DsListComp.lhs 32 KB
Newer Older
1
%
Simon Marlow's avatar
Simon Marlow committed
2
% (c) The University of Glasgow 2006
3
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
4
%
Simon Marlow's avatar
Simon Marlow committed
5

6
Desugaring list comprehensions, monad comprehensions and array comprehensions
7 8

\begin{code}
9
{-# LANGUAGE NamedFieldPuns #-}
10
{-# OPTIONS -fno-warn-incomplete-patterns #-}
11 12 13
-- The above warning supression flag is a temporary kludge.
-- While working on this module you are encouraged to remove it and fix
-- any warnings in the module. See
Ian Lynagh's avatar
Ian Lynagh committed
14
--     http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#Warnings
15 16
-- for details

17
module DsListComp ( dsListComp, dsPArrComp, dsMonadComp ) where
18

19 20
#include "HsVersions.h"

21
import {-# SOURCE #-} DsExpr ( dsExpr, dsLExpr, dsLocalBinds )
22

23
import HsSyn
Simon Marlow's avatar
Simon Marlow committed
24
import TcHsSyn
25
import CoreSyn
26
import MkCore
27

28
import DsMonad		-- the monadery used in the desugarer
29
import DsUtils
30

Simon Marlow's avatar
Simon Marlow committed
31 32
import DynFlags
import CoreUtils
33
import Id
Simon Marlow's avatar
Simon Marlow committed
34 35 36 37 38
import Type
import TysWiredIn
import Match
import PrelNames
import SrcLoc
39
import Outputable
40
import FastString
41
import TcType
42 43 44 45 46 47 48 49 50
\end{code}

List comprehensions may be desugared in one of two ways: ``ordinary''
(as you would expect if you read SLPJ's book) and ``with foldr/build
turned on'' (if you read Gill {\em et al.}'s paper on the subject).

There will be at least one ``qualifier'' in the input.

\begin{code}
51
dsListComp :: [LStmt Id] 
52
	   -> Type		-- Type of entire list 
53
	   -> DsM CoreExpr
54
dsListComp lquals res_ty = do 
55 56
    dflags <- getDOptsDs
    let quals = map unLoc lquals
57 58 59
        elt_ty = case tcTyConAppArgs res_ty of
                   [elt_ty] -> elt_ty
                   _ -> pprPanic "dsListComp" (ppr res_ty $$ ppr lquals)
60
    
61
    if not (dopt Opt_EnableRewriteRules dflags) || dopt Opt_IgnoreInterfacePragmas dflags
62 63 64 65 66
       -- Either rules are switched off, or we are ignoring what there are;
       -- Either way foldr/build won't happen, so use the more efficient
       -- Wadler-style desugaring
       || isParallelComp quals
       -- Foldr-style desugaring can't handle parallel list comprehensions
67 68
        then deListComp quals (mkNilExpr elt_ty)
        else mkBuildExpr elt_ty (\(c, _) (n, _) -> dfListComp c n quals) 
69 70
             -- Foldr/build should be enabled, so desugar 
             -- into foldrs and builds
71 72 73 74 75 76 77 78

  where 
    -- We must test for ParStmt anywhere, not just at the head, because an extension
    -- to list comprehensions would be to add brackets to specify the associativity
    -- of qualifier lists. This is really easy to do by adding extra ParStmts into the
    -- mix of possibly a single element in length, so we do this to leave the possibility open
    isParallelComp = any isParallelStmt
  
79 80
    isParallelStmt (ParStmt _ _ _ _) = True
    isParallelStmt _                 = False
81 82 83 84 85 86
    
    
-- This function lets you desugar a inner list comprehension and a list of the binders
-- of that comprehension that we need in the outer comprehension into such an expression
-- and the type of the elements that it outputs (tuples of binders)
dsInnerListComp :: ([LStmt Id], [Id]) -> DsM (CoreExpr, Type)
87
dsInnerListComp (stmts, bndrs)
88
  = do { expr <- dsListComp (stmts ++ [noLoc $ mkLastStmt (mkBigLHsVarTup bndrs)]) 
89
                            (mkListTy bndrs_tuple_type)
90 91 92
       ; return (expr, bndrs_tuple_type) }
  where
    bndrs_tuple_type = mkBigCoreVarTupTy bndrs
93 94 95 96
        
-- This function factors out commonality between the desugaring strategies for GroupStmt.
-- Given such a statement it gives you back an expression representing how to compute the transformed
-- list and the tuple that you need to bind from that list in order to proceed with your desugaring
97 98 99 100 101 102 103
dsTransStmt :: Stmt Id -> DsM (CoreExpr, LPat Id)
dsTransStmt (TransStmt { trS_form = form, trS_stmts = stmts, trS_bndrs = binderMap
                       , trS_by = by, trS_using = using }) = do
    let (from_bndrs, to_bndrs) = unzip binderMap
        from_bndrs_tys  = map idType from_bndrs
        to_bndrs_tys    = map idType to_bndrs
        to_bndrs_tup_ty = mkBigCoreTupTy to_bndrs_tys
104 105
    
    -- Desugar an inner comprehension which outputs a list of tuples of the "from" binders
106
    (expr, from_tup_ty) <- dsInnerListComp (stmts, from_bndrs)
107 108 109
    
    -- Work out what arguments should be supplied to that expression: i.e. is an extraction
    -- function required? If so, create that desugared function and add to arguments
110
    usingExpr' <- dsLExpr using
111 112 113
    usingArgs <- case by of
                   Nothing   -> return [expr]
 		   Just by_e -> do { by_e' <- dsLExpr by_e
114 115
                                   ; lam <- matchTuple from_bndrs by_e'
                                   ; return [lam, expr] }
116 117
    
