DsListComp.lhs 34.4 KB
Newer Older
1
%
Simon Marlow's avatar
Simon Marlow committed
2
% (c) The University of Glasgow 2006
3
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
4
%
Simon Marlow's avatar
Simon Marlow committed
5

6
Desugaring list comprehensions, monad comprehensions and array comprehensions
7 8

\begin{code}
9
{-# LANGUAGE NamedFieldPuns #-}
10
{-# OPTIONS -fno-warn-incomplete-patterns #-}
11 12 13
-- The above warning supression flag is a temporary kludge.
-- While working on this module you are encouraged to remove it and fix
-- any warnings in the module. See
Ian Lynagh's avatar
Ian Lynagh committed
14
--     http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#Warnings
15 16
-- for details

17
module DsListComp ( dsListComp, dsPArrComp, dsMonadComp ) where
18

19 20
#include "HsVersions.h"

21
import {-# SOURCE #-} DsExpr ( dsExpr, dsLExpr, dsLocalBinds )
22

23
import HsSyn
Simon Marlow's avatar
Simon Marlow committed
24
import TcHsSyn
25
import CoreSyn
26
import MkCore
27

28
import DsMonad		-- the monadery used in the desugarer
29
import DsUtils
30

Simon Marlow's avatar
Simon Marlow committed
31 32
import DynFlags
import CoreUtils
33
import Id
Simon Marlow's avatar
Simon Marlow committed
34 35 36 37 38
import Type
import TysWiredIn
import Match
import PrelNames
import SrcLoc
39
import Outputable
40
import FastString
41
import TcType
42 43 44 45 46 47 48 49 50
\end{code}

List comprehensions may be desugared in one of two ways: ``ordinary''
(as you would expect if you read SLPJ's book) and ``with foldr/build
turned on'' (if you read Gill {\em et al.}'s paper on the subject).

There will be at least one ``qualifier'' in the input.

\begin{code}
51
dsListComp :: [LStmt Id] 
52
	   -> Type		-- Type of entire list 
53
	   -> DsM CoreExpr
54
dsListComp lquals res_ty = do 
55 56
    dflags <- getDOptsDs
    let quals = map unLoc lquals
57 58 59
        elt_ty = case tcTyConAppArgs res_ty of
                   [elt_ty] -> elt_ty
                   _ -> pprPanic "dsListComp" (ppr res_ty $$ ppr lquals)
60
    
61
    if not (dopt Opt_EnableRewriteRules dflags) || dopt Opt_IgnoreInterfacePragmas dflags
62 63 64 65 66
       -- Either rules are switched off, or we are ignoring what there are;
       -- Either way foldr/build won't happen, so use the more efficient
       -- Wadler-style desugaring
       || isParallelComp quals
       -- Foldr-style desugaring can't handle parallel list comprehensions
67 68
        then deListComp quals (mkNilExpr elt_ty)
        else mkBuildExpr elt_ty (\(c, _) (n, _) -> dfListComp c n quals) 
69 70
             -- Foldr/build should be enabled, so desugar 
             -- into foldrs and builds
71 72 73 74 75 76 77 78

  where 
    -- We must test for ParStmt anywhere, not just at the head, because an extension
    -- to list comprehensions would be to add brackets to specify the associativity
    -- of qualifier lists. This is really easy to do by adding extra ParStmts into the
    -- mix of possibly a single element in length, so we do this to leave the possibility open
    isParallelComp = any isParallelStmt
  
79 80
    isParallelStmt (ParStmt _ _ _ _) = True
    isParallelStmt _                 = False
81 82 83 84 85 86
    
    
-- This function lets you desugar a inner list comprehension and a list of the binders
-- of that comprehension that we need in the outer comprehension into such an expression
-- and the type of the elements that it outputs (tuples of binders)
dsInnerListComp :: ([LStmt Id], [Id]) -> DsM (CoreExpr, Type)
87
dsInnerListComp (stmts, bndrs)
88
  = do { expr <- dsListComp (stmts ++ [noLoc $ mkLastStmt (mkBigLHsVarTup bndrs)]) 
89
                            (mkListTy bndrs_tuple_type)
90 91 92
       ; return (expr, bndrs_tuple_type) }
  where
    bndrs_tuple_type = mkBigCoreVarTupTy bndrs
93 94 95 96 97
        
