StgMiscClosures.hc 37.4 KB
Newer Older
1
/* -----------------------------------------------------------------------------
2
 * $Id: StgMiscClosures.hc,v 1.66 2001/03/23 16:36:21 simonmar Exp $
3
 *
4
 * (c) The GHC Team, 1998-2000
5 6 7 8 9
 *
 * Entry code for various built-in closure types.
 *
 * ---------------------------------------------------------------------------*/

10
#include "Stg.h"
11 12
#include "Rts.h"
#include "RtsUtils.h"
13
#include "RtsFlags.h"
14 15
#include "StgMiscClosures.h"
#include "HeapStackCheck.h"   /* for stg_gen_yield */
16 17
#include "Storage.h"
#include "StoragePriv.h"
18
#include "Profiling.h"
19
#include "Prelude.h"
20
#include "Schedule.h"
21
#include "SMP.h"
22 23 24 25
#if defined(GRAN) || defined(PAR)
# include "GranSimRts.h"      /* for DumpRawGranEvent */
# include "StgRun.h"	/* for StgReturn and register saving */
#endif
26 27 28 29 30

#ifdef HAVE_STDIO_H
#include <stdio.h>
#endif

rrt's avatar
rrt committed
31
/* ToDo: make the printing of panics more win32-friendly, i.e.,
sof's avatar
sof committed
32 33
 *       pop up some lovely message boxes (as well).
 */
34
#define DUMP_ERRMSG(msg) STGCALL2(fprintf,stderr,msg)
sof's avatar
sof committed
35

36 37 38 39 40
/*
  Template for the entry code of non-enterable closures.
*/

#define NON_ENTERABLE_ENTRY_CODE(type)					\
41
STGFUN(stg_##type##_entry)							\
42 43 44
{									\
  FB_									\
    DUMP_ERRMSG(#type " object entered!\n");                            \
45
    STGCALL1(shutdownHaskellAndExit, EXIT_FAILURE);			\
46
    return NULL;							\
47 48 49
  FE_									\
}

50 51

/* -----------------------------------------------------------------------------
52
   Support for the bytecode interpreter.
53 54
   -------------------------------------------------------------------------- */

55 56
/* 9 bits of return code for constructors created by the interpreter. */
FN_(stg_interp_constr_entry) 
57 58 59
{ 
  /* R1 points at the constructor */
  FB_ 
60
    /* STGCALL2(fprintf,stderr,"stg_interp_constr_entry (direct return)!\n"); */
61 62 63 64 65 66
    /* Pointless, since SET_TAG doesn't do anything */
    SET_TAG( GET_TAG(GET_INFO(R1.cl))); 
    JMP_(ENTRY_CODE((P_)(*Sp))); 
  FE_ 
}

67 68 69 70 71 72 73 74
FN_(stg_interp_constr1_entry) { FB_ JMP_(RET_VEC((P_)(*Sp),0)); FE_ }
FN_(stg_interp_constr2_entry) { FB_ JMP_(RET_VEC((P_)(*Sp),1)); FE_ }
FN_(stg_interp_constr3_entry) { FB_ JMP_(RET_VEC((P_)(*Sp),2)); FE_ }
FN_(stg_interp_constr4_entry) { FB_ JMP_(RET_VEC((P_)(*Sp),3)); FE_ }
FN_(stg_interp_constr5_entry) { FB_ JMP_(RET_VEC((P_)(*Sp),4)); FE_ }
FN_(stg_interp_constr6_entry) { FB_ JMP_(RET_VEC((P_)(*Sp),5)); FE_ }
FN_(stg_interp_constr7_entry) { FB_ JMP_(RET_VEC((P_)(*Sp),6)); FE_ }
FN_(stg_interp_constr8_entry) { FB_ JMP_(RET_VEC((P_)(*Sp),7)); FE_ }
75
 
76 77 78
/* Some info tables to be used when compiled code returns a value to
   the interpreter, i.e. the interpreter pushes one of these onto the
   stack before entering a value.  What the code does is to
79
   impedance-match the compiled return convention (in R1p/R1n/F1/D1 etc) to
80 81
   the interpreter's convention (returned value is on top of stack),
   and then cause the scheduler to enter the interpreter.
82

83
   On entry, the stack (growing down) looks like this:
84

85 86 87 88
      ptr to BCO holding return continuation
      ptr to one of these info tables.
 
   The info table code, both direct and vectored, must:
89
      * push R1/F1/D1 on the stack, and its tag if necessary
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
      * push the BCO (so it's now on the stack twice)
      * Yield, ie, go to the scheduler.

   Scheduler examines the t.o.s, discovers it is a BCO, and proceeds
   directly to the bytecode interpreter.  That pops the top element
   (the BCO, containing the return continuation), and interprets it.
   Net result: return continuation gets interpreted, with the
   following stack:

      ptr to this BCO
      ptr to the info table just jumped thru
      return value

   which is just what we want -- the "standard" return layout for the
   interpreter.  Hurrah!

   Don't ask me how unboxed tuple returns are supposed to work.  We
   haven't got a good story about that yet.
*/
109

110 111 112
/* When the returned value is in R1 and it is a pointer, so doesn't
   need tagging ... */
#define STG_CtoI_RET_R1p_Template(label) 	\
113 114 115 116 117 118 119 120 121 122 123 124
   IFN_(label)			        \
   {                                    \
      StgPtr bco;                       \
      FB_				\
      bco = ((StgPtr*)Sp)[1];           \
      Sp -= 1;				\
      ((StgPtr*)Sp)[0] = R1.p;		\
      Sp -= 1;				\
      ((StgPtr*)Sp)[0] = bco;		\
      JMP_(stg_yield_to_interpreter);   \
      FE_                               \
   }
125

126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
STG_CtoI_RET_R1p_Template(stg_ctoi_ret_R1p_entry);
STG_CtoI_RET_R1p_Template(stg_ctoi_ret_R1p_0_entry);
STG_CtoI_RET_R1p_Template(stg_ctoi_ret_R1p_1_entry);
STG_CtoI_RET_R1p_Template(stg_ctoi_ret_R1p_2_entry);
STG_CtoI_RET_R1p_Template(stg_ctoi_ret_R1p_3_entry);
STG_CtoI_RET_R1p_Template(stg_ctoi_ret_R1p_4_entry);
STG_CtoI_RET_R1p_Template(stg_ctoi_ret_R1p_5_entry);
STG_CtoI_RET_R1p_Template(stg_ctoi_ret_R1p_6_entry);
STG_CtoI_RET_R1p_Template(stg_ctoi_ret_R1p_7_entry);

VEC_POLY_INFO_TABLE(stg_ctoi_ret_R1p,0, NULL/*srt*/, 0/*srt_off*/, 0/*srt_len*/, RET_BCO,, EF_);



/* When the returned value is in R1 and it isn't a pointer. */
#define STG_CtoI_RET_R1n_Template(label) 	\
   IFN_(label)			        \
   {                                    \
      StgPtr bco;                       \
      FB_				\
      bco = ((StgPtr*)Sp)[1];           \
      Sp -= 1;				\
      ((StgPtr*)Sp)[0] = (StgPtr)R1.i;	\
      Sp -= 1;                          \
      ((StgPtr*)Sp)[0] = (StgPtr)1; /* tag */   \
      Sp -= 1;				\
      ((StgPtr*)Sp)[0] = bco;		\
      JMP_(stg_yield_to_interpreter);   \
      FE_                               \
   }