    -- Create an unzip function for the appropriate arity and element types and find "map"
118
    unzip_stuff <- mkUnzipBind form from_bndrs_tys
119 120 121 122
    map_id <- dsLookupGlobalId mapName

    -- Generate the expressions to build the grouped list
    let -- First we apply the grouping function to the inner list
123
        inner_list_expr = mkApps usingExpr' (Type from_tup_ty : usingArgs)
124 125 126 127
        -- Then we map our "unzip" across it to turn the lists of tuples into tuples of lists
        -- We make sure we instantiate the type variable "a" to be a list of "from" tuples and
        -- the "b" to be a tuple of "to" lists!
        -- Then finally we bind the unzip function around that expression
128 129 130 131 132 133 134 135 136 137 138 139 140
        bound_unzipped_inner_list_expr 
          = case unzip_stuff of
              Nothing -> inner_list_expr
              Just (unzip_fn, unzip_rhs) -> Let (Rec [(unzip_fn, unzip_rhs)]) $
                                            mkApps (Var map_id) $
                                            [ Type (mkListTy from_tup_ty)
                                            , Type to_bndrs_tup_ty
                                            , Var unzip_fn
                                            , inner_list_expr]

    -- Build a pattern that ensures the consumer binds into the NEW binders, 
    -- which hold lists rather than single values
    let pat = mkBigLHsVarPatTup to_bndrs
141
    return (bound_unzipped_inner_list_expr, pat)
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
\end{code}

%************************************************************************
%*									*
\subsection[DsListComp-ordinary]{Ordinary desugaring of list comprehensions}
%*									*
%************************************************************************

Just as in Phil's chapter~7 in SLPJ, using the rules for
optimally-compiled list comprehensions.  This is what Kevin followed
as well, and I quite happily do the same.  The TQ translation scheme
transforms a list of qualifiers (either boolean expressions or
generators) into a single expression which implements the list
comprehension.  Because we are generating 2nd-order polymorphic
lambda-calculus, calls to NIL and CONS must be applied to a type
argument, as well as their usual value arguments.
\begin{verbatim}
TE << [ e | qs ] >>  =  TQ << [ e | qs ] ++ Nil (typeOf e) >>

(Rule C)
TQ << [ e | ] ++ L >> = Cons (typeOf e) TE <<e>> TE <<L>>

(Rule B)
TQ << [ e | b , qs ] ++ L >> =
    if TE << b >> then TQ << [ e | qs ] ++ L >> else TE << L >>

(Rule A')
TQ << [ e | p <- L1, qs ]  ++  L2 >> =
  letrec
    h = \ u1 ->
    	  case u1 of
	    []        ->  TE << L2 >>
	    (u2 : u3) ->
		  (( \ TE << p >> -> ( TQ << [e | qs]  ++  (h u3) >> )) u2)
		    [] (h u3)
  in
    h ( TE << L1 >> )

"h", "u1", "u2", and "u3" are new variables.
\end{verbatim}

@deListComp@ is the TQ translation scheme.  Roughly speaking, @dsExpr@
is the TE translation scheme.  Note that we carry around the @L@ list
already desugared.  @dsListComp@ does the top TE rule mentioned above.

187 188 189 190 191
To the above, we add an additional rule to deal with parallel list
comprehensions.  The translation goes roughly as follows:
     [ e | p1 <- e11, let v1 = e12, p2 <- e13
         | q1 <- e21, let v2 = e22, q2 <- e23]
     =>
192 193 194 195 196 197
     [ e | ((x1, .., xn), (y1, ..., ym)) <-
               zip [(x1,..,xn) | p1 <- e11, let v1 = e12, p2 <- e13]
                   [(y1,..,ym) | q1 <- e21, let v2 = e22, q2 <- e23]]
where (x1, .., xn) are the variables bound in p1, v1, p2
      (y1, .., ym) are the variables bound in q1, v2, q2

198
In the translation below, the ParStmt branch translates each parallel branch
199 200 201 202 203 204 205 206
into a sub-comprehension, and desugars each independently.  The resulting lists
are fed to a zip function, we create a binding for all the variables bound in all
the comprehensions, and then we hand things off the the desugarer for bindings.
The zip function is generated here a) because it's small, and b) because then we
don't have to deal with arbitrary limits on the number of zip functions in the
prelude, nor which library the zip function came from.
The introduced tuples are Boxed, but only because I couldn't get it to work
with the Unboxed variety.
207

208
\begin{code}
209

210 211 212
deListComp :: [Stmt Id] -> CoreExpr -> DsM CoreExpr

deListComp [] _ = panic "deListComp"
213

214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
deListComp (LastStmt body _ : quals) list 
  =     -- Figure 7.4, SLPJ, p 135, rule C above
    ASSERT( null quals )
    do { core_body <- dsLExpr body
       ; return (mkConsExpr (exprType core_body) core_body list) }

	-- Non-last: must be a guard
deListComp (ExprStmt guard _ _ _ : quals) list = do  -- rule B above
    core_guard <- dsLExpr guard
    core_rest <- deListComp quals list
    return (mkIfThenElse core_guard core_rest list)

-- [e | let B, qs] = let B in [e | qs]
deListComp (LetStmt binds : quals) list = do
    core_rest <- deListComp quals list
    dsLocalBinds binds core_rest

