CFG.hs 23.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
--
-- Copyright (c) 2018 Andreas Klebinger
--

{-# LANGUAGE TypeFamilies, ScopedTypeVariables #-}
{-# LANGUAGE TupleSections #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE CPP #-}

module CFG
    ( CFG, CfgEdge(..), EdgeInfo(..), EdgeWeight(..)
    , TransitionSource(..)

    --Modify the CFG
    , addWeightEdge, addEdge, delEdge
    , addNodesBetween, shortcutWeightMap
    , reverseEdges, filterEdges
    , addImmediateSuccessor
    , mkWeightInfo, adjustEdgeWeight

    --Query the CFG
    , infoEdgeList, edgeList
    , getSuccessorEdges, getSuccessors
    , getSuccEdgesSorted, weightedEdgeList
    , getEdgeInfo
    , getCfgNodes, hasNode

    --Construction/Misc
    , getCfg, getCfgProc, pprEdgeWeights, sanityCheckCfg

    --Find backedges and update their weight
    , optimizeCFG )
where

#include "HsVersions.h"

import GhcPrelude

import BlockId
import Cmm ( RawCmmDecl, GenCmmDecl( .. ), CmmBlock, succ, g_entry
           , CmmGraph )
import CmmNode
import CmmUtils
import CmmSwitch
import Hoopl.Collections
import Hoopl.Label
import Hoopl.Block
import qualified Hoopl.Graph as G

import Util
import Digraph

import Outputable
-- DEBUGGING ONLY
--import Debug
--import OrdList
--import Debug.Trace
import PprCmm ()
import qualified DynFlags as D

import Data.List

-- import qualified Data.IntMap.Strict as M --TODO: LabelMap

type Edge = (BlockId, BlockId)
type Edges = [Edge]

newtype EdgeWeight
  = EdgeWeight Int
  deriving (Eq,Ord,Enum,Num,Real,Integral)

instance Outputable EdgeWeight where
  ppr (EdgeWeight w) = ppr w

type EdgeInfoMap edgeInfo = LabelMap (LabelMap edgeInfo)

-- | A control flow graph where edges have been annotated with a weight.
type CFG = EdgeInfoMap EdgeInfo

data CfgEdge
  = CfgEdge
  { edgeFrom :: !BlockId
  , edgeTo :: !BlockId
  , edgeInfo :: !EdgeInfo
  }

-- | Careful! Since we assume there is at most one edge from A to B
--   the Eq instance does not consider weight.
instance Eq CfgEdge where
  (==) (CfgEdge from1 to1 _) (CfgEdge from2 to2 _)
    = from1 == from2 && to1 == to2

-- | Edges are sorted ascending pointwise by weight, source and destination
instance Ord CfgEdge where
  compare (CfgEdge from1 to1 (EdgeInfo {edgeWeight = weight1}))
          (CfgEdge from2 to2 (EdgeInfo {edgeWeight = weight2}))
    | weight1 < weight2 || weight1 == weight2 && from1 < from2 ||
      weight1 == weight2 && from1 == from2 && to1 < to2
    = LT
    | from1 == from2 && to1 == to2 && weight1 == weight2
    = EQ
    | otherwise
    = GT

instance Outputable CfgEdge where
  ppr (CfgEdge from1 to1 edgeInfo)
    = parens (ppr from1 <+> text "-(" <> ppr edgeInfo <> text ")->" <+> ppr to1)

-- | Can we trace back a edge to a specific Cmm Node
-- or has it been introduced for codegen. We use this to maintain
-- some information which would otherwise be lost during the
-- Cmm <-> asm transition.
-- See also Note [Inverting Conditional Branches]
data TransitionSource
  = CmmSource (CmmNode O C)
  | AsmCodeGen
  deriving (Eq)

-- | Information about edges
data EdgeInfo
  = EdgeInfo
  { transitionSource :: !TransitionSource
  , edgeWeight :: !EdgeWeight
  } deriving (Eq)

instance Outputable EdgeInfo where
  ppr edgeInfo = text "weight:" <+> ppr (edgeWeight edgeInfo)

-- Allow specialization
{-# INLINEABLE mkWeightInfo #-}
-- | Convenience function, generate edge info based
--   on weight not originating from cmm.
mkWeightInfo :: Integral n => n -> EdgeInfo
mkWeightInfo = EdgeInfo AsmCodeGen . fromIntegral