STG_CtoI_RET_R1n_Template(stg_ctoi_ret_R1n_entry);
STG_CtoI_RET_R1n_Template(stg_ctoi_ret_R1n_0_entry);
STG_CtoI_RET_R1n_Template(stg_ctoi_ret_R1n_1_entry);
STG_CtoI_RET_R1n_Template(stg_ctoi_ret_R1n_2_entry);
STG_CtoI_RET_R1n_Template(stg_ctoi_ret_R1n_3_entry);
STG_CtoI_RET_R1n_Template(stg_ctoi_ret_R1n_4_entry);
STG_CtoI_RET_R1n_Template(stg_ctoi_ret_R1n_5_entry);
STG_CtoI_RET_R1n_Template(stg_ctoi_ret_R1n_6_entry);
STG_CtoI_RET_R1n_Template(stg_ctoi_ret_R1n_7_entry);

VEC_POLY_INFO_TABLE(stg_ctoi_ret_R1n,0, NULL/*srt*/, 0/*srt_off*/, 0/*srt_len*/, RET_BCO,, EF_);

169 170 171


/* When the returned value is in F1 ... */
172 173 174 175 176 177 178 179
#define STG_CtoI_RET_F1_Template(label) 	\
   IFN_(label)			        \
   {                                    \
      StgPtr bco;                       \
      FB_				\
      bco = ((StgPtr*)Sp)[1];           \
      Sp -= sizeofW(StgFloat);		\
      ASSIGN_FLT((W_*)Sp, F1);          \
180 181
      Sp -= 1;                          \
      ((StgPtr*)Sp)[0] = (StgPtr)sizeofW(StgFloat); \
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
      Sp -= 1;				\
      ((StgPtr*)Sp)[0] = bco;		\
      JMP_(stg_yield_to_interpreter);   \
      FE_                               \
   }

STG_CtoI_RET_F1_Template(stg_ctoi_ret_F1_entry);
STG_CtoI_RET_F1_Template(stg_ctoi_ret_F1_0_entry);
STG_CtoI_RET_F1_Template(stg_ctoi_ret_F1_1_entry);
STG_CtoI_RET_F1_Template(stg_ctoi_ret_F1_2_entry);
STG_CtoI_RET_F1_Template(stg_ctoi_ret_F1_3_entry);
STG_CtoI_RET_F1_Template(stg_ctoi_ret_F1_4_entry);
STG_CtoI_RET_F1_Template(stg_ctoi_ret_F1_5_entry);
STG_CtoI_RET_F1_Template(stg_ctoi_ret_F1_6_entry);
STG_CtoI_RET_F1_Template(stg_ctoi_ret_F1_7_entry);

VEC_POLY_INFO_TABLE(stg_ctoi_ret_F1,0, NULL/*srt*/, 0/*srt_off*/, 0/*srt_len*/, RET_BCO,, EF_);


201
/* When the returned value is in D1 ... */
202 203 204 205 206 207 208 209
#define STG_CtoI_RET_D1_Template(label) 	\
   IFN_(label)			        \
   {                                    \
      StgPtr bco;                       \
      FB_				\
      bco = ((StgPtr*)Sp)[1];           \
      Sp -= sizeofW(StgDouble);		\
      ASSIGN_DBL((W_*)Sp, D1);          \
210 211
      Sp -= 1;                          \
      ((StgPtr*)Sp)[0] = (StgPtr)sizeofW(StgDouble); \
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
      Sp -= 1;				\
      ((StgPtr*)Sp)[0] = bco;		\
      JMP_(stg_yield_to_interpreter);   \
      FE_                               \
   }

STG_CtoI_RET_D1_Template(stg_ctoi_ret_D1_entry);
STG_CtoI_RET_D1_Template(stg_ctoi_ret_D1_0_entry);
STG_CtoI_RET_D1_Template(stg_ctoi_ret_D1_1_entry);
STG_CtoI_RET_D1_Template(stg_ctoi_ret_D1_2_entry);
STG_CtoI_RET_D1_Template(stg_ctoi_ret_D1_3_entry);
STG_CtoI_RET_D1_Template(stg_ctoi_ret_D1_4_entry);
STG_CtoI_RET_D1_Template(stg_ctoi_ret_D1_5_entry);
STG_CtoI_RET_D1_Template(stg_ctoi_ret_D1_6_entry);
STG_CtoI_RET_D1_Template(stg_ctoi_ret_D1_7_entry);

VEC_POLY_INFO_TABLE(stg_ctoi_ret_D1,0, NULL/*srt*/, 0/*srt_off*/, 0/*srt_len*/, RET_BCO,, EF_);
229

230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258

/* When the returned value a VoidRep ... */
#define STG_CtoI_RET_V_Template(label) 	\
   IFN_(label)			        \
   {                                    \
      StgPtr bco;                       \
      FB_				\
      bco = ((StgPtr*)Sp)[1];           \
      Sp -= 1;                          \
      ((StgPtr*)Sp)[0] = 0; /* VoidRep tag */ \
      Sp -= 1;				\
      ((StgPtr*)Sp)[0] = bco;		\
      JMP_(stg_yield_to_interpreter);   \
      FE_                               \
   }

STG_CtoI_RET_V_Template(stg_ctoi_ret_V_entry);
STG_CtoI_RET_V_Template(stg_ctoi_ret_V_0_entry);
STG_CtoI_RET_V_Template(stg_ctoi_ret_V_1_entry);
STG_CtoI_RET_V_Template(stg_ctoi_ret_V_2_entry);
STG_CtoI_RET_V_Template(stg_ctoi_ret_V_3_entry);
STG_CtoI_RET_V_Template(stg_ctoi_ret_V_4_entry);
STG_CtoI_RET_V_Template(stg_ctoi_ret_V_5_entry);
STG_CtoI_RET_V_Template(stg_ctoi_ret_V_6_entry);
STG_CtoI_RET_V_Template(stg_ctoi_ret_V_7_entry);

VEC_POLY_INFO_TABLE(stg_ctoi_ret_V,0, NULL/*srt*/, 0/*srt_off*/, 0/*srt_len*/, RET_BCO,, EF_);


259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
/* The other way round: when the interpreter returns a value to
   compiled code.  The stack looks like this:

      return info table (pushed by compiled code)
      return value (pushed by interpreter)

   If the value is ptr-rep'd, the interpreter simply returns to the
   scheduler, instructing it to ThreadEnterGHC.

   Otherwise (unboxed return value), we replace the top stack word,
   which must be the tag, with stg_gc_unbx_r1_info (or f1_info or d1_info),
   and return to the scheduler, instructing it to ThreadRunGHC.