231 232
deListComp (stmt@(TransStmt {}) : quals) list = do
    (inner_list_expr, pat) <- dsTransStmt stmt
233 234 235 236 237 238 239
    deBindComp pat inner_list_expr quals list

deListComp (BindStmt pat list1 _ _ : quals) core_list2 = do -- rule A' above
    core_list1 <- dsLExpr list1
    deBindComp pat core_list1 quals core_list2

deListComp (ParStmt stmtss_w_bndrs _ _ _ : quals) list
240 241
  = do { exps_and_qual_tys <- mapM dsInnerListComp stmtss_w_bndrs
       ; let (exps, qual_tys) = unzip exps_and_qual_tys
242
    
243
       ; (zip_fn, zip_rhs) <- mkZipBind qual_tys
244 245

	-- Deal with [e | pat <- zip l1 .. ln] in example above
246 247
       ; deBindComp pat (Let (Rec [(zip_fn, zip_rhs)]) (mkApps (Var zip_fn) exps)) 
		    quals list }
248 249 250 251
  where 
	bndrs_s = map snd stmtss_w_bndrs

	-- pat is the pattern ((x1,..,xn), (y1,..,ym)) in the example above
252
	pat  = mkBigLHsPatTup pats
253
	pats = map mkBigLHsVarPatTup bndrs_s
254 255
\end{code}

256

257
\begin{code}
258 259 260 261 262
deBindComp :: OutPat Id
           -> CoreExpr
           -> [Stmt Id]
           -> CoreExpr
           -> DsM (Expr Id)
263
deBindComp pat core_list1 quals core_list2 = do
264 265
    let
        u3_ty@u1_ty = exprType core_list1	-- two names, same thing
266

267 268
        -- u1_ty is a [alpha] type, and u2_ty = alpha
        u2_ty = hsLPatType pat
269

270 271 272 273
        res_ty = exprType core_list2
        h_ty   = u1_ty `mkFunTy` res_ty
        
    [h, u1, u2, u3] <- newSysLocalsDs [h_ty, u1_ty, u2_ty, u3_ty]
274

275
    -- the "fail" value ...
276
    let
277 278 279
        core_fail   = App (Var h) (Var u3)
        letrec_body = App (Var h) core_list1
        
280
    rest_expr <- deListComp quals core_fail
281 282
    core_match <- matchSimply (Var u2) (StmtCtxt ListComp) pat rest_expr core_fail	
    
283
    let
284
        rhs = Lam u1 $
285 286 287
	      Case (Var u1) u1 res_ty
		   [(DataAlt nilDataCon,  [], 	    core_list2),
		    (DataAlt consDataCon, [u2, u3], core_match)]
288
			-- Increasing order of tag
289 290
            
    return (Let (Rec [(h, rhs)]) letrec_body)
291 292
\end{code}

293 294 295 296 297 298 299
%************************************************************************
%*									*
\subsection[DsListComp-foldr-build]{Foldr/Build desugaring of list comprehensions}
%*									*
%************************************************************************

@dfListComp@ are the rules used with foldr/build turned on:
300

301
\begin{verbatim}
302 303 304 305 306 307 308 309
TE[ e | ]            c n = c e n
TE[ e | b , q ]      c n = if b then TE[ e | q ] c n else n
TE[ e | p <- l , q ] c n = let 
				f = \ x b -> case x of
						  p -> TE[ e | q ] c b
						  _ -> b
			   in
			   foldr f n l
310
\end{verbatim}
311

312
\begin{code}
313 314 315
dfListComp :: Id -> Id -- 'c' and 'n'
        -> [Stmt Id]   -- the rest of the qual's
        -> DsM CoreExpr
316

317 318 319 320 321 322
dfListComp _ _ [] = panic "dfListComp"

dfListComp c_id n_id (LastStmt body _ : quals) 
  = ASSERT( null quals )
    do { core_body <- dsLExpr body
       ; return (mkApps (Var c_id) [core_body, Var n_id]) }
323

324
	-- Non-last: must be a guard
325
dfListComp c_id n_id (ExprStmt guard _ _ _  : quals) = do
326
    core_guard <- dsLExpr guard
327
    core_rest <- dfListComp c_id n_id quals
328 329
    return (mkIfThenElse core_guard core_rest (Var n_id))

330
dfListComp c_id n_id (LetStmt binds : quals) = do
331
    -- new in 1.3, local bindings
332
    core_rest <- dfListComp c_id n_id quals
333
    dsLocalBinds binds core_rest
334

335 336
dfListComp c_id n_id (stmt@(TransStmt {}) : quals) = do
    (inner_list_expr, pat) <- dsTransStmt stmt
337
    -- Anyway, we bind the newly grouped list via the generic binding function
338
    dfBindComp c_id n_id (pat, inner_list_expr) quals 
339
    
340
dfListComp c_id n_id (BindStmt pat list1 _ _ : quals) = do
341
    -- evaluate the two lists
342 343 344
    core_list1 <- dsLExpr list1
    
    -- Do the rest of the work in the generic binding builder
345
    dfBindComp c_id n_id (pat, core_list1) quals
346 347 348 349 350
               
dfBindComp :: Id -> Id	        -- 'c' and 'n'
       -> (LPat Id, CoreExpr)
	   -> [Stmt Id] 	        -- the rest of the qual's
	   -> DsM CoreExpr
351
dfBindComp c_id n_id (pat, core_list1) quals = do
352
    -- find the required type
353
    let x_ty   = hsLPatType pat
354
        b_ty   = idType n_id
355 356