-- This function factors out commonality between the desugaring strategies for TransformStmt.
-- Given such a statement it gives you back an expression representing how to compute the transformed
-- list and the tuple that you need to bind from that list in order to proceed with your desugaring
dsTransformStmt :: Stmt Id -> DsM (CoreExpr, LPat Id)
98
dsTransformStmt (TransformStmt stmts binders usingExpr maybeByExpr _ _)
99 100
 = do { (expr, binders_tuple_type) <- dsInnerListComp (stmts, binders)
      ; usingExpr' <- dsLExpr usingExpr
101
    
102 103
      ; using_args <-
          case maybeByExpr of
104 105 106 107 108 109 110 111 112 113
            Nothing -> return [expr]
            Just byExpr -> do
                byExpr' <- dsLExpr byExpr
                
                us <- newUniqueSupply
                [tuple_binder] <- newSysLocalsDs [binders_tuple_type]
                let byExprWrapper = mkTupleCase us binders byExpr' tuple_binder (Var tuple_binder)
                
                return [Lam tuple_binder byExprWrapper, expr]

114 115 116
      ; let inner_list_expr = mkApps usingExpr' ((Type binders_tuple_type) : using_args)
            pat = mkBigLHsVarPatTup binders
      ; return (inner_list_expr, pat) }
117 118 119 120 121
    
-- This function factors out commonality between the desugaring strategies for GroupStmt.
-- Given such a statement it gives you back an expression representing how to compute the transformed
-- list and the tuple that you need to bind from that list in order to proceed with your desugaring
dsGroupStmt :: Stmt Id -> DsM (CoreExpr, LPat Id)
122 123
dsGroupStmt (GroupStmt { grpS_stmts = stmts, grpS_bndrs = binderMap
                       , grpS_by = by, grpS_using = using }) = do
124 125 126 127 128 129 130 131
    let (fromBinders, toBinders) = unzip binderMap
        
        fromBindersTypes = map idType fromBinders
        toBindersTypes = map idType toBinders
        
        toBindersTupleType = mkBigCoreTupTy toBindersTypes
    
    -- Desugar an inner comprehension which outputs a list of tuples of the "from" binders
132
    (expr, from_tup_ty) <- dsInnerListComp (stmts, fromBinders)
133 134 135
    
    -- Work out what arguments should be supplied to that expression: i.e. is an extraction
    -- function required? If so, create that desugared function and add to arguments
136
    usingExpr' <- dsLExpr using
137 138 139 140 141 142 143 144
    usingArgs <- case by of
                   Nothing   -> return [expr]
 		   Just by_e -> do { by_e' <- dsLExpr by_e
                                   ; us <- newUniqueSupply
                                   ; [from_tup_id] <- newSysLocalsDs [from_tup_ty]
                                   ; let by_wrap = mkTupleCase us fromBinders by_e' 
                                                   from_tup_id (Var from_tup_id)
                                   ; return [Lam from_tup_id by_wrap, expr] }
145 146 147 148 149 150 151
    
    -- Create an unzip function for the appropriate arity and element types and find "map"
    (unzip_fn, unzip_rhs) <- mkUnzipBind fromBindersTypes
    map_id <- dsLookupGlobalId mapName

    -- Generate the expressions to build the grouped list
    let -- First we apply the grouping function to the inner list
152
        inner_list_expr = mkApps usingExpr' ((Type from_tup_ty) : usingArgs)
153 154 155 156
        -- Then we map our "unzip" across it to turn the lists of tuples into tuples of lists
        -- We make sure we instantiate the type variable "a" to be a list of "from" tuples and
        -- the "b" to be a tuple of "to" lists!
        unzipped_inner_list_expr = mkApps (Var map_id) 
157
            [Type (mkListTy from_tup_ty), Type toBindersTupleType, Var unzip_fn, inner_list_expr]
158 159 160 161 162 163 164
        -- Then finally we bind the unzip function around that expression
        bound_unzipped_inner_list_expr = Let (Rec [(unzip_fn, unzip_rhs)]) unzipped_inner_list_expr
    