   No supporting code needed!
*/
274 275


276 277
/* Entering a BCO.  Heave it on the stack and defer to the
   scheduler. */
278
INFO_TABLE(stg_BCO_info,stg_BCO_entry,4,0,BCO,,EF_,"BCO","BCO");
279
STGFUN(stg_BCO_entry) {
280
  FB_
281 282 283
    Sp -= 1;
    Sp[0] = R1.w;
    JMP_(stg_yield_to_interpreter);
284 285 286 287
  FE_
}


288 289 290 291
/* -----------------------------------------------------------------------------
   Entry code for an indirection.
   -------------------------------------------------------------------------- */

292 293
INFO_TABLE(stg_IND_info,stg_IND_entry,1,0,IND,,EF_,0,0);
STGFUN(stg_IND_entry)
294 295 296 297 298 299
{
    FB_
    TICK_ENT_IND(Node);	/* tick */

    R1.p = (P_) ((StgInd*)R1.p)->indirectee;
    TICK_ENT_VIA_NODE();
300
    JMP_(ENTRY_CODE(*R1.p));
301 302 303
    FE_
}

304 305
INFO_TABLE(stg_IND_STATIC_info,stg_IND_STATIC_entry,1,0,IND_STATIC,,EF_,0,0);
STGFUN(stg_IND_STATIC_entry)
306 307 308 309 310
{
    FB_
    TICK_ENT_IND(Node);	/* tick */
    R1.p = (P_) ((StgIndStatic*)R1.p)->indirectee;
    TICK_ENT_VIA_NODE();
311
    JMP_(ENTRY_CODE(*R1.p));
312 313 314
    FE_
}

315 316
INFO_TABLE(stg_IND_PERM_info,stg_IND_PERM_entry,1,1,IND_PERM,,EF_,"IND_PERM","IND_PERM");
STGFUN(stg_IND_PERM_entry)
317 318 319
{
    FB_
    /* Don't add INDs to granularity cost */
320 321 322 323 324 325
    /* Dont: TICK_ENT_IND(Node); for ticky-ticky; this ind is here only to help profiling */

#if defined(TICKY_TICKY) && !defined(PROFILING)
    /* TICKY_TICKY && !PROFILING means PERM_IND *replaces* an IND, rather than being extra  */
    TICK_ENT_PERM_IND(R1.p); /* tick */
#endif
326 327 328 329

    /* Enter PAP cost centre -- lexical scoping only */
    ENTER_CCS_PAP_CL(R1.cl);

330 331 332 333 334 335 336 337 338 339 340 341
    /* For ticky-ticky, change the perm_ind to a normal ind on first
     * entry, so the number of ent_perm_inds is the number of *thunks*
     * entered again, not the number of subsequent entries.
     *
     * Since this screws up cost centres, we die if profiling and
     * ticky_ticky are on at the same time.  KSW 1999-01.
     */

#ifdef TICKY_TICKY
#  ifdef PROFILING
#    error Profiling and ticky-ticky do not mix at present!
#  endif  /* PROFILING */
342
    SET_INFO((StgInd*)R1.p,&stg_IND_info);
343 344
#endif /* TICKY_TICKY */

345 346 347 348
    R1.p = (P_) ((StgInd*)R1.p)->indirectee;

    /* Dont: TICK_ENT_VIA_NODE(); for ticky-ticky; as above */

349 350 351 352
#if defined(TICKY_TICKY) && !defined(PROFILING)
    TICK_ENT_VIA_NODE();
#endif

353
    JMP_(ENTRY_CODE(*R1.p));
354 355 356
    FE_
}  

357 358
INFO_TABLE(stg_IND_OLDGEN_info,stg_IND_OLDGEN_entry,1,1,IND_OLDGEN,,EF_,0,0);
STGFUN(stg_IND_OLDGEN_entry)
359 360 361 362 363 364
{
    FB_
    TICK_ENT_IND(Node);	/* tick */
  
    R1.p = (P_) ((StgInd*)R1.p)->indirectee;
    TICK_ENT_VIA_NODE();
365
    JMP_(ENTRY_CODE(*R1.p));
366 367 368
    FE_
}

369 370
INFO_TABLE(stg_IND_OLDGEN_PERM_info,stg_IND_OLDGEN_PERM_entry,1,1,IND_OLDGEN_PERM,,EF_,0,0);
STGFUN(stg_IND_OLDGEN_PERM_entry)
371 372
{
    FB_
373
    /* Dont: TICK_ENT_IND(Node); for ticky-ticky; this ind is here only to help profiling */
374

375 376 377 378 379
#if defined(TICKY_TICKY) && !defined(PROFILING)
    /* TICKY_TICKY && !PROFILING means PERM_IND *replaces* an IND, rather than being extra  */
    TICK_ENT_PERM_IND(R1.p); /* tick */
#endif
  
380 381 382
    /* Enter PAP cost centre -- lexical scoping only */
    ENTER_CCS_PAP_CL(R1.cl);

383 384 385 386 387
    /* see comment in IND_PERM */
#ifdef TICKY_TICKY
#  ifdef PROFILING
#    error Profiling and ticky-ticky do not mix at present!
#  endif  /* PROFILING */
388
    SET_INFO((StgInd*)R1.p,&stg_IND_OLDGEN_info);
389 390
#endif /* TICKY_TICKY */

391 392
    R1.p = (P_) ((StgInd*)R1.p)->indirectee;
    TICK_ENT_VIA_NODE();
393
    JMP_(ENTRY_CODE(*R1.p));
394 395 396 397 398 399 400 401 402 403 404 405
    FE_
}

/* -----------------------------------------------------------------------------
   Entry code for a black hole.

   Entering a black hole normally causes a cyclic data dependency, but
   in the concurrent world, black holes are synchronization points,
   and they are turned into blocking queues when there are threads
   waiting for the evaluation of the closure to finish.
   -------------------------------------------------------------------------- */

406 407 408 409 410
/* Note: a BLACKHOLE and BLACKHOLE_BQ must be big enough to be
 * overwritten with an indirection/evacuee/catch.  Thus we claim it
 * has 1 non-pointer word of payload (in addition to the pointer word
 * for the blocking queue in a BQ), which should be big enough for an
 * old-generation indirection. 
411 412
 */

413 414
INFO_TABLE(stg_BLACKHOLE_info, stg_BLACKHOLE_entry,0,2,BLACKHOLE,,EF_,"BLACKHOLE","BLACKHOLE");
STGFUN(stg_BLACKHOLE_entry)
415 416
{
  FB_
417 418 419 420 421
#if defined(GRAN)
    /* Before overwriting TSO_LINK */
    STGCALL3(GranSimBlock,CurrentTSO,CurrentProc,(StgClosure *)R1.p /*Node*/);
#endif

422
#ifdef SMP
423 424 425 426
    {
      bdescr *bd = Bdescr(R1.p);
      if (bd->back != (bdescr *)BaseReg) {
	if (bd->gen->no >= 1 || bd->step->no >= 1) {
427
	  CMPXCHG(R1.cl->header.info, &stg_BLACKHOLE_info, &stg_WHITEHOLE_info);
428 429 430 431 432 433
	} else {
	  EXTFUN_RTS(stg_gc_enter_1_hponly);
	  JMP_(stg_gc_enter_1_hponly);
	}
      }
    }
434
#endif
435 436
    TICK_ENT_BH();