    -- create some new local id's
357
    [b, x] <- newSysLocalsDs [b_ty, x_ty]
358 359

    -- build rest of the comprehesion
360
    core_rest <- dfListComp c_id b quals
361 362

    -- build the pattern match
363 364
    core_expr <- matchSimply (Var x) (StmtCtxt ListComp)
		pat core_rest (Var b)
365 366

    -- now build the outermost foldr, and return
367
    mkFoldrExpr x_ty b_ty (mkLams [x, b] core_expr) (Var n_id) core_list1
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
\end{code}

%************************************************************************
%*									*
\subsection[DsFunGeneration]{Generation of zip/unzip functions for use in desugaring}
%*									*
%************************************************************************

\begin{code}

mkZipBind :: [Type] -> DsM (Id, CoreExpr)
-- mkZipBind [t1, t2] 
-- = (zip, \as1:[t1] as2:[t2] 
--	   -> case as1 of 
--		[] -> []
--		(a1:as'1) -> case as2 of
--				[] -> []
--				(a2:as'2) -> (a1, a2) : zip as'1 as'2)]

mkZipBind elt_tys = do
388 389 390
    ass  <- mapM newSysLocalDs  elt_list_tys
    as'  <- mapM newSysLocalDs  elt_tys
    as's <- mapM newSysLocalDs  elt_list_tys
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
    
    zip_fn <- newSysLocalDs zip_fn_ty
    
    let inner_rhs = mkConsExpr elt_tuple_ty 
			(mkBigCoreVarTup as')
			(mkVarApps (Var zip_fn) as's)
        zip_body  = foldr mk_case inner_rhs (zip3 ass as' as's)
    
    return (zip_fn, mkLams ass zip_body)
  where
    elt_list_tys      = map mkListTy elt_tys
    elt_tuple_ty      = mkBigCoreTupTy elt_tys
    elt_tuple_list_ty = mkListTy elt_tuple_ty
    
    zip_fn_ty         = mkFunTys elt_list_tys elt_tuple_list_ty

    mk_case (as, a', as') rest
	  = Case (Var as) as elt_tuple_list_ty
		  [(DataAlt nilDataCon,  [],        mkNilExpr elt_tuple_ty),
		   (DataAlt consDataCon, [a', as'], rest)]
			-- Increasing order of tag
            
            
414
mkUnzipBind :: TransForm -> [Type] -> DsM (Maybe (Id, CoreExpr))
415 416 417 418 419 420 421 422 423
-- mkUnzipBind [t1, t2] 
-- = (unzip, \ys :: [(t1, t2)] -> foldr (\ax :: (t1, t2) axs :: ([t1], [t2])
--     -> case ax of
--      (x1, x2) -> case axs of
--                (xs1, xs2) -> (x1 : xs1, x2 : xs2))
--      ([], [])
--      ys)
-- 
-- We use foldr here in all cases, even if rules are turned off, because we may as well!
424 425 426 427 428 429 430 431
mkUnzipBind ThenForm _
 = return Nothing    -- No unzipping for ThenForm
mkUnzipBind _ elt_tys 
  = do { ax  <- newSysLocalDs elt_tuple_ty
       ; axs <- newSysLocalDs elt_list_tuple_ty
       ; ys  <- newSysLocalDs elt_tuple_list_ty
       ; xs  <- mapM newSysLocalDs elt_tys
       ; xss <- mapM newSysLocalDs elt_list_tys
432
    
433 434 435 436 437 438 439 440 441 442 443 444 445 446
       ; unzip_fn <- newSysLocalDs unzip_fn_ty

       ; [us1, us2] <- sequence [newUniqueSupply, newUniqueSupply]

       ; let nil_tuple = mkBigCoreTup (map mkNilExpr elt_tys)
    	     concat_expressions = map mkConcatExpression (zip3 elt_tys (map Var xs) (map Var xss))
    	     tupled_concat_expression = mkBigCoreTup concat_expressions
    	    
    	     folder_body_inner_case = mkTupleCase us1 xss tupled_concat_expression axs (Var axs)
    	     folder_body_outer_case = mkTupleCase us2 xs folder_body_inner_case ax (Var ax)
    	     folder_body = mkLams [ax, axs] folder_body_outer_case
    	    
       ; unzip_body <- mkFoldrExpr elt_tuple_ty elt_list_tuple_ty folder_body nil_tuple (Var ys)
       ; return (Just (unzip_fn, mkLams [ys] unzip_body)) }
447 448 449 450 451 452 453 454 455
  where
    elt_tuple_ty       = mkBigCoreTupTy elt_tys
    elt_tuple_list_ty  = mkListTy elt_tuple_ty
    elt_list_tys       = map mkListTy elt_tys
    elt_list_tuple_ty  = mkBigCoreTupTy elt_list_tys
    
    unzip_fn_ty        = elt_tuple_list_ty `mkFunTy` elt_list_tuple_ty
            
    mkConcatExpression (list_element_ty, head, tail) = mkConsExpr list_element_ty head tail
456 457
\end{code}

chak's avatar
chak committed
458 459 460 461 462 463 464 465 466 467 468 469
%************************************************************************
%*									*
\subsection[DsPArrComp]{Desugaring of array comprehensions}
%*									*
%************************************************************************

\begin{code}

-- entry point for desugaring a parallel array comprehension
--
--   [:e | qss:] = <<[:e | qss:]>> () [:():]
--
470 471
dsPArrComp :: [Stmt Id] 
            -> DsM CoreExpr
472 473 474