    -- Build a pattern that ensures the consumer binds into the NEW binders, which hold lists rather than single values
    let pat = mkBigLHsVarPatTup toBinders
    return (bound_unzipped_inner_list_expr, pat)
    
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
\end{code}

%************************************************************************
%*									*
\subsection[DsListComp-ordinary]{Ordinary desugaring of list comprehensions}
%*									*
%************************************************************************

Just as in Phil's chapter~7 in SLPJ, using the rules for
optimally-compiled list comprehensions.  This is what Kevin followed
as well, and I quite happily do the same.  The TQ translation scheme
transforms a list of qualifiers (either boolean expressions or
generators) into a single expression which implements the list
comprehension.  Because we are generating 2nd-order polymorphic
lambda-calculus, calls to NIL and CONS must be applied to a type
argument, as well as their usual value arguments.
\begin{verbatim}
TE << [ e | qs ] >>  =  TQ << [ e | qs ] ++ Nil (typeOf e) >>

(Rule C)
TQ << [ e | ] ++ L >> = Cons (typeOf e) TE <<e>> TE <<L>>

(Rule B)
TQ << [ e | b , qs ] ++ L >> =
    if TE << b >> then TQ << [ e | qs ] ++ L >> else TE << L >>

(Rule A')
TQ << [ e | p <- L1, qs ]  ++  L2 >> =
  letrec
    h = \ u1 ->
    	  case u1 of
	    []        ->  TE << L2 >>
	    (u2 : u3) ->
		  (( \ TE << p >> -> ( TQ << [e | qs]  ++  (h u3) >> )) u2)
		    [] (h u3)
  in
    h ( TE << L1 >> )

"h", "u1", "u2", and "u3" are new variables.
\end{verbatim}

@deListComp@ is the TQ translation scheme.  Roughly speaking, @dsExpr@
is the TE translation scheme.  Note that we carry around the @L@ list
already desugared.  @dsListComp@ does the top TE rule mentioned above.

210 211 212 213 214
To the above, we add an additional rule to deal with parallel list
comprehensions.  The translation goes roughly as follows:
     [ e | p1 <- e11, let v1 = e12, p2 <- e13
         | q1 <- e21, let v2 = e22, q2 <- e23]
     =>
215 216 217 218 219 220
     [ e | ((x1, .., xn), (y1, ..., ym)) <-
               zip [(x1,..,xn) | p1 <- e11, let v1 = e12, p2 <- e13]
                   [(y1,..,ym) | q1 <- e21, let v2 = e22, q2 <- e23]]
where (x1, .., xn) are the variables bound in p1, v1, p2
      (y1, .., ym) are the variables bound in q1, v2, q2

221
In the translation below, the ParStmt branch translates each parallel branch
222 223 224 225 226 227 228 229
into a sub-comprehension, and desugars each independently.  The resulting lists
are fed to a zip function, we create a binding for all the variables bound in all
the comprehensions, and then we hand things off the the desugarer for bindings.
The zip function is generated here a) because it's small, and b) because then we
don't have to deal with arbitrary limits on the number of zip functions in the
prelude, nor which library the zip function came from.
The introduced tuples are Boxed, but only because I couldn't get it to work
with the Unboxed variety.
230

231
\begin{code}
232

233 234 235
deListComp :: [Stmt Id] -> CoreExpr -> DsM CoreExpr

deListComp [] _ = panic "deListComp"
236

237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
deListComp (LastStmt body _ : quals) list 
  =     -- Figure 7.4, SLPJ, p 135, rule C above
    ASSERT( null quals )
    do { core_body <- dsLExpr body
       ; return (mkConsExpr (exprType core_body) core_body list) }

	-- Non-last: must be a guard
deListComp (ExprStmt guard _ _ _ : quals) list = do  -- rule B above
    core_guard <- dsLExpr guard
    core_rest <- deListComp quals list
    return (mkIfThenElse core_guard core_rest list)