437
    /* Put ourselves on the blocking queue for this black hole */
438 439 440 441 442 443
#if defined(GRAN) || defined(PAR)
    /* in fact, only difference is the type of the end-of-queue marker! */
    CurrentTSO->link = END_BQ_QUEUE;
    ((StgBlockingQueue *)R1.p)->blocking_queue = (StgBlockingQueueElement *)CurrentTSO;
#else
    CurrentTSO->link = END_TSO_QUEUE;
444
    ((StgBlockingQueue *)R1.p)->blocking_queue = CurrentTSO;
445 446
#endif
    /* jot down why and on what closure we are blocked */
447 448
    CurrentTSO->why_blocked = BlockedOnBlackHole;
    CurrentTSO->block_info.closure = R1.cl;
449
    /* closure is mutable since something has just been added to its BQ */
450
    recordMutable((StgMutClosure *)R1.cl);
451
    /* Change the BLACKHOLE into a BLACKHOLE_BQ */
452
    ((StgBlockingQueue *)R1.p)->header.info = &stg_BLACKHOLE_BQ_info;
453

454
    /* PAR: dumping of event now done in blockThread -- HWL */
455

456 457
    /* stg_gen_block is too heavyweight, use a specialised one */
    BLOCK_NP(1);
458

459 460 461
  FE_
}

462 463
INFO_TABLE(stg_BLACKHOLE_BQ_info, stg_BLACKHOLE_BQ_entry,1,1,BLACKHOLE_BQ,,EF_,"BLACKHOLE","BLACKHOLE");
STGFUN(stg_BLACKHOLE_BQ_entry)
464 465
{
  FB_
466 467 468 469 470
#if defined(GRAN)
    /* Before overwriting TSO_LINK */
    STGCALL3(GranSimBlock,CurrentTSO,CurrentProc,(StgClosure *)R1.p /*Node*/);
#endif

471
#ifdef SMP
472 473 474 475
    {
      bdescr *bd = Bdescr(R1.p);
      if (bd->back != (bdescr *)BaseReg) {
	if (bd->gen->no >= 1 || bd->step->no >= 1) {
476
	  CMPXCHG(R1.cl->header.info, &stg_BLACKHOLE_info, &stg_WHITEHOLE_info);
477 478 479 480 481 482
	} else {
	  EXTFUN_RTS(stg_gc_enter_1_hponly);
	  JMP_(stg_gc_enter_1_hponly);
	}
      }
    }
483 484
#endif

485 486
    TICK_ENT_BH();

487
    /* Put ourselves on the blocking queue for this black hole */
488 489
    CurrentTSO->link = ((StgBlockingQueue *)R1.p)->blocking_queue;
    ((StgBlockingQueue *)R1.p)->blocking_queue = CurrentTSO;
490 491 492
    /* jot down why and on what closure we are blocked */
    CurrentTSO->why_blocked = BlockedOnBlackHole;
    CurrentTSO->block_info.closure = R1.cl;
493
#ifdef SMP
494
    ((StgBlockingQueue *)R1.p)->header.info = &stg_BLACKHOLE_BQ_info;
495
#endif
496

497
    /* PAR: dumping of event now done in blockThread -- HWL */
498

499 500 501 502 503
    /* stg_gen_block is too heavyweight, use a specialised one */
    BLOCK_NP(1);
  FE_
}

504 505 506 507 508 509 510 511 512 513 514 515 516 517
/*
   Revertible black holes are needed in the parallel world, to handle
   negative acknowledgements of messages containing updatable closures.
   The idea is that when the original message is transmitted, the closure
   is turned into a revertible black hole...an object which acts like a
   black hole when local threads try to enter it, but which can be reverted
   back to the original closure if necessary.

   It's actually a lot like a blocking queue (BQ) entry, because revertible
   black holes are initially set up with an empty blocking queue.
*/

#if defined(PAR) || defined(GRAN)

518 519
INFO_TABLE(stg_RBH_info, stg_RBH_entry,1,1,RBH,,EF_,0,0);
STGFUN(stg_RBH_entry)
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
{
  FB_
# if defined(GRAN)
    /* mainly statistics gathering for GranSim simulation */
    STGCALL3(GranSimBlock,CurrentTSO,CurrentProc,(StgClosure *)R1.p /*Node*/);
# endif

    /* exactly the same as a BLACKHOLE_BQ_entry -- HWL */
    /* Put ourselves on the blocking queue for this black hole */
    CurrentTSO->link = ((StgBlockingQueue *)R1.p)->blocking_queue;
    ((StgBlockingQueue *)R1.p)->blocking_queue = CurrentTSO;
    /* jot down why and on what closure we are blocked */
    CurrentTSO->why_blocked = BlockedOnBlackHole;
    CurrentTSO->block_info.closure = R1.cl;

535
    /* PAR: dumping of event now done in blockThread -- HWL */
536 537 538 539 540 541

    /* stg_gen_block is too heavyweight, use a specialised one */
    BLOCK_NP(1); 
  FE_
}

542
INFO_TABLE(stg_RBH_Save_0_info, stg_RBH_Save_0_entry,0,2,CONSTR,,EF_,0,0);
543 544
NON_ENTERABLE_ENTRY_CODE(RBH_Save_0);

545
INFO_TABLE(stg_RBH_Save_1_info, stg_RBH_Save_1_entry,1,1,CONSTR,,EF_,0,0);
546 547
NON_ENTERABLE_ENTRY_CODE(RBH_Save_1);

548
INFO_TABLE(stg_RBH_Save_2_info, stg_RBH_Save_2_entry,2,0,CONSTR,,EF_,0,0);
549 550 551
NON_ENTERABLE_ENTRY_CODE(RBH_Save_2);
#endif /* defined(PAR) || defined(GRAN) */

552
/* identical to BLACKHOLEs except for the infotag */
553
INFO_TABLE(stg_CAF_BLACKHOLE_info, stg_CAF_BLACKHOLE_entry,0,2,CAF_BLACKHOLE,,EF_,"CAF_BLACKHOLE","CAF_BLACKHOLE");
554
STGFUN(stg_CAF_BLACKHOLE_entry)
555 556
{
  FB_
557 558 559 560 561
#if defined(GRAN)
    /* mainly statistics gathering for GranSim simulation */
    STGCALL3(GranSimBlock,CurrentTSO,CurrentProc,(StgClosure *)R1.p /*Node*/);
#endif

562
#ifdef SMP
563 564 565 566
    {
      bdescr *bd = Bdescr(R1.p);
      if (bd->back != (bdescr *)BaseReg) {
	if (bd->gen->no >= 1 || bd->step->no >= 1) {
567
	  CMPXCHG(R1.cl->header.info, &stg_CAF_BLACKHOLE_info, &stg_WHITEHOLE_info);
568 569 570 571 572 573
	} else {
	  EXTFUN_RTS(stg_gc_enter_1_hponly);
	  JMP_(stg_gc_enter_1_hponly);
	}
      }
    }
574
#endif
575 576 577 578

    TICK_ENT_BH();

