{code}
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
type MySubst
   = (TyVarSet,		-- Set of template tyvars
      TyVarSubstEnv)	-- Not necessarily idempotent

unifyTysX :: TyVarSet		-- Template tyvars
	  -> Type
          -> Type
          -> Maybe TyVarSubstEnv
unifyTysX tmpl_tyvars ty1 ty2
  = uTysX ty1 ty2 (\(_,s) -> Just s) (tmpl_tyvars, emptySubstEnv)

unifyExtendTysX :: TyVarSet		-- Template tyvars
		-> TyVarSubstEnv	-- Substitution to start with
		-> Type
	        -> Type
        	-> Maybe TyVarSubstEnv	-- Extended substitution
unifyExtendTysX tmpl_tyvars subst ty1 ty2
  = uTysX ty1 ty2 (\(_,s) -> Just s) (tmpl_tyvars, subst)

unifyTyListsX :: TyVarSet -> [Type] -> [Type]
              -> Maybe TyVarSubstEnv
unifyTyListsX tmpl_tyvars tys1 tys2
  = uTyListsX tys1 tys2 (\(_,s) -> Just s) (tmpl_tyvars, emptySubstEnv)


uTysX :: Type
      -> Type
      -> (MySubst -> Maybe result)
      -> MySubst
      -> Maybe result

uTysX (NoteTy _ ty1) ty2 k subst = uTysX ty1 ty2 k subst
uTysX ty1 (NoteTy _ ty2) k subst = uTysX ty1 ty2 k subst

	-- Variables; go for uVar
uTysX (TyVarTy tyvar1) (TyVarTy tyvar2) k subst 
  | tyvar1 == tyvar2
  = k subst
uTysX (TyVarTy tyvar1) ty2 k subst@(tmpls,_)
  | tyvar1 `elemVarSet` tmpls
  = uVarX tyvar1 ty2 k subst
uTysX ty1 (TyVarTy tyvar2) k subst@(tmpls,_)
  | tyvar2 `elemVarSet` tmpls
  = uVarX tyvar2 ty1 k subst

975
976
977
978
979
980
981
982
	-- Predicates
uTysX (SourceTy (IParam n1 t1)) (SourceTy (IParam n2 t2)) k subst
  | n1 == n2 = uTysX t1 t2 k subst
uTysX (SourceTy (ClassP c1 tys1)) (SourceTy (ClassP c2 tys2)) k subst
  | c1 == c2 = uTyListsX tys1 tys2 k subst
uTysX (SourceTy (NType tc1 tys1)) (SourceTy (NType tc2 tys2)) k subst
  | tc1 == tc2 = uTyListsX tys1 tys2 k subst

983
984
985
986
987
988
	-- Functions; just check the two parts
uTysX (FunTy fun1 arg1) (FunTy fun2 arg2) k subst
  = uTysX fun1 fun2 (uTysX arg1 arg2 k) subst

	-- Type constructors must match
uTysX (TyConApp con1 tys1) (TyConApp con2 tys2) k subst
sof's avatar
sof committed
989
  | (con1 == con2 && equalLength tys1 tys2)
990
991
992
993
994
995
996
997
998
999
1000
  = uTyListsX tys1 tys2 k subst

	-- Applications need a bit of care!
	-- They can match FunTy and TyConApp, so use splitAppTy_maybe
	-- NB: we've already dealt with type variables and Notes,
	-- so if one type is an App the other one jolly well better be too
uTysX (AppTy s1 t1) ty2 k subst
  = case tcSplitAppTy_maybe ty2 of
      Just (s2, t2) -> uTysX s1 s2 (uTysX t1 t2 k) subst
      Nothing       -> Nothing    -- Fail