-- [e | let B, qs] = let B in [e | qs]
deListComp (LetStmt binds : quals) list = do
    core_rest <- deListComp quals list
    dsLocalBinds binds core_rest

deListComp (stmt@(TransformStmt {}) : quals) list = do
    (inner_list_expr, pat) <- dsTransformStmt stmt
    deBindComp pat inner_list_expr quals list

deListComp (stmt@(GroupStmt {}) : quals) list = do
    (inner_list_expr, pat) <- dsGroupStmt stmt
    deBindComp pat inner_list_expr quals list

deListComp (BindStmt pat list1 _ _ : quals) core_list2 = do -- rule A' above
    core_list1 <- dsLExpr list1
    deBindComp pat core_list1 quals core_list2

deListComp (ParStmt stmtss_w_bndrs _ _ _ : quals) list
267
  = do
268
    exps_and_qual_tys <- mapM dsInnerListComp stmtss_w_bndrs
269 270 271
    let (exps, qual_tys) = unzip exps_and_qual_tys
    
    (zip_fn, zip_rhs) <- mkZipBind qual_tys
272 273 274

	-- Deal with [e | pat <- zip l1 .. ln] in example above
    deBindComp pat (Let (Rec [(zip_fn, zip_rhs)]) (mkApps (Var zip_fn) exps)) 
275
		   quals list
276

277 278 279 280
  where 
	bndrs_s = map snd stmtss_w_bndrs

	-- pat is the pattern ((x1,..,xn), (y1,..,ym)) in the example above
281
	pat  = mkBigLHsPatTup pats
282
	pats = map mkBigLHsVarPatTup bndrs_s
283 284
\end{code}

285

286
\begin{code}
287 288 289 290 291
deBindComp :: OutPat Id
           -> CoreExpr
           -> [Stmt Id]
           -> CoreExpr
           -> DsM (Expr Id)
292
deBindComp pat core_list1 quals core_list2 = do
293 294
    let
        u3_ty@u1_ty = exprType core_list1	-- two names, same thing
295

296 297
        -- u1_ty is a [alpha] type, and u2_ty = alpha
        u2_ty = hsLPatType pat
298

299 300 301 302
        res_ty = exprType core_list2
        h_ty   = u1_ty `mkFunTy` res_ty
        
    [h, u1, u2, u3] <- newSysLocalsDs [h_ty, u1_ty, u2_ty, u3_ty]
303

304
    -- the "fail" value ...
305
    let
306 307 308
        core_fail   = App (Var h) (Var u3)
        letrec_body = App (Var h) core_list1
        
309
    rest_expr <- deListComp quals core_fail
310 311
    core_match <- matchSimply (Var u2) (StmtCtxt ListComp) pat rest_expr core_fail	
    
312
    let
313
        rhs = Lam u1 $
314 315 316
	      Case (Var u1) u1 res_ty
		   [(DataAlt nilDataCon,  [], 	    core_list2),
		    (DataAlt consDataCon, [u2, u3], core_match)]
317
			-- Increasing order of tag
318 319
            
    return (Let (Rec [(h, rhs)]) letrec_body)
320 321
\end{code}

322 323 324 325 326 327 328
%************************************************************************
%*									*
\subsection[DsListComp-foldr-build]{Foldr/Build desugaring of list comprehensions}
%*									*
%************************************************************************

@dfListComp@ are the rules used with foldr/build turned on:
329

330
\begin{verbatim}
331 332 333 334 335 336 337 338
TE[ e | ]            c n = c e n
TE[ e | b , q ]      c n = if b then TE[ e | q ] c n else n
TE[ e | p <- l , q ] c n = let 
				f = \ x b -> case x of
						  p -> TE[ e | q ] c b
						  _ -> b
			   in
			   foldr f n l
339
\end{verbatim}
340

341
\begin{code}
342 343 344
dfListComp :: Id -> Id -- 'c' and 'n'
        -> [Stmt Id]   -- the rest of the qual's
        -> DsM CoreExpr
345

346 347 348 349 350 351
dfListComp _ _ [] = panic "dfListComp"

dfListComp c_id n_id (LastStmt body _ : quals) 
  = ASSERT( null quals )
    do { core_body <- dsLExpr body
       ; return (mkApps (Var c_id) [core_body, Var n_id]) }
352