-- Special case for parallel comprehension
dsPArrComp (ParStmt qss _ _ _ : quals) = dePArrParComp qss quals
475 476 477 478 479 480 481 482 483 484

-- Special case for simple generators:
--
--  <<[:e' | p <- e, qs:]>> = <<[: e' | qs :]>> p e
--
-- if matching again p cannot fail, or else
--
--  <<[:e' | p <- e, qs:]>> = 
--    <<[:e' | qs:]>> p (filterP (\x -> case x of {p -> True; _ -> False}) e)
--
485
dsPArrComp (BindStmt p e _ _ : qs) = do
486
    filterP <- dsLookupDPHId filterPName
487 488 489 490 491 492 493 494
    ce <- dsLExpr e
    let ety'ce  = parrElemType ce
        false   = Var falseDataConId
        true    = Var trueDataConId
    v <- newSysLocalDs ety'ce
    pred <- matchSimply (Var v) (StmtCtxt PArrComp) p true false
    let gen | isIrrefutableHsPat p = ce
            | otherwise            = mkApps (Var filterP) [Type ety'ce, mkLams [v] pred, ce]
495
    dePArrComp qs p gen
496

497
dsPArrComp qs = do -- no ParStmt in `qs'
498
    sglP <- dsLookupDPHId singletonPName
499
    let unitArray = mkApps (Var sglP) [Type unitTy, mkCoreTup []]
500
    dePArrComp qs (noLoc $ WildPat unitTy) unitArray
501

502 503


chak's avatar
chak committed
504 505
-- the work horse
--
506 507 508
dePArrComp :: [Stmt Id] 
	   -> LPat Id		-- the current generator pattern
	   -> CoreExpr		-- the current generator expression
chak's avatar
chak committed
509
	   -> DsM CoreExpr
510 511 512

dePArrComp [] _ _ = panic "dePArrComp"

chak's avatar
chak committed
513 514 515
--
--  <<[:e' | :]>> pa ea = mapP (\pa -> e') ea
--
516 517 518 519 520 521
dePArrComp (LastStmt e' _ : quals) pa cea
  = ASSERT( null quals )
    do { mapP <- dsLookupDPHId mapPName
       ; let ty = parrElemType cea
       ; (clam, ty'e') <- deLambda ty pa e'
       ; return $ mkApps (Var mapP) [Type ty, Type ty'e', clam, cea] }
chak's avatar
chak committed
522 523 524
--
--  <<[:e' | b, qs:]>> pa ea = <<[:e' | qs:]>> pa (filterP (\pa -> b) ea)
--
525
dePArrComp (ExprStmt b _ _ _ : qs) pa cea = do
526
    filterP <- dsLookupDPHId filterPName
527 528
    let ty = parrElemType cea
    (clam,_) <- deLambda ty pa b
529
    dePArrComp qs pa (mkApps (Var filterP) [Type ty, clam, cea])
530 531 532 533 534 535 536 537

--
--  <<[:e' | p <- e, qs:]>> pa ea =
--    let ef = \pa -> e
--    in
--    <<[:e' | qs:]>> (pa, p) (crossMap ea ef)
--
-- if matching again p cannot fail, or else
chak's avatar
chak committed
538 539
--
--  <<[:e' | p <- e, qs:]>> pa ea = 
540
--    let ef = \pa -> filterP (\x -> case x of {p -> True; _ -> False}) e
chak's avatar
chak committed
541
--    in
542
--    <<[:e' | qs:]>> (pa, p) (crossMapP ea ef)
chak's avatar
chak committed
543
--
544
dePArrComp (BindStmt p e _ _ : qs) pa cea = do
545 546
    filterP <- dsLookupDPHId filterPName
    crossMapP <- dsLookupDPHId crossMapPName
547 548 549 550 551 552 553 554 555 556 557 558 559
    ce <- dsLExpr e
    let ety'cea = parrElemType cea
        ety'ce  = parrElemType ce
        false   = Var falseDataConId
        true    = Var trueDataConId
    v <- newSysLocalDs ety'ce
    pred <- matchSimply (Var v) (StmtCtxt PArrComp) p true false
    let cef | isIrrefutableHsPat p = ce
            | otherwise            = mkApps (Var filterP) [Type ety'ce, mkLams [v] pred, ce]
    (clam, _) <- mkLambda ety'cea pa cef
    let ety'cef = ety'ce		    -- filter doesn't change the element type
        pa'     = mkLHsPatTup [pa, p]