    /* Put ourselves on the blocking queue for this black hole */
579 580 581 582 583 584
#if defined(GRAN) || defined(PAR)
    /* in fact, only difference is the type of the end-of-queue marker! */
    CurrentTSO->link = END_BQ_QUEUE;
    ((StgBlockingQueue *)R1.p)->blocking_queue = (StgBlockingQueueElement *)CurrentTSO;
#else
    CurrentTSO->link = END_TSO_QUEUE;
585
    ((StgBlockingQueue *)R1.p)->blocking_queue = CurrentTSO;
586 587
#endif
    /* jot down why and on what closure we are blocked */
588 589
    CurrentTSO->why_blocked = BlockedOnBlackHole;
    CurrentTSO->block_info.closure = R1.cl;
590
    /* closure is mutable since something has just been added to its BQ */
591
    recordMutable((StgMutClosure *)R1.cl);
592
    /* Change the CAF_BLACKHOLE into a BLACKHOLE_BQ_STATIC */
593
    ((StgBlockingQueue *)R1.p)->header.info = &stg_BLACKHOLE_BQ_info;
594

595
    /* PAR: dumping of event now done in blockThread -- HWL */
596 597 598

    /* stg_gen_block is too heavyweight, use a specialised one */
    BLOCK_NP(1);
599 600 601
  FE_
}

602
#ifdef TICKY_TICKY
603 604
INFO_TABLE(stg_SE_BLACKHOLE_info, stg_SE_BLACKHOLE_entry,0,2,SE_BLACKHOLE,,EF_,0,0);
STGFUN(stg_SE_BLACKHOLE_entry)
605 606 607
{
  FB_
    STGCALL3(fprintf,stderr,"SE_BLACKHOLE at %p entered!\n",R1.p);
608
    STGCALL1(shutdownHaskellAndExit,EXIT_FAILURE);
609 610 611
  FE_
}

612
INFO_TABLE(SE_CAF_BLACKHOLE_info, SE_CAF_BLACKHOLE_entry,0,2,SE_CAF_BLACKHOLE,,EF_,0,0);
613
STGFUN(stg_SE_CAF_BLACKHOLE_entry)
614 615 616
{
  FB_
    STGCALL3(fprintf,stderr,"SE_CAF_BLACKHOLE at %p entered!\n",R1.p);
617
    STGCALL1(shutdownHaskellAndExit,EXIT_FAILURE);
618 619 620 621
  FE_
}
#endif

622
#ifdef SMP
623 624
INFO_TABLE(stg_WHITEHOLE_info, stg_WHITEHOLE_entry,0,2,CONSTR_NOCAF_STATIC,,EF_,0,0);
STGFUN(stg_WHITEHOLE_entry)
625 626 627 628 629 630 631
{
  FB_
     JMP_(GET_ENTRY(R1.cl));
  FE_
}
#endif

632 633 634
/* -----------------------------------------------------------------------------
   Some static info tables for things that don't get entered, and
   therefore don't need entry code (i.e. boxed but unpointed objects)
635
   NON_ENTERABLE_ENTRY_CODE now defined at the beginning of the file
636 637
   -------------------------------------------------------------------------- */

638
INFO_TABLE(stg_TSO_info, stg_TSO_entry, 0,0,TSO,,EF_,"TSO","TSO");
639 640 641 642 643 644 645
NON_ENTERABLE_ENTRY_CODE(TSO);

/* -----------------------------------------------------------------------------
   Evacuees are left behind by the garbage collector.  Any attempt to enter
   one is a real bug.
   -------------------------------------------------------------------------- */

646
INFO_TABLE(stg_EVACUATED_info,stg_EVACUATED_entry,1,0,EVACUATED,,EF_,0,0);
647 648 649 650 651 652 653 654 655 656
NON_ENTERABLE_ENTRY_CODE(EVACUATED);

/* -----------------------------------------------------------------------------
   Weak pointers

   Live weak pointers have a special closure type.  Dead ones are just
   nullary constructors (although they live on the heap - we overwrite
   live weak pointers with dead ones).
   -------------------------------------------------------------------------- */

657
INFO_TABLE(stg_WEAK_info,stg_WEAK_entry,0,4,WEAK,,EF_,"WEAK","WEAK");
658 659
NON_ENTERABLE_ENTRY_CODE(WEAK);

660
INFO_TABLE_CONSTR(stg_DEAD_WEAK_info,stg_DEAD_WEAK_entry,0,1,0,CONSTR,,EF_,"DEAD_WEAK","DEAD_WEAK");
661 662
NON_ENTERABLE_ENTRY_CODE(DEAD_WEAK);

663
/* -----------------------------------------------------------------------------
664
   NO_FINALIZER
665 666

   This is a static nullary constructor (like []) that we use to mark an empty
667
   finalizer in a weak pointer object.
668 669
   -------------------------------------------------------------------------- */

670
INFO_TABLE_CONSTR(stg_NO_FINALIZER_info,stg_NO_FINALIZER_entry,0,0,0,CONSTR_NOCAF_STATIC,,EF_,0,0);
671
NON_ENTERABLE_ENTRY_CODE(NO_FINALIZER);
672

673
SET_STATIC_HDR(stg_NO_FINALIZER_closure,stg_NO_FINALIZER_info,0/*CC*/,,EI_)
674
, /*payload*/{} };
675

676 677 678 679
/* -----------------------------------------------------------------------------
   Foreign Objects are unlifted and therefore never entered.
   -------------------------------------------------------------------------- */

680
INFO_TABLE(stg_FOREIGN_info,stg_FOREIGN_entry,0,1,FOREIGN,,EF_,"FOREIGN","FOREIGN");
681 682
NON_ENTERABLE_ENTRY_CODE(FOREIGN);

683 684 685 686
/* -----------------------------------------------------------------------------
   Stable Names are unlifted too.
   -------------------------------------------------------------------------- */

687
INFO_TABLE(stg_STABLE_NAME_info,stg_STABLE_NAME_entry,0,1,STABLE_NAME,,EF_,"STABLE_NAME","STABLE_NAME");
688 689
NON_ENTERABLE_ENTRY_CODE(STABLE_NAME);

690 691 692 693 694 695 696
/* -----------------------------------------------------------------------------
   MVars

   There are two kinds of these: full and empty.  We need an info table
   and entry code for each type.
   -------------------------------------------------------------------------- */

697
INFO_TABLE(stg_FULL_MVAR_info,stg_FULL_MVAR_entry,4,0,MVAR,,EF_,"MVAR","MVAR");
698 699
NON_ENTERABLE_ENTRY_CODE(FULL_MVAR);

700
INFO_TABLE(stg_EMPTY_MVAR_info,stg_EMPTY_MVAR_entry,4,0,MVAR,,EF_,"MVAR","MVAR");
701 702 703 704 705 706 707 708 709
NON_ENTERABLE_ENTRY_CODE(EMPTY_MVAR);

/* -----------------------------------------------------------------------------
   END_TSO_QUEUE

   This is a static nullary constructor (like []) that we use to mark the
   end of a linked TSO queue.
   -------------------------------------------------------------------------- */

710
INFO_TABLE_CONSTR(stg_END_TSO_QUEUE_info,stg_END_TSO_QUEUE_entry,0,0,0,CONSTR_NOCAF_STATIC,,EF_,0,0);
711 712
NON_ENTERABLE_ENTRY_CODE(END_TSO_QUEUE);