353
	-- Non-last: must be a guard
354
dfListComp c_id n_id (ExprStmt guard _ _ _  : quals) = do
355
    core_guard <- dsLExpr guard
356
    core_rest <- dfListComp c_id n_id quals
357 358
    return (mkIfThenElse core_guard core_rest (Var n_id))

359
dfListComp c_id n_id (LetStmt binds : quals) = do
360
    -- new in 1.3, local bindings
361
    core_rest <- dfListComp c_id n_id quals
362
    dsLocalBinds binds core_rest
363

364
dfListComp c_id n_id (stmt@(TransformStmt {}) : quals) = do
365 366
    (inner_list_expr, pat) <- dsTransformStmt stmt
    -- Anyway, we bind the newly transformed list via the generic binding function
367
    dfBindComp c_id n_id (pat, inner_list_expr) quals 
368

369
dfListComp c_id n_id (stmt@(GroupStmt {}) : quals) = do
370 371
    (inner_list_expr, pat) <- dsGroupStmt stmt
    -- Anyway, we bind the newly grouped list via the generic binding function
372
    dfBindComp c_id n_id (pat, inner_list_expr) quals 
373
    
374
dfListComp c_id n_id (BindStmt pat list1 _ _ : quals) = do
375
    -- evaluate the two lists
376 377 378
    core_list1 <- dsLExpr list1
    
    -- Do the rest of the work in the generic binding builder
379
    dfBindComp c_id n_id (pat, core_list1) quals
380 381 382 383 384
               
dfBindComp :: Id -> Id	        -- 'c' and 'n'
       -> (LPat Id, CoreExpr)
	   -> [Stmt Id] 	        -- the rest of the qual's
	   -> DsM CoreExpr
385
dfBindComp c_id n_id (pat, core_list1) quals = do
386
    -- find the required type
387
    let x_ty   = hsLPatType pat
388
        b_ty   = idType n_id
389 390

    -- create some new local id's
391
    [b, x] <- newSysLocalsDs [b_ty, x_ty]
392 393

    -- build rest of the comprehesion
394
    core_rest <- dfListComp c_id b quals
395 396

    -- build the pattern match
397 398
    core_expr <- matchSimply (Var x) (StmtCtxt ListComp)
		pat core_rest (Var b)
399 400

    -- now build the outermost foldr, and return
401
    mkFoldrExpr x_ty b_ty (mkLams [x, b] core_expr) (Var n_id) core_list1
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
\end{code}

%************************************************************************
%*									*
\subsection[DsFunGeneration]{Generation of zip/unzip functions for use in desugaring}
%*									*
%************************************************************************

\begin{code}

mkZipBind :: [Type] -> DsM (Id, CoreExpr)
-- mkZipBind [t1, t2] 
-- = (zip, \as1:[t1] as2:[t2] 
--	   -> case as1 of 
--		[] -> []
--		(a1:as'1) -> case as2 of
--				[] -> []
--				(a2:as'2) -> (a1, a2) : zip as'1 as'2)]

mkZipBind elt_tys = do
422 423 424
    ass  <- mapM newSysLocalDs  elt_list_tys
    as'  <- mapM newSysLocalDs  elt_tys
    as's <- mapM newSysLocalDs  elt_list_tys
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
    
    zip_fn <- newSysLocalDs zip_fn_ty
    
    let inner_rhs = mkConsExpr elt_tuple_ty 
			(mkBigCoreVarTup as')
			(mkVarApps (Var zip_fn) as's)
        zip_body  = foldr mk_case inner_rhs (zip3 ass as' as's)
    
    return (zip_fn, mkLams ass zip_body)
  where
    elt_list_tys      = map mkListTy elt_tys
    elt_tuple_ty      = mkBigCoreTupTy elt_tys
    elt_tuple_list_ty = mkListTy elt_tuple_ty
    