-- | Adjust the weight between the blocks using the given function.
--   If there is no such edge returns the original map.
adjustEdgeWeight :: CFG -> (EdgeWeight -> EdgeWeight)
                 -> BlockId -> BlockId -> CFG
adjustEdgeWeight cfg f from to
  | Just info <- getEdgeInfo from to cfg
  , weight <- edgeWeight info
  = addEdge from to (info { edgeWeight = f weight}) cfg
  | otherwise = cfg

getCfgNodes :: CFG -> LabelSet
getCfgNodes m = mapFoldMapWithKey (\k v -> setFromList (k:mapKeys v)) m

hasNode :: CFG -> BlockId -> Bool
hasNode m node = mapMember node m || any (mapMember node) m

-- | Check if the nodes in the cfg and the set of blocks are the same.
--   In a case of a missmatch we panic and show the difference.
sanityCheckCfg :: CFG -> LabelSet -> SDoc -> Bool
sanityCheckCfg m blockSet msg
    | blockSet == cfgNodes
    = True
    | otherwise =
        pprPanic "Block list and cfg nodes don't match" (
            text "difference:" <+> ppr diff $$
            text "blocks:" <+> ppr blockSet $$
            text "cfg:" <+> ppr m $$
            msg )
            False
    where
      cfgNodes = getCfgNodes m :: LabelSet
      diff = (setUnion cfgNodes blockSet) `setDifference` (setIntersection cfgNodes blockSet) :: LabelSet

-- | Filter the CFG with a custom function f.
--   Paramaeters are `f from to edgeInfo`
filterEdges :: (BlockId -> BlockId -> EdgeInfo -> Bool) -> CFG -> CFG
filterEdges f cfg =
    mapMapWithKey filterSources cfg
    where
      filterSources from m =
        mapFilterWithKey (\to w -> f from to w) m


{- Note [Updating the CFG during shortcutting]

See Note [What is shortcutting] in the control flow optimization
code (CmmContFlowOpt.hs) for a slightly more in depth explanation on shortcutting.

In the native backend we shortcut jumps at the assembly level. (AsmCodeGen.hs)
This means we remove blocks containing only one jump from the code
and instead redirecting all jumps targeting this block to the deleted
blocks jump target.

However we want to have an accurate representation of control
flow in the CFG. So we add/remove edges accordingly to account
for the eliminated blocks and new edges.

If we shortcut A -> B -> C to A -> C:
* We delete edges A -> B and B -> C
* Replacing them with the edge A -> C

We also try to preserve jump weights while doing so.

Note that:
* The edge B -> C can't have interesting weights since
  the block B consists of a single unconditional jump without branching.
* We delete the edge A -> B and add the edge A -> C.
* The edge A -> B can be one of many edges originating from A so likely
  has edge weights we want to preserve.

For this reason we simply store the edge info from the original A -> B
edge and apply this information to the new edge A -> C.

Sometimes we have a scenario where jump target C is not represented by an
BlockId but an immediate value. I'm only aware of this happening without
tables next to code currently.

Then we go from A ---> B - -> IMM   to   A - -> IMM where the dashed arrows
are not stored in the CFG.

In that case we simply delete the edge A -> B.

In terms of implementation the native backend first builds a mapping
from blocks suitable for shortcutting to their jump targets.
Then it redirects all jump instructions to these blocks using the
built up mapping.
This function (shortcutWeightMap) takes the same mapping and
applies the mapping to the CFG in the way layed out above.

-}
shortcutWeightMap :: CFG -> LabelMap (Maybe BlockId) -> CFG
shortcutWeightMap cfg cuts =
  foldl' applyMapping cfg $ mapToList cuts
    where
-- takes the tuple (B,C) from the notation in [Updating the CFG during shortcutting]
      applyMapping :: CFG -> (BlockId,Maybe BlockId) -> CFG
      --Shortcut immediate
      applyMapping m (from, Nothing) =
        mapDelete from .
        fmap (mapDelete from) $ m
      --Regular shortcut
      applyMapping m (from, Just to) =
        let updatedMap :: CFG
            updatedMap
              = fmap (shortcutEdge (from,to)) $
                (mapDelete from m :: CFG )
        --Sometimes we can shortcut multiple blocks like so:
        -- A -> B -> C -> D -> E => A -> E
        -- so we check for such chains.
        in case mapLookup to cuts of
            Nothing -> updatedMap
            Just dest -> applyMapping updatedMap (to, dest)
      --Redirect edge from B to C
      shortcutEdge :: (BlockId, BlockId) -> LabelMap EdgeInfo -> LabelMap EdgeInfo
      shortcutEdge (from, to) m =
        case mapLookup from m of
          Just info -> mapInsert to info $ mapDelete from m
          Nothing   -> m