713
SET_STATIC_HDR(stg_END_TSO_QUEUE_closure,stg_END_TSO_QUEUE_info,0/*CC*/,,EI_)
714
, /*payload*/{} };
715

716 717 718 719 720 721 722 723
/* -----------------------------------------------------------------------------
   Mutable lists

   Mutable lists (used by the garbage collector) consist of a chain of
   StgMutClosures connected through their mut_link fields, ending in
   an END_MUT_LIST closure.
   -------------------------------------------------------------------------- */

724
INFO_TABLE_CONSTR(stg_END_MUT_LIST_info,stg_END_MUT_LIST_entry,0,0,0,CONSTR_NOCAF_STATIC,,EF_,0,0);
725 726
NON_ENTERABLE_ENTRY_CODE(END_MUT_LIST);

727
SET_STATIC_HDR(stg_END_MUT_LIST_closure,stg_END_MUT_LIST_info,0/*CC*/,,EI_)
728
, /*payload*/{} };
729

730
INFO_TABLE(stg_MUT_CONS_info, stg_MUT_CONS_entry, 1, 1, MUT_VAR, , EF_, 0, 0);
731 732
NON_ENTERABLE_ENTRY_CODE(MUT_CONS);

733 734 735 736
/* -----------------------------------------------------------------------------
   Exception lists
   -------------------------------------------------------------------------- */

737
INFO_TABLE_CONSTR(stg_END_EXCEPTION_LIST_info,stg_END_EXCEPTION_LIST_entry,0,0,0,CONSTR_NOCAF_STATIC,,EF_,0,0);
738 739
NON_ENTERABLE_ENTRY_CODE(END_EXCEPTION_LIST);

740
SET_STATIC_HDR(stg_END_EXCEPTION_LIST_closure,stg_END_EXCEPTION_LIST_info,0/*CC*/,,EI_)
741
, /*payload*/{} };
742

743
INFO_TABLE(stg_EXCEPTION_CONS_info, stg_EXCEPTION_CONS_entry, 1, 1, CONSTR, , EF_, 0, 0);
744 745
NON_ENTERABLE_ENTRY_CODE(EXCEPTION_CONS);

746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
/* -----------------------------------------------------------------------------
   Arrays

   These come in two basic flavours: arrays of data (StgArrWords) and arrays of
   pointers (StgArrPtrs).  They all have a similar layout:

	___________________________
	| Info | No. of | data....
        |  Ptr | Words  |
	---------------------------

   These are *unpointed* objects: i.e. they cannot be entered.

   -------------------------------------------------------------------------- */

761
#define ArrayInfo(type)					\
762
INFO_TABLE(stg_##type##_info, stg_##type##_entry, 0, 0, type, , EF_,"" # type "","" # type "");
763 764

ArrayInfo(ARR_WORDS);
765
NON_ENTERABLE_ENTRY_CODE(ARR_WORDS);
766
ArrayInfo(MUT_ARR_PTRS);
767
NON_ENTERABLE_ENTRY_CODE(MUT_ARR_PTRS);
768
ArrayInfo(MUT_ARR_PTRS_FROZEN);
769
NON_ENTERABLE_ENTRY_CODE(MUT_ARR_PTRS_FROZEN);
770 771 772 773 774 775 776

#undef ArrayInfo

/* -----------------------------------------------------------------------------
   Mutable Variables
   -------------------------------------------------------------------------- */

777
INFO_TABLE(stg_MUT_VAR_info, stg_MUT_VAR_entry, 1, 1, MUT_VAR, , EF_, "MUT_VAR", "MUT_VAR");
778 779 780 781 782 783 784 785
NON_ENTERABLE_ENTRY_CODE(MUT_VAR);

/* -----------------------------------------------------------------------------
   Standard Error Entry.

   This is used for filling in vector-table entries that can never happen,
   for instance.
   -------------------------------------------------------------------------- */
rrt's avatar
rrt committed
786 787
/* No longer used; we use NULL, because a) it never happens, right? and b)
   Windows doesn't like DLL entry points being used as static initialisers
788 789 790
STGFUN(stg_error_entry)							\
{									\
  FB_									\
sof's avatar
sof committed
791
    DUMP_ERRMSG("fatal: stg_error_entry");                              \
792
    STGCALL1(shutdownHaskellAndExit, EXIT_FAILURE);			\
793
    return NULL;							\
794 795
  FE_									\
}
rrt's avatar
rrt committed
796
*/
797 798 799 800 801 802 803 804
/* -----------------------------------------------------------------------------
   Dummy return closure
 
   Entering this closure will just return to the address on the top of the
   stack.  Useful for getting a thread in a canonical form where we can
   just enter the top stack word to start the thread.  (see deleteThread)
 * -------------------------------------------------------------------------- */

805 806
INFO_TABLE(stg_dummy_ret_info, stg_dummy_ret_entry, 0, 0, CONSTR_NOCAF_STATIC, , EF_, 0, 0);
STGFUN(stg_dummy_ret_entry)
807 808 809 810 811 812
{
  W_ ret_addr;
  FB_
  ret_addr = Sp[0];
  Sp++;
  JMP_(ENTRY_CODE(ret_addr));
813
  FE_
814
}
815
SET_STATIC_HDR(stg_dummy_ret_closure,stg_dummy_ret_info,CCS_DONT_CARE,,EI_)
816
, /*payload*/{} };
817

sof's avatar
sof committed
818 819 820 821 822 823 824 825 826 827 828 829 830
/* -----------------------------------------------------------------------------
    Strict IO application - performing an IO action and entering its result.
    
    rts_evalIO() lets you perform Haskell IO actions from outside of Haskell-land,
    returning back to you their result. Want this result to be evaluated to WHNF
    by that time, so that we can easily get at the int/char/whatever using the
    various get{Ty} functions provided by the RTS API.

    forceIO takes care of this, performing the IO action and entering the
    results that comes back.

 * -------------------------------------------------------------------------- */

831
#ifdef REG_R1
832 833
INFO_TABLE_SRT_BITMAP(stg_forceIO_ret_info,stg_forceIO_ret_entry,0,0,0,0,RET_SMALL,,EF_,0,0);
STGFUN(stg_forceIO_ret_entry)
sof's avatar
sof committed
834 835 836 837 838 839 840
{
  FB_
  Sp++;
  Sp -= sizeofW(StgSeqFrame);
  PUSH_SEQ_FRAME(Sp);
  JMP_(GET_ENTRY(R1.cl));
}
841
#else
842
INFO_TABLE_SRT_BITMAP(stg_forceIO_ret_info,stg_forceIO_ret_entry,0,0,0,0,RET_SMALL,,EF_,0,0);
843
STGFUN(stg_forceIO_ret_entry)
844 845 846 847 848 849 850
{
  StgClosure *rval;
  FB_
  rval = (StgClosure *)Sp[0];
  Sp += 2;
  Sp -= sizeofW(StgSeqFrame);
  PUSH_SEQ_FRAME(Sp);
851 852
  R1.cl = rval;
  JMP_(GET_ENTRY(R1.cl));
853 854
}
#endif
sof's avatar
sof committed
855

856 857
INFO_TABLE(stg_forceIO_info,stg_forceIO_entry,1,0,FUN_STATIC,,EF_,0,0);
FN_(stg_forceIO_entry)
sof's avatar
sof committed
858 859 860 861 862
{
  FB_
  /* Sp[0] contains the IO action we want to perform */
  R1.p  = (P_)Sp[0];
  /* Replace it with the return continuation that enters the result. */
863
  Sp[0] = (W_)&stg_forceIO_ret_info;
sof's avatar
sof committed
864 865 866 867 868 869
  Sp--;
  /* Push the RealWorld# tag and enter */
  Sp[0] =(W_)REALWORLD_TAG;
  JMP_(GET_ENTRY(R1.cl));
  FE_
}
870
SET_STATIC_HDR(stg_forceIO_closure,stg_forceIO_info,CCS_DONT_CARE,,EI_)
871
, /*payload*/{} };
sof's avatar
sof committed
872 873


874 875 876 877 878 879 880 881
/* -----------------------------------------------------------------------------
   CHARLIKE and INTLIKE closures.  