560
    dePArrComp qs pa' (mkApps (Var crossMapP) 
561
                                 [Type ety'cea, Type ety'cef, cea, clam])
chak's avatar
chak committed
562 563 564
--
--  <<[:e' | let ds, qs:]>> pa ea = 
--    <<[:e' | qs:]>> (pa, (x_1, ..., x_n)) 
565
--		      (mapP (\v@pa -> let ds in (v, (x_1, ..., x_n))) ea)
chak's avatar
chak committed
566 567 568
--  where
--    {x_1, ..., x_n} = DV (ds)		-- Defined Variables
--
569
dePArrComp (LetStmt ds : qs) pa cea = do
570
    mapP <- dsLookupDPHId mapPName
571
    let xs     = collectLocalBinders ds
572 573 574 575
        ty'cea = parrElemType cea
    v <- newSysLocalDs ty'cea
    clet <- dsLocalBinds ds (mkCoreTup (map Var xs))
    let'v <- newSysLocalDs (exprType clet)
576
    let projBody = mkCoreLet (NonRec let'v clet) $ 
577 578
                   mkCoreTup [Var v, Var let'v]
        errTy    = exprType projBody
579
        errMsg   = ptext (sLit "DsListComp.dePArrComp: internal error!")
580 581 582 583
    cerr <- mkErrorAppDs pAT_ERROR_ID errTy errMsg
    ccase <- matchSimply (Var v) (StmtCtxt PArrComp) pa projBody cerr
    let pa'    = mkLHsPatTup [pa, mkLHsPatTup (map nlVarPat xs)]
        proj   = mkLams [v] ccase
584
    dePArrComp qs pa' (mkApps (Var mapP) 
585
                                   [Type ty'cea, Type errTy, proj, cea])
chak's avatar
chak committed
586
--
587 588 589 590
-- The parser guarantees that parallel comprehensions can only appear as
-- singeltons qualifier lists, which we already special case in the caller.
-- So, encountering one here is a bug.
--
591
dePArrComp (ParStmt _ _ _ _ : _) _ _ = 
592 593
  panic "DsListComp.dePArrComp: malformed comprehension AST"

chak's avatar
chak committed
594 595 596 597 598 599
--  <<[:e' | qs | qss:]>> pa ea = 
--    <<[:e' | qss:]>> (pa, (x_1, ..., x_n)) 
--		       (zipP ea <<[:(x_1, ..., x_n) | qs:]>>)
--    where
--      {x_1, ..., x_n} = DV (qs)
--
600 601
dePArrParComp :: [([LStmt Id], [Id])] -> [Stmt Id] -> DsM CoreExpr
dePArrParComp qss quals = do
602
    (pQss, ceQss) <- deParStmt qss
603
    dePArrComp quals pQss ceQss
chak's avatar
chak committed
604 605
  where
    deParStmt []             =
606
      -- empty parallel statement lists have no source representation
chak's avatar
chak committed
607
      panic "DsListComp.dePArrComp: Empty parallel list comprehension"
608
    deParStmt ((qs, xs):qss) = do        -- first statement
609
      let res_expr = mkLHsVarTuple xs
610
      cqs <- dsPArrComp (map unLoc qs ++ [mkLastStmt res_expr])
611
      parStmts qss (mkLHsVarPatTup xs) cqs
chak's avatar
chak committed
612 613
    ---
    parStmts []             pa cea = return (pa, cea)
614
    parStmts ((qs, xs):qss) pa cea = do  -- subsequent statements (zip'ed)
615
      zipP <- dsLookupDPHId zipPName
616
      let pa'      = mkLHsPatTup [pa, mkLHsVarPatTup xs]
617
          ty'cea   = parrElemType cea
618
          res_expr = mkLHsVarTuple xs
619
      cqs <- dsPArrComp (map unLoc qs ++ [mkLastStmt res_expr])
chak's avatar
chak committed
620
      let ty'cqs = parrElemType cqs
621
          cea'   = mkApps (Var zipP) [Type ty'cea, Type ty'cqs, cea, cqs]
chak's avatar
chak committed
622
      parStmts qss pa' cea'
chak's avatar
chak committed
623 624 625

-- generate Core corresponding to `\p -> e'
--
626 627 628 629 630
deLambda :: Type			-- type of the argument
	  -> LPat Id			-- argument pattern
	  -> LHsExpr Id			-- body
	  -> DsM (CoreExpr, Type)
deLambda ty p e =
631
    mkLambda ty p =<< dsLExpr e
632 633 634 635 636 637 638

-- generate Core for a lambda pattern match, where the body is already in Core
--
mkLambda :: Type			-- type of the argument
	 -> LPat Id			-- argument pattern
	 -> CoreExpr			-- desugared body
	 -> DsM (CoreExpr, Type)
639 640
mkLambda ty p ce = do
    v <- newSysLocalDs ty
641
    let errMsg = ptext (sLit "DsListComp.deLambda: internal error!")
642 643 644 645
        ce'ty  = exprType ce
    cerr <- mkErrorAppDs pAT_ERROR_ID ce'ty errMsg
    res <- matchSimply (Var v) (StmtCtxt PArrComp) p ce cerr
    return (mkLams [v] res, ce'ty)
chak's avatar
chak committed
646 647 648 649 650 651 652

-- obtain the element type of the parallel array produced by the given Core
-- expression
--
parrElemType   :: CoreExpr -> Type
parrElemType e  = 
  case splitTyConApp_maybe (exprType e) of
653
    Just (tycon, [ty]) | tycon == parrTyCon -> ty
chak's avatar
chak committed
654 655 656
    _							  -> panic
      "DsListComp.parrElemType: not a parallel array type"
\end{code}
657 658 659 660 661

Translation for monad comprehensions

\begin{code}
-- Entry point for monad comprehension desugaring
662 663
dsMonadComp :: [LStmt Id] -> DsM CoreExpr
dsMonadComp stmts = dsMcStmts stmts
664

665 666 667
dsMcStmts :: [LStmt Id] -> DsM CoreExpr
dsMcStmts []                    = panic "dsMcStmts"
dsMcStmts (L loc stmt : lstmts) = putSrcSpanDs loc (dsMcStmt stmt lstmts)
668

669
---------------
670 671 672 673 674 675 676
dsMcStmt :: Stmt Id -> [LStmt Id] -> DsM CoreExpr

dsMcStmt (LastStmt body ret_op) stmts
  = ASSERT( null stmts )
    do { body' <- dsLExpr body
       ; ret_op' <- dsExpr ret_op
       ; return (App ret_op' body') }
677 678