-- | Sometimes we insert a block which should unconditionally be executed
--   after a given block. This function updates the CFG for these cases.
--  So we get A -> B    => A -> A' -> B
--             \                  \
--              -> C    =>         -> C
--
addImmediateSuccessor :: BlockId -> BlockId -> CFG -> CFG
addImmediateSuccessor node follower cfg
    = updateEdges . addWeightEdge node follower uncondWeight $ cfg
    where
        uncondWeight = fromIntegral . D.uncondWeight .
                       D.cfgWeightInfo $ D.unsafeGlobalDynFlags
        targets = getSuccessorEdges cfg node
        successors = map fst targets :: [BlockId]
        updateEdges = addNewSuccs . remOldSuccs
        remOldSuccs m = foldl' (flip (delEdge node)) m successors
        addNewSuccs m =
          foldl' (\m' (t,info) -> addEdge follower t info m') m targets

-- | Adds a new edge, overwrites existing edges if present
addEdge :: BlockId -> BlockId -> EdgeInfo -> CFG -> CFG
addEdge from to info cfg =
    mapAlter addDest from cfg
    where
        addDest Nothing = Just $ mapSingleton to info
        addDest (Just wm) = Just $ mapInsert to info wm

-- | Adds a edge with the given weight to the cfg
--   If there already existed an edge it is overwritten.
--   `addWeightEdge from to weight cfg`
addWeightEdge :: BlockId -> BlockId -> EdgeWeight -> CFG -> CFG
addWeightEdge from to weight cfg =
    addEdge from to (mkWeightInfo weight) cfg

delEdge :: BlockId -> BlockId -> CFG -> CFG
delEdge from to m =
    mapAlter remDest from m
    where
        remDest Nothing = Nothing
        remDest (Just wm) = Just $ mapDelete to wm

-- | Destinations from bid ordered by weight (descending)
getSuccEdgesSorted :: CFG -> BlockId -> [(BlockId,EdgeInfo)]
getSuccEdgesSorted m bid =
    let destMap = mapFindWithDefault mapEmpty bid m
        cfgEdges = mapToList destMap
        sortedEdges = sortWith (negate . edgeWeight . snd) cfgEdges
    in  --pprTrace "getSuccEdgesSorted" (ppr bid <+> text "map:" <+> ppr m)
        sortedEdges

-- | Get successors of a given node with edge weights.
getSuccessorEdges :: CFG -> BlockId -> [(BlockId,EdgeInfo)]
getSuccessorEdges m bid = maybe [] mapToList $ mapLookup bid m

getEdgeInfo :: BlockId -> BlockId -> CFG -> Maybe EdgeInfo
getEdgeInfo from to m
    | Just wm <- mapLookup from m
    , Just info <- mapLookup to wm
    = Just $! info
    | otherwise
    = Nothing

reverseEdges :: CFG -> CFG
reverseEdges cfg = foldr add mapEmpty flatElems
  where
    elems = mapToList $ fmap mapToList cfg :: [(BlockId,[(BlockId,EdgeInfo)])]
    flatElems =
        concatMap (\(from,ws) -> map (\(to,info) -> (to,from,info)) ws ) elems
    add (to,from,info) m = addEdge to from info m

-- | Returns a unordered list of all edges with info
infoEdgeList :: CFG -> [CfgEdge]
infoEdgeList m =
  mapFoldMapWithKey
    (\from toMap ->
      map (\(to,info) -> CfgEdge from to info) (mapToList toMap))
    m

-- | Unordered list of edges with weight as Tuple (from,to,weight)
weightedEdgeList :: CFG -> [(BlockId,BlockId,EdgeWeight)]
weightedEdgeList m =
  mapFoldMapWithKey
    (\from toMap ->
      map (\(to,info) ->
        (from,to, edgeWeight info)) (mapToList toMap))
    m
      --  (\(from, tos) -> map (\(to,info) -> (from,to, edgeWeight info)) tos )