   These are static representations of Chars and small Ints, so that
   we can remove dynamic Chars and Ints during garbage collection and
   replace them with references to the static objects.
   -------------------------------------------------------------------------- */

882
#if defined(INTERPRETER) || defined(ENABLE_WIN32_DLL_SUPPORT)
sof's avatar
sof committed
883 884 885 886 887 888
/*
 * When sticking the RTS in a DLL, we delay populating the
 * Charlike and Intlike tables until load-time, which is only
 * when we've got the real addresses to the C# and I# closures.
 *
 */
889 890
static INFO_TBL_CONST StgInfoTable czh_static_info;
static INFO_TBL_CONST StgInfoTable izh_static_info;
sof's avatar
sof committed
891 892 893
#define Char_hash_static_info czh_static_info
#define Int_hash_static_info izh_static_info
#else
894 895
#define Char_hash_static_info PrelBase_Czh_static_info
#define Int_hash_static_info PrelBase_Izh_static_info
sof's avatar
sof committed
896 897
#endif

898 899
#define CHARLIKE_HDR(n)						\
	{							\
sof's avatar
sof committed
900
	  STATIC_HDR(Char_hash_static_info, /* C# */   		\
901
			 CCS_DONT_CARE),			\
902 903 904 905 906
          data : n						\
	}
					     
#define INTLIKE_HDR(n)						\
	{							\
sof's avatar
sof committed
907
	  STATIC_HDR(Int_hash_static_info,  /* I# */  		\
908
			 CCS_DONT_CARE),			\
909 910 911 912 913 914 915 916 917
          data : n						\
	}

/* put these in the *data* section, since the garbage collector relies
 * on the fact that static closures live in the data section.
 */