    zip_fn_ty         = mkFunTys elt_list_tys elt_tuple_list_ty

    mk_case (as, a', as') rest
	  = Case (Var as) as elt_tuple_list_ty
		  [(DataAlt nilDataCon,  [],        mkNilExpr elt_tuple_ty),
		   (DataAlt consDataCon, [a', as'], rest)]
			-- Increasing order of tag
            
            
mkUnzipBind :: [Type] -> DsM (Id, CoreExpr)
-- mkUnzipBind [t1, t2] 
-- = (unzip, \ys :: [(t1, t2)] -> foldr (\ax :: (t1, t2) axs :: ([t1], [t2])
--     -> case ax of
--      (x1, x2) -> case axs of
--                (xs1, xs2) -> (x1 : xs1, x2 : xs2))
--      ([], [])
--      ys)
-- 
-- We use foldr here in all cases, even if rules are turned off, because we may as well!
mkUnzipBind elt_tys = do
    ax  <- newSysLocalDs elt_tuple_ty
    axs <- newSysLocalDs elt_list_tuple_ty
    ys  <- newSysLocalDs elt_tuple_list_ty
462 463
    xs  <- mapM newSysLocalDs elt_tys
    xss <- mapM newSysLocalDs elt_list_tys
464 465 466 467 468 469 470 471 472 473 474 475 476 477
    
    unzip_fn <- newSysLocalDs unzip_fn_ty

    [us1, us2] <- sequence [newUniqueSupply, newUniqueSupply]

    let nil_tuple = mkBigCoreTup (map mkNilExpr elt_tys)
        
        concat_expressions = map mkConcatExpression (zip3 elt_tys (map Var xs) (map Var xss))
        tupled_concat_expression = mkBigCoreTup concat_expressions
        
        folder_body_inner_case = mkTupleCase us1 xss tupled_concat_expression axs (Var axs)
        folder_body_outer_case = mkTupleCase us2 xs folder_body_inner_case ax (Var ax)
        folder_body = mkLams [ax, axs] folder_body_outer_case
        
478 479
    unzip_body <- mkFoldrExpr elt_tuple_ty elt_list_tuple_ty folder_body nil_tuple (Var ys)
    return (unzip_fn, mkLams [ys] unzip_body)
480 481 482 483 484 485 486 487 488
  where
    elt_tuple_ty       = mkBigCoreTupTy elt_tys
    elt_tuple_list_ty  = mkListTy elt_tuple_ty
    elt_list_tys       = map mkListTy elt_tys
    elt_list_tuple_ty  = mkBigCoreTupTy elt_list_tys
    
    unzip_fn_ty        = elt_tuple_list_ty `mkFunTy` elt_list_tuple_ty
            
    mkConcatExpression (list_element_ty, head, tail) = mkConsExpr list_element_ty head tail
489 490
\end{code}

chak's avatar
chak committed
491 492 493 494 495 496 497 498 499 500 501 502
%************************************************************************
%*									*
\subsection[DsPArrComp]{Desugaring of array comprehensions}
%*									*
%************************************************************************

\begin{code}

-- entry point for desugaring a parallel array comprehension
--
--   [:e | qss:] = <<[:e | qss:]>> () [:():]
--
503 504
dsPArrComp :: [Stmt Id] 
            -> DsM CoreExpr
505 506 507

-- Special case for parallel comprehension
dsPArrComp (ParStmt qss _ _ _ : quals) = dePArrParComp qss quals
508 509 510 511 512 513 514 515 516 517

-- Special case for simple generators:
--
--  <<[:e' | p <- e, qs:]>> = <<[: e' | qs :]>> p e
--
-- if matching again p cannot fail, or else
--
--  <<[:e' | p <- e, qs:]>> = 
--    <<[:e' | qs:]>> p (filterP (\x -> case x of {p -> True; _ -> False}) e)
--
518
dsPArrComp (BindStmt p e _ _ : qs) = do
519
    filterP <- dsLookupDPHId filterPName
520 521 522 523 524 525 526 527
    ce <- dsLExpr e
    let ety'ce  = parrElemType ce
        false   = Var falseDataConId
        true    = Var trueDataConId
    v <- newSysLocalDs ety'ce
    pred <- matchSimply (Var v) (StmtCtxt PArrComp) p true false
    let gen | isIrrefutableHsPat p = ce
            | otherwise            = mkApps (Var filterP) [Type ety'ce, mkLams [v] pred, ce]
528
    dePArrComp qs p gen
529