-- | Returns a unordered list of all edges without weights
edgeList :: CFG -> [Edge]
edgeList m =
        mapFoldMapWithKey (\from toMap -> fmap (from,) (mapKeys toMap)) m

-- | Get successors of a given node without edge weights.
getSuccessors :: CFG -> BlockId -> [BlockId]
getSuccessors m bid
    | Just wm <- mapLookup bid m
    = mapKeys wm
    | otherwise = []

pprEdgeWeights :: CFG -> SDoc
pprEdgeWeights m =
    let edges = sort $ weightedEdgeList m
        printEdge (from, to, weight)
            = text "\t" <> ppr from <+> text "->" <+> ppr to <>
              text "[label=\"" <> ppr weight <> text "\",weight=\"" <>
              ppr weight <> text "\"];\n"
        --for the case that there are no edges from/to this node.
        --This should rarely happen but it can save a lot of time
        --to immediatly see it when it does.
        printNode node
            = text "\t" <> ppr node <> text ";\n"
        getEdgeNodes (from, to, _weight) = [from,to]
        edgeNodes = setFromList $ concatMap getEdgeNodes edges :: LabelSet
        nodes = filter (\n -> (not . setMember n) edgeNodes) . mapKeys $ mapFilter null m
    in
    text "digraph {\n" <>
        (foldl' (<>) empty (map printEdge edges)) <>
        (foldl' (<>) empty (map printNode nodes)) <>
    text "}\n"

{-# INLINE updateEdgeWeight #-} --Allows eliminating the tuple when possible
updateEdgeWeight :: (EdgeWeight -> EdgeWeight) -> Edge -> CFG -> CFG
updateEdgeWeight f (from, to) cfg
    | Just oldInfo <- getEdgeInfo from to cfg
    = let oldWeight = edgeWeight oldInfo
          newWeight = f oldWeight
      in addEdge from to (oldInfo {edgeWeight = newWeight}) cfg
    | otherwise
    = panic "Trying to update invalid edge"

-- from to oldWeight => newWeight
mapWeights :: (BlockId -> BlockId -> EdgeWeight -> EdgeWeight) -> CFG -> CFG
mapWeights f cfg =
  foldl' (\cfg (CfgEdge from to info) ->
            let oldWeight = edgeWeight info
                newWeight = f from to oldWeight
            in addEdge from to (info {edgeWeight = newWeight}) cfg)
          cfg (infoEdgeList cfg)


-- | Insert a block in the control flow between two other blocks.
-- We pass a list of tuples (A,B,C) where
-- * A -> C: Old edge
-- * A -> B -> C : New Arc, where B is the new block.
-- It's possible that a block has two jumps to the same block
-- in the assembly code. However we still only store a single edge for
-- these cases.
-- We assign the old edge info to the edge A -> B and assign B -> C the
-- weight of an unconditional jump.
addNodesBetween :: CFG -> [(BlockId,BlockId,BlockId)] -> CFG
addNodesBetween m updates =
  foldl'  updateWeight m .
          weightUpdates $ updates
    where
      weight = fromIntegral . D.uncondWeight .
                D.cfgWeightInfo $ D.unsafeGlobalDynFlags
      -- We might add two blocks for different jumps along a single
      -- edge. So we end up with edges:   A -> B -> C   ,   A -> D -> C
      -- in this case after applying the first update the weight for A -> C
      -- is no longer available. So we calculate future weights before updates.
      weightUpdates = map getWeight
      getWeight :: (BlockId,BlockId,BlockId) -> (BlockId,BlockId,BlockId,EdgeInfo)
      getWeight (from,between,old)
        | Just edgeInfo <- getEdgeInfo from old m
        = (from,between,old,edgeInfo)
        | otherwise
        = pprPanic "Can't find weight for edge that should have one" (
            text "triple" <+> ppr (from,between,old) $$
            text "updates" <+> ppr updates )
      updateWeight :: CFG -> (BlockId,BlockId,BlockId,EdgeInfo) -> CFG
      updateWeight m (from,between,old,edgeInfo)
        = addEdge from between edgeInfo .
          addWeightEdge between old weight .
          delEdge from old $ m

{-
  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  ~~~       Note [CFG Edge Weights]    ~~~
  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

  Edge weights assigned do not currently represent a specific
  cost model and rather just a ranking of which blocks should
  be placed next to each other given their connection type in
  the CFG.
  This is especially relevant if we whenever two blocks will
  jump to the same target.