--   [ .. | let binds, stmts ]
679 680
dsMcStmt (LetStmt binds) stmts 
  = do { rest <- dsMcStmts stmts
681 682 683
       ; dsLocalBinds binds rest }

--   [ .. | a <- m, stmts ]
684 685 686
dsMcStmt (BindStmt pat rhs bind_op fail_op) stmts
  = do { rhs' <- dsLExpr rhs
       ; dsMcBindStmt pat rhs' bind_op fail_op stmts }
687 688 689 690 691

-- Apply `guard` to the `exp` expression
--
--   [ .. | exp, stmts ]
--
692
dsMcStmt (ExprStmt exp then_exp guard_exp _) stmts 
693 694 695
  = do { exp'       <- dsLExpr exp
       ; guard_exp' <- dsExpr guard_exp
       ; then_exp'  <- dsExpr then_exp
696
       ; rest       <- dsMcStmts stmts
697 698 699 700 701
       ; return $ mkApps then_exp' [ mkApps guard_exp' [exp']
                                   , rest ] }

-- Group statements desugar like this:
--
702 703
--   [| (q, then group by e using f); rest |]
--   --->  f {qt} (\qv -> e) [| q; return qv |] >>= \ n_tup -> 
704
--         case unzip n_tup of qv' -> [| rest |]
705 706 707 708 709 710 711 712
--
-- where   variables (v1:t1, ..., vk:tk) are bound by q
--         qv = (v1, ..., vk)
--         qt = (t1, ..., tk)
--         (>>=) :: m2 a -> (a -> m3 b) -> m3 b
--         f :: forall a. (a -> t) -> m1 a -> m2 (n a)
--         n_tup :: n qt
--         unzip :: n qt -> (n t1, ..., n tk)    (needs Functor n)
713

714 715 716 717
dsMcStmt (TransStmt { trS_stmts = stmts, trS_bndrs = bndrs
                    , trS_by = by, trS_using = using
                    , trS_ret = return_op, trS_bind = bind_op
                    , trS_fmap = fmap_op, trS_form = form }) stmts_rest
718 719
  = do { let (from_bndrs, to_bndrs) = unzip bndrs
             from_bndr_tys          = map idType from_bndrs	-- Types ty
720 721

       -- Desugar an inner comprehension which outputs a list of tuples of the "from" binders
722
       ; expr <- dsInnerMonadComp stmts from_bndrs return_op
723 724 725

       -- Work out what arguments should be supplied to that expression: i.e. is an extraction
       -- function required? If so, create that desugared function and add to arguments
726
       ; usingExpr' <- dsLExpr using
727 728 729
       ; usingArgs <- case by of
                        Nothing   -> return [expr]
                        Just by_e -> do { by_e' <- dsLExpr by_e
730
                                        ; lam <- matchTuple from_bndrs by_e'
731
                                        ; return [lam, expr] }
732 733

       -- Generate the expressions to build the grouped list
734 735 736
       -- Build a pattern that ensures the consumer binds into the NEW binders, 
       -- which hold monads rather than single values
       ; bind_op' <- dsExpr bind_op
737
       ; let bind_ty  = exprType bind_op'    -- m2 (n (a,b,c)) -> (n (a,b,c) -> r1) -> r2
738 739 740 741 742 743
             n_tup_ty = funArgTy $ funArgTy $ funResultTy bind_ty   -- n (a,b,c)
             tup_n_ty = mkBigCoreVarTupTy to_bndrs

       ; body       <- dsMcStmts stmts_rest
       ; n_tup_var  <- newSysLocalDs n_tup_ty
       ; tup_n_var  <- newSysLocalDs tup_n_ty
744
       ; tup_n_expr <- mkMcUnzipM form fmap_op n_tup_var from_bndr_tys
745 746 747
       ; us         <- newUniqueSupply
       ; let rhs'  = mkApps usingExpr' usingArgs
             body' = mkTupleCase us to_bndrs body tup_n_var tup_n_expr
748 749
		   
       ; return (mkApps bind_op' [rhs', Lam n_tup_var body']) }
750 751 752 753 754

-- Parallel statements. Use `Control.Monad.Zip.mzip` to zip parallel
-- statements, for example:
--
--   [ body | qs1 | qs2 | qs3 ]
755 756
--     ->  [ body | (bndrs1, (bndrs2, bndrs3)) 
--                     <- [bndrs1 | qs1] `mzip` ([bndrs2 | qs2] `mzip` [bndrs3 | qs3]) ]
757
--
758 759 760
-- where `mzip` has type
--   mzip :: forall a b. m a -> m b -> m (a,b)
-- NB: we need a polymorphic mzip because we call it several times
761

762
dsMcStmt (ParStmt pairs mzip_op bind_op return_op) stmts_rest
763 764
 = do  { exps_w_tys  <- mapM ds_inner pairs   -- Pairs (exp :: m ty, ty)
       ; mzip_op'    <- dsExpr mzip_op
765 766

       ; let -- The pattern variables
767
             pats = map (mkBigLHsVarPatTup . snd) pairs
768 769
             -- Pattern with tuples of variables
             -- [v1,v2,v3]  =>  (v1, (v2, v3))
770 771 772 773 774
             pat = foldr1 (\p1 p2 -> mkLHsPatTup [p1, p2]) pats
	     (rhs, _) = foldr1 (\(e1,t1) (e2,t2) -> 
                                 (mkApps mzip_op' [Type t1, Type t2, e1, e2],
                                  mkBoxedTupleTy [t1,t2])) 
                               exps_w_tys
775