530
dsPArrComp qs = do -- no ParStmt in `qs'
531
    sglP <- dsLookupDPHId singletonPName
532
    let unitArray = mkApps (Var sglP) [Type unitTy, mkCoreTup []]
533
    dePArrComp qs (noLoc $ WildPat unitTy) unitArray
534

535 536


chak's avatar
chak committed
537 538
-- the work horse
--
539 540 541
dePArrComp :: [Stmt Id] 
	   -> LPat Id		-- the current generator pattern
	   -> CoreExpr		-- the current generator expression
chak's avatar
chak committed
542
	   -> DsM CoreExpr
543 544 545

dePArrComp [] _ _ = panic "dePArrComp"

chak's avatar
chak committed
546 547 548
--
--  <<[:e' | :]>> pa ea = mapP (\pa -> e') ea
--
549 550 551 552 553 554
dePArrComp (LastStmt e' _ : quals) pa cea
  = ASSERT( null quals )
    do { mapP <- dsLookupDPHId mapPName
       ; let ty = parrElemType cea
       ; (clam, ty'e') <- deLambda ty pa e'
       ; return $ mkApps (Var mapP) [Type ty, Type ty'e', clam, cea] }
chak's avatar
chak committed
555 556 557
--
--  <<[:e' | b, qs:]>> pa ea = <<[:e' | qs:]>> pa (filterP (\pa -> b) ea)
--
558
dePArrComp (ExprStmt b _ _ _ : qs) pa cea = do
559
    filterP <- dsLookupDPHId filterPName
560 561
    let ty = parrElemType cea
    (clam,_) <- deLambda ty pa b
562
    dePArrComp qs pa (mkApps (Var filterP) [Type ty, clam, cea])
563 564 565 566 567 568 569 570

--
--  <<[:e' | p <- e, qs:]>> pa ea =
--    let ef = \pa -> e
--    in
--    <<[:e' | qs:]>> (pa, p) (crossMap ea ef)
--
-- if matching again p cannot fail, or else
chak's avatar
chak committed
571 572
--
--  <<[:e' | p <- e, qs:]>> pa ea = 
573
--    let ef = \pa -> filterP (\x -> case x of {p -> True; _ -> False}) e
chak's avatar
chak committed
574
--    in
575
--    <<[:e' | qs:]>> (pa, p) (crossMapP ea ef)
chak's avatar
chak committed
576
--
577
dePArrComp (BindStmt p e _ _ : qs) pa cea = do
578 579
    filterP <- dsLookupDPHId filterPName
    crossMapP <- dsLookupDPHId crossMapPName
580 581 582 583 584 585 586 587 588 589 590 591 592
    ce <- dsLExpr e
    let ety'cea = parrElemType cea
        ety'ce  = parrElemType ce
        false   = Var falseDataConId
        true    = Var trueDataConId
    v <- newSysLocalDs ety'ce
    pred <- matchSimply (Var v) (StmtCtxt PArrComp) p true false
    let cef | isIrrefutableHsPat p = ce
            | otherwise            = mkApps (Var filterP) [Type ety'ce, mkLams [v] pred, ce]
    (clam, _) <- mkLambda ety'cea pa cef
    let ety'cef = ety'ce		    -- filter doesn't change the element type
        pa'     = mkLHsPatTup [pa, p]