                     A   B
                      \ /
                       C

  Should A or B be placed in front of C? The block layout algorithm
  decides this based on which edge (A,C)/(B,C) is heavier. So we
  make a educated guess how often execution will transer control
  along each edge as well as how much we gain by placing eg A before
  C.

  We rank edges in this order:
  * Unconditional Control Transfer - They will always
    transfer control to their target. Unless there is a info table
    we can turn the jump into a fallthrough as well.
    We use 20k as default, so it's easy to spot if values have been
    modified but unlikely that we run into issues with overflow.
  * If branches (likely) - We assume branches marked as likely
    are taken more than 80% of the time.
    By ranking them below unconditional jumps we make sure we
    prefer the unconditional if there is a conditional and
    unconditional edge towards a block.
  * If branches (regular) - The false branch can potentially be turned
    into a fallthrough so we prefer it slightly over the true branch.
  * Unlikely branches - These can be assumed to be taken less than 20%
    of the time. So we given them one of the lowest priorities.
  * Switches - Switches at this level are implemented as jump tables
    so have a larger number of successors. So without more information
    we can only say that each individual successor is unlikely to be
    jumped to and we rank them accordingly.
  * Calls - We currently ignore calls completly:
        * By the time we return from a call there is a good chance
          that the address we return to has already been evicted from
          cache eliminating a main advantage sequential placement brings.
        * Calls always require a info table in front of their return
          address. This reduces the chance that we return to the same
          cache line further.


-}
-- | Generate weights for a Cmm proc based on some simple heuristics.
getCfgProc :: D.CfgWeights -> RawCmmDecl -> CFG
484 485 486 487 488 489 490
getCfgProc _       (CmmData {}) = mapEmpty
-- Sometimes GHC generates dummy procs which don't actually contain code.
-- But they might contain bottoms in some fields so we check for an empty
-- body first. In particular this happens with SplitObjs enabled.
getCfgProc weights (CmmProc _info _lab _live graph)
  | null (toBlockList graph) = mapEmpty
  | otherwise                = getCfg weights graph
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638

getCfg :: D.CfgWeights -> CmmGraph -> CFG
getCfg weights graph =
  foldl' insertEdge edgelessCfg $ concatMap getBlockEdges blocks
  where
    D.CFGWeights
            { D.uncondWeight = uncondWeight
            , D.condBranchWeight = condBranchWeight
            , D.switchWeight = switchWeight
            , D.callWeight = callWeight
            , D.likelyCondWeight = likelyCondWeight
            , D.unlikelyCondWeight = unlikelyCondWeight
            --  Last two are used in other places
            --, D.infoTablePenalty = infoTablePenalty
            --, D.backEdgeBonus = backEdgeBonus
            } = weights
    -- Explicitly add all nodes to the cfg to ensure they are part of the
    -- CFG.
    edgelessCfg = mapFromList $ zip (map G.entryLabel blocks) (repeat mapEmpty)
    insertEdge :: CFG -> ((BlockId,BlockId),EdgeInfo) -> CFG
    insertEdge m ((from,to),weight) =
      mapAlter f from m
        where
          f :: Maybe (LabelMap EdgeInfo) -> Maybe (LabelMap EdgeInfo)
          f Nothing = Just $ mapSingleton to weight
          f (Just destMap) = Just $ mapInsert to weight destMap
    getBlockEdges :: CmmBlock -> [((BlockId,BlockId),EdgeInfo)]
    getBlockEdges block =
      case branch of
        CmmBranch dest -> [mkEdge dest uncondWeight]
        CmmCondBranch _c t f l
          | l == Nothing ->
              [mkEdge f condBranchWeight,   mkEdge t condBranchWeight]
          | l == Just True ->
              [mkEdge f unlikelyCondWeight, mkEdge t likelyCondWeight]
          | l == Just False ->
              [mkEdge f likelyCondWeight,   mkEdge t unlikelyCondWeight]
        (CmmSwitch _e ids) ->
          let switchTargets = switchTargetsToList ids
              --Compiler performance hack - for very wide switches don't
              --consider targets for layout.
              adjustedWeight =
                if (length switchTargets > 10) then -1 else switchWeight
          in map (\x -> mkEdge x adjustedWeight) switchTargets
        (CmmCall { cml_cont = Just cont})  -> [mkEdge cont callWeight]
        (CmmForeignCall {Cmm.succ = cont}) -> [mkEdge cont callWeight]
        (CmmCall { cml_cont = Nothing })   -> []
        other ->
            panic "Foo" $
            ASSERT2(False, ppr "Unkown successor cause:" <>
              (ppr branch <+> text "=>" <> ppr (G.successors other)))
            map (\x -> ((bid,x),mkEdgeInfo 0)) $ G.successors other
      where
        bid = G.entryLabel block
        mkEdgeInfo = EdgeInfo (CmmSource branch) . fromIntegral
        mkEdge target weight = ((bid,target), mkEdgeInfo weight)
        branch = lastNode block :: CmmNode O C