/* end the name with _closure, to convince the mangler this is a closure */

918
StgIntCharlikeClosure stg_CHARLIKE_closure[] = {
919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
    CHARLIKE_HDR(0),
    CHARLIKE_HDR(1),
    CHARLIKE_HDR(2),
    CHARLIKE_HDR(3),
    CHARLIKE_HDR(4),
    CHARLIKE_HDR(5),
    CHARLIKE_HDR(6),
    CHARLIKE_HDR(7),
    CHARLIKE_HDR(8),
    CHARLIKE_HDR(9),
    CHARLIKE_HDR(10),
    CHARLIKE_HDR(11),
    CHARLIKE_HDR(12),
    CHARLIKE_HDR(13),
    CHARLIKE_HDR(14),
    CHARLIKE_HDR(15),
    CHARLIKE_HDR(16),
    CHARLIKE_HDR(17),
    CHARLIKE_HDR(18),
    CHARLIKE_HDR(19),
    CHARLIKE_HDR(20),
    CHARLIKE_HDR(21),
    CHARLIKE_HDR(22),
    CHARLIKE_HDR(23),
    CHARLIKE_HDR(24),
    CHARLIKE_HDR(25),
    CHARLIKE_HDR(26),
    CHARLIKE_HDR(27),
    CHARLIKE_HDR(28),
    CHARLIKE_HDR(29),
    CHARLIKE_HDR(30),
    CHARLIKE_HDR(31),
    CHARLIKE_HDR(32),
    CHARLIKE_HDR(33),
    CHARLIKE_HDR(34),
    CHARLIKE_HDR(35),
    CHARLIKE_HDR(36),
    CHARLIKE_HDR(37),
    CHARLIKE_HDR(38),
    CHARLIKE_HDR(39),
    CHARLIKE_HDR(40),
    CHARLIKE_HDR(41),
    CHARLIKE_HDR(42),
    CHARLIKE_HDR(43),
    CHARLIKE_HDR(44),
    CHARLIKE_HDR(45),
    CHARLIKE_HDR(46),
    CHARLIKE_HDR(47),
    CHARLIKE_HDR(48),
    CHARLIKE_HDR(49),
    CHARLIKE_HDR(50),
    CHARLIKE_HDR(51),
    CHARLIKE_HDR(52),
    CHARLIKE_HDR(53),
    CHARLIKE_HDR(54),
    CHARLIKE_HDR(55),
    CHARLIKE_HDR(56),
    CHARLIKE_HDR(57),
    CHARLIKE_HDR(58),
    CHARLIKE_HDR(59),
    CHARLIKE_HDR(60),
    CHARLIKE_HDR(61),
    CHARLIKE_HDR(62),
    CHARLIKE_HDR(63),
    CHARLIKE_HDR(64),
    CHARLIKE_HDR(65),
    CHARLIKE_HDR(66),
    CHARLIKE_HDR(67),
    CHARLIKE_HDR(68),
    CHARLIKE_HDR(69),
    CHARLIKE_HDR(70),
    CHARLIKE_HDR(71),
    CHARLIKE_HDR(72),
    CHARLIKE_HDR(73),
    CHARLIKE_HDR(74),
    CHARLIKE_HDR(75),
    CHARLIKE_HDR(76),
    CHARLIKE_HDR(77),
    CHARLIKE_HDR(78),
    CHARLIKE_HDR(79),
    CHARLIKE_HDR(80),
    CHARLIKE_HDR(81),
    CHARLIKE_HDR(82),
    CHARLIKE_HDR(83),
    CHARLIKE_HDR(84),
    CHARLIKE_HDR(85),
    CHARLIKE_HDR(86),
    CHARLIKE_HDR(87),
    CHARLIKE_HDR(88),
    CHARLIKE_HDR(89),
    CHARLIKE_HDR(90),
    CHARLIKE_HDR(91),
    CHARLIKE_HDR(92),
    CHARLIKE_HDR(93),
    CHARLIKE_HDR(94),
    CHARLIKE_HDR(95),
    CHARLIKE_HDR(96),
    CHARLIKE_HDR(97),
    CHARLIKE_HDR(98),
    CHARLIKE_HDR(99),
    CHARLIKE_HDR(100),
    CHARLIKE_HDR(101),
    CHARLIKE_HDR(102),
    CHARLIKE_HDR(103),
    CHARLIKE_HDR(104),
    CHARLIKE_HDR(105),
    CHARLIKE_HDR(106),
    CHARLIKE_HDR(107),
    CHARLIKE_HDR(108),
    CHARLIKE_HDR(109),
    CHARLIKE_HDR(110),
    CHARLIKE_HDR(111),
    CHARLIKE_HDR(112),
    CHARLIKE_HDR(113),
    CHARLIKE_HDR(114),
    CHARLIKE_HDR(115),
    CHARLIKE_HDR(116),
    CHARLIKE_HDR(117),
    CHARLIKE_HDR(118),
    CHARLIKE_HDR(119),
    CHARLIKE_HDR(120),
    CHARLIKE_HDR(121),
    CHARLIKE_HDR(122),
    CHARLIKE_HDR(123),
    CHARLIKE_HDR(124),
    CHARLIKE_HDR(125),
    CHARLIKE_HDR(126),
    CHARLIKE_HDR(127),
    CHARLIKE_HDR(128),
    CHARLIKE_HDR(129),
    CHARLIKE_HDR(130),
    CHARLIKE_HDR(131),
    CHARLIKE_HDR(132),
    CHARLIKE_HDR(133),
    CHARLIKE_HDR(134),
    CHARLIKE_HDR(135),
    CHARLIKE_HDR(136),
    CHARLIKE_HDR(137),
    CHARLIKE_HDR(138),
    CHARLIKE_HDR(139),
    CHARLIKE_HDR(140),
    CHARLIKE_HDR(141),
    CHARLIKE_HDR(142),
    CHARLIKE_HDR(143),
    CHARLIKE_HDR(144),
    CHARLIKE_HDR(145),
    CHARLIKE_HDR(146),
    CHARLIKE_HDR(147),
    CHARLIKE_HDR(148),
    CHARLIKE_HDR(149),
    CHARLIKE_HDR(150),
    CHARLIKE_HDR(151),
    CHARLIKE_HDR(152),
    CHARLIKE_HDR(153),
    CHARLIKE_HDR(154),
    CHARLIKE_HDR(155),
    CHARLIKE_HDR(156),
    CHARLIKE_HDR(157),
    CHARLIKE_HDR(158),
    CHARLIKE_HDR(159),
    CHARLIKE_HDR(160),
    CHARLIKE_HDR(161),
    CHARLIKE_HDR(162),
    CHARLIKE_HDR(163),
    CHARLIKE_HDR(164),
    CHARLIKE_HDR(165),
    CHARLIKE_HDR(166),
    CHARLIKE_HDR(167),
    CHARLIKE_HDR(168),
    CHARLIKE_HDR(169),
    CHARLIKE_HDR(170),
    CHARLIKE_HDR(171),
    CHARLIKE_HDR(172),
    CHARLIKE_HDR(173),
    CHARLIKE_HDR(174),
    CHARLIKE_HDR(175),
    CHARLIKE_HDR(176),
    CHARLIKE_HDR(177),
    CHARLIKE_HDR(178),
    CHARLIKE_HDR(179),
    CHARLIKE_HDR(180),
    CHARLIKE_HDR(181),
    CHARLIKE_HDR(182),
    CHARLIKE_HDR(183),
    CHARLIKE_HDR(184),
    CHARLIKE_HDR(185),
    CHARLIKE_HDR(186),
    CHARLIKE_HDR(187),
    CHARLIKE_HDR(188),
    CHARLIKE_HDR(189),
    CHARLIKE_HDR(190),
    CHARLIKE_HDR(191),
    CHARLIKE_HDR(192),
    CHARLIKE_HDR(193),
    CHARLIKE_HDR(194),
    CHARLIKE_HDR(195),
    CHARLIKE_HDR(196),
    CHARLIKE_HDR(197),
    CHARLIKE_HDR(198),
    CHARLIKE_HDR(199),
    CHARLIKE_HDR(200),
    CHARLIKE_HDR(201),
    CHARLIKE_HDR(202),
    CHARLIKE_HDR(203),
    CHARLIKE_HDR(204),
    CHARLIKE_HDR(205),
    CHARLIKE_HDR(206),
    CHARLIKE_HDR(207),
    CHARLIKE_HDR(208),
    CHARLIKE_HDR(209),
    CHARLIKE_HDR(210),
    CHARLIKE_HDR(211),
    CHARLIKE_HDR(212),
    CHARLIKE_HDR(213),
    CHARLIKE_HDR(214),
    CHARLIKE_HDR(215),
    CHARLIKE_HDR(216),
    CHARLIKE_HDR(217),
    CHARLIKE_HDR(218),
    CHARLIKE_HDR(219),
    CHARLIKE_HDR(220),
    CHARLIKE_HDR(221),
    CHARLIKE_HDR(222),
    CHARLIKE_HDR(223),
    CHARLIKE_HDR(224),
    CHARLIKE_HDR(225),
    CHARLIKE_HDR(226),
    CHARLIKE_HDR(227),
    CHARLIKE_HDR(228),
    CHARLIKE_HDR(229),
    CHARLIKE_HDR(230),
    CHARLIKE_HDR(231),
    CHARLIKE_HDR(232),
    CHARLIKE_HDR(233),
    CHARLIKE_HDR(234),
    CHARLIKE_HDR(235),
    CHARLIKE_HDR(236),
    CHARLIKE_HDR(237),
    CHARLIKE_HDR(238),
    CHARLIKE_HDR(239),
    CHARLIKE_HDR(240),
    CHARLIKE_HDR(241),
    CHARLIKE_HDR(242),
    CHARLIKE_HDR(243),
    CHARLIKE_HDR(244),
    CHARLIKE_HDR(245),
    CHARLIKE_HDR(246),
    CHARLIKE_HDR(247),
    CHARLIKE_HDR(248),
    CHARLIKE_HDR(249),
    CHARLIKE_HDR(250),
    CHARLIKE_HDR(251),
    CHARLIKE_HDR(252),
    CHARLIKE_HDR(253),
    CHARLIKE_HDR(254),
    CHARLIKE_HDR(255)
};

1177
StgIntCharlikeClosure stg_INTLIKE_closure[] = {
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
    INTLIKE_HDR(-16),	/* MIN_INTLIKE == -16 */
    INTLIKE_HDR(-15),
    INTLIKE_HDR(-14),
    INTLIKE_HDR(-13),
    INTLIKE_HDR(-12),
    INTLIKE_HDR(-11),
    INTLIKE_HDR(-10),
    INTLIKE_HDR(-9),
    INTLIKE_HDR(-8),
    INTLIKE_HDR(-7),
    INTLIKE_HDR(-6),
    INTLIKE_HDR(-5),
    INTLIKE_HDR(-4),
    INTLIKE_HDR(-3),
    INTLIKE_HDR(-2),
    INTLIKE_HDR(-1),
    INTLIKE_HDR(0),
    INTLIKE_HDR(1),
    INTLIKE_HDR(2),
    INTLIKE_HDR(3),
    INTLIKE_HDR(4),
    INTLIKE_HDR(5),
    INTLIKE_HDR(6),
    INTLIKE_HDR(7),
    INTLIKE_HDR(8),
    INTLIKE_HDR(9),
    INTLIKE_HDR(10),
    INTLIKE_HDR(11),
    INTLIKE_HDR(12),
    INTLIKE_HDR(13),
    INTLIKE_HDR(14),
    INTLIKE_HDR(15),
    INTLIKE_HDR(16)	/* MAX_INTLIKE == 16 */
};