593
    dePArrComp qs pa' (mkApps (Var crossMapP) 
594
                                 [Type ety'cea, Type ety'cef, cea, clam])
chak's avatar
chak committed
595 596 597
--
--  <<[:e' | let ds, qs:]>> pa ea = 
--    <<[:e' | qs:]>> (pa, (x_1, ..., x_n)) 
598
--		      (mapP (\v@pa -> let ds in (v, (x_1, ..., x_n))) ea)
chak's avatar
chak committed
599 600 601
--  where
--    {x_1, ..., x_n} = DV (ds)		-- Defined Variables
--
602
dePArrComp (LetStmt ds : qs) pa cea = do
603
    mapP <- dsLookupDPHId mapPName
604
    let xs     = collectLocalBinders ds
605 606 607 608
        ty'cea = parrElemType cea
    v <- newSysLocalDs ty'cea
    clet <- dsLocalBinds ds (mkCoreTup (map Var xs))
    let'v <- newSysLocalDs (exprType clet)
609
    let projBody = mkCoreLet (NonRec let'v clet) $ 
610 611
                   mkCoreTup [Var v, Var let'v]
        errTy    = exprType projBody
612
        errMsg   = ptext (sLit "DsListComp.dePArrComp: internal error!")
613 614 615 616
    cerr <- mkErrorAppDs pAT_ERROR_ID errTy errMsg
    ccase <- matchSimply (Var v) (StmtCtxt PArrComp) pa projBody cerr
    let pa'    = mkLHsPatTup [pa, mkLHsPatTup (map nlVarPat xs)]
        proj   = mkLams [v] ccase
617
    dePArrComp qs pa' (mkApps (Var mapP) 
618
                                   [Type ty'cea, Type errTy, proj, cea])
chak's avatar
chak committed
619
--
620 621 622 623
-- The parser guarantees that parallel comprehensions can only appear as
-- singeltons qualifier lists, which we already special case in the caller.
-- So, encountering one here is a bug.
--
624
dePArrComp (ParStmt _ _ _ _ : _) _ _ = 
625 626
  panic "DsListComp.dePArrComp: malformed comprehension AST"

chak's avatar
chak committed
627 628 629 630 631 632
--  <<[:e' | qs | qss:]>> pa ea = 
--    <<[:e' | qss:]>> (pa, (x_1, ..., x_n)) 
--		       (zipP ea <<[:(x_1, ..., x_n) | qs:]>>)
--    where
--      {x_1, ..., x_n} = DV (qs)
--
633 634
dePArrParComp :: [([LStmt Id], [Id])] -> [Stmt Id] -> DsM CoreExpr
dePArrParComp qss quals = do
635
    (pQss, ceQss) <- deParStmt qss
636
    dePArrComp quals pQss ceQss
chak's avatar
chak committed
637 638
  where
    deParStmt []             =
639
      -- empty parallel statement lists have no source representation
chak's avatar
chak committed
640
      panic "DsListComp.dePArrComp: Empty parallel list comprehension"
641
    deParStmt ((qs, xs):qss) = do        -- first statement
642
      let res_expr = mkLHsVarTuple xs
643
      cqs <- dsPArrComp (map unLoc qs ++ [mkLastStmt res_expr])
644
      parStmts qss (mkLHsVarPatTup xs) cqs
chak's avatar
chak committed
645 646
    ---
    parStmts []             pa cea = return (pa, cea)
647
    parStmts ((qs, xs):qss) pa cea = do  -- subsequent statements (zip'ed)
648
      zipP <- dsLookupDPHId zipPName
649
      let pa'      = mkLHsPatTup [pa, mkLHsVarPatTup xs]
650
          ty'cea   = parrElemType cea
651
          res_expr = mkLHsVarTuple xs
652
      cqs <- dsPArrComp (map unLoc qs ++ [mkLastStmt res_expr])
chak's avatar
chak committed
653
      let ty'cqs = parrElemType cqs
654
          cea'   = mkApps (Var zipP) [Type ty'cea, Type ty'cqs, cea, cqs]
chak's avatar
chak committed
655
      parStmts qss pa' cea'
chak's avatar
chak committed
656 657 658

-- generate Core corresponding to `\p -> e'
--
659 660 661 662 663
deLambda :: Type			-- type of the argument
	  -> LPat Id			-- argument pattern
	  -> LHsExpr Id			-- body
	  -> DsM (CoreExpr, Type)
deLambda ty p e =
664
    mkLambda ty p =<< dsLExpr e
665 666 667 668 669 670 671

-- generate Core for a lambda pattern match, where the body is already in Core
--
mkLambda :: Type			-- type of the argument
	 -> LPat Id			-- argument pattern
	 -> CoreExpr