    blocks = revPostorder graph :: [CmmBlock]

--Find back edges by BFS
findBackEdges :: BlockId -> CFG -> Edges
findBackEdges root cfg =
    --pprTraceIt "Backedges:" $
    map fst .
    filter (\x -> snd x == Backward) $ typedEdges
  where
    edges = edgeList cfg :: [(BlockId,BlockId)]
    getSuccs = getSuccessors cfg :: BlockId -> [BlockId]
    typedEdges =
      classifyEdges root getSuccs edges :: [((BlockId,BlockId),EdgeType)]


optimizeCFG :: D.CfgWeights -> RawCmmDecl -> CFG -> CFG
optimizeCFG _ (CmmData {}) cfg = cfg
optimizeCFG weights (CmmProc info _lab _live graph) cfg =
    favourFewerPreds  .
    penalizeInfoTables info .
    increaseBackEdgeWeight (g_entry graph) $ cfg
  where

    -- | Increase the weight of all backedges in the CFG
    -- this helps to make loop jumpbacks the heaviest edges
    increaseBackEdgeWeight :: BlockId -> CFG -> CFG
    increaseBackEdgeWeight root cfg =
        let backedges = findBackEdges root cfg
            update weight
              --Keep irrelevant edges irrelevant
              | weight <= 0 = 0
              | otherwise
              = weight + fromIntegral (D.backEdgeBonus weights)
        in  foldl'  (\cfg edge -> updateEdgeWeight update edge cfg)
                    cfg backedges

    -- | Since we cant fall through info tables we penalize these.
    penalizeInfoTables :: LabelMap a -> CFG -> CFG
    penalizeInfoTables info cfg =
        mapWeights fupdate cfg
      where
        fupdate :: BlockId -> BlockId -> EdgeWeight -> EdgeWeight
        fupdate _ to weight
          | mapMember to info
          = weight - (fromIntegral $ D.infoTablePenalty weights)
          | otherwise = weight


{- Note [Optimize for Fallthrough]

-}
    -- | If a block has two successors, favour the one with fewer
    -- predecessors. (As that one is more likely to become a fallthrough)
    favourFewerPreds :: CFG -> CFG
    favourFewerPreds cfg =
        let
            revCfg =
              reverseEdges $ filterEdges
                              (\_from -> fallthroughTarget)  cfg

            predCount n = length $ getSuccessorEdges revCfg n
            nodes = getCfgNodes cfg

            modifiers :: Int -> Int -> (EdgeWeight, EdgeWeight)
            modifiers preds1 preds2
              | preds1 <  preds2 = ( 1,-1)
              | preds1 == preds2 = ( 0, 0)
              | otherwise        = (-1, 1)

            update cfg node
              | [(s1,e1),(s2,e2)] <- getSuccessorEdges cfg node
              , w1 <- edgeWeight e1
              , w2 <- edgeWeight e2
              --Only change the weights if there isn't already a ordering.
              , w1 == w2
              , (mod1,mod2) <- modifiers (predCount s1) (predCount s2)
              = (\cfg' ->
                  (adjustEdgeWeight cfg' (+mod2) node s2))
                  (adjustEdgeWeight cfg  (+mod1) node s1)
              | otherwise
              = cfg
        in setFoldl update cfg nodes
      where
        fallthroughTarget :: BlockId -> EdgeInfo -> Bool
        fallthroughTarget to (EdgeInfo source _weight)
          | mapMember to info = False
          | AsmCodeGen <- source = True
          | CmmSource (CmmBranch {}) <- source = True
          | CmmSource (CmmCondBranch {}) <- source = True
          | otherwise = False