776 777
       ; dsMcBindStmt pat rhs bind_op noSyntaxExpr stmts_rest }
  where
778 779
    ds_inner (stmts, bndrs) = do { exp <- dsInnerMonadComp stmts bndrs mono_ret_op
                                 ; return (exp, tup_ty) }
780
       where 
781 782
         mono_ret_op = HsWrap (WpTyApp tup_ty) return_op
         tup_ty      = mkBigCoreVarTupTy bndrs
783

784 785 786 787 788 789 790 791 792
dsMcStmt stmt _ = pprPanic "dsMcStmt: unexpected stmt" (ppr stmt)


matchTuple :: [Id] -> CoreExpr -> DsM CoreExpr
-- (matchTuple [a,b,c] body)
--       returns the Core term
--  \x. case x of (a,b,c) -> body 
matchTuple ids body
  = do { us <- newUniqueSupply
793
       ; tup_id <- newSysLocalDs (mkBigCoreVarTupTy ids)
794
       ; return (Lam tup_id $ mkTupleCase us ids body tup_id (Var tup_id)) }
795 796 797 798 799 800 801 802 803

-- general `rhs' >>= \pat -> stmts` desugaring where `rhs'` is already a
-- desugared `CoreExpr`
dsMcBindStmt :: LPat Id
             -> CoreExpr        -- ^ the desugared rhs of the bind statement
             -> SyntaxExpr Id
             -> SyntaxExpr Id
             -> [LStmt Id]
             -> DsM CoreExpr
804 805
dsMcBindStmt pat rhs' bind_op fail_op stmts
  = do  { body     <- dsMcStmts stmts 
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
        ; bind_op' <- dsExpr bind_op
        ; var      <- selectSimpleMatchVarL pat
        ; let bind_ty = exprType bind_op' 	-- rhs -> (pat -> res1) -> res2
              res1_ty = funResultTy (funArgTy (funResultTy bind_ty))
        ; match <- matchSinglePat (Var var) (StmtCtxt DoExpr) pat
                                  res1_ty (cantFailMatchResult body)
        ; match_code <- handle_failure pat match fail_op
        ; return (mkApps bind_op' [rhs', Lam var match_code]) }

  where
    -- In a monad comprehension expression, pattern-match failure just calls
    -- the monadic `fail` rather than throwing an exception
    handle_failure pat match fail_op
      | matchCanFail match
        = do { fail_op' <- dsExpr fail_op
             ; fail_msg <- mkStringExpr (mk_fail_msg pat)
             ; extractMatchResult match (App fail_op' fail_msg) }
      | otherwise
        = extractMatchResult match (error "It can't fail") 

    mk_fail_msg :: Located e -> String
    mk_fail_msg pat = "Pattern match failure in monad comprehension at " ++ 
                      showSDoc (ppr (getLoc pat))

-- Desugar nested monad comprehensions, for example in `then..` constructs
831 832 833 834 835 836
--    dsInnerMonadComp quals [a,b,c] ret_op
-- returns the desugaring of 
--       [ (a,b,c) | quals ]

dsInnerMonadComp :: [LStmt Id]
                 -> [Id]	-- Return a tuple of these variables
837
                 -> HsExpr Id	-- The monomorphic "return" operator
838 839
                 -> DsM CoreExpr
dsInnerMonadComp stmts bndrs ret_op
840
  = dsMcStmts (stmts ++ [noLoc (LastStmt (mkBigLHsVarTup bndrs) ret_op)])
841 842 843 844 845 846 847 848

-- The `unzip` function for `GroupStmt` in a monad comprehensions
--
--   unzip :: m (a,b,..) -> (m a,m b,..)
--   unzip m_tuple = ( liftM selN1 m_tuple
--                   , liftM selN2 m_tuple
--                   , .. )
--
849 850 851 852
--   mkMcUnzipM fmap ys [t1, t2]
--     = ( fmap (selN1 :: (t1, t2) -> t1) ys
--       , fmap (selN2 :: (t1, t2) -> t2) ys )

853 854
mkMcUnzipM :: TransForm
           -> SyntaxExpr TcId	-- fmap
855 856 857
	   -> Id		-- Of type n (a,b,c)
	   -> [Type]		-- [a,b,c]
	   -> DsM CoreExpr	-- Of type (n a, n b, n c)
858 859 860 861 862 863 864
mkMcUnzipM ThenForm _ ys _ 	
  = return (Var ys) -- No unzipping to do

mkMcUnzipM _ fmap_op ys elt_tys
  = do { fmap_op' <- dsExpr fmap_op
       ; xs       <- mapM newSysLocalDs elt_tys
       ; tup_xs   <- newSysLocalDs (mkBigCoreTupTy elt_tys)
865 866

       ; let arg_ty = idType ys
867
             mk_elt i = mkApps fmap_op'  -- fmap :: forall a b. (a -> b) -> n a -> n b
868 869 870 871 872
                           [ Type arg_ty, Type (elt_tys !! i)
                           , mk_sel i, Var ys]

             mk_sel n = Lam tup_xs $ 
                        mkTupleSelector xs (xs !! n) tup_xs (Var tup_xs)
873

874
       ; return (mkBigCoreTup (map mk_elt [0..length elt_tys - 1])) }
875
\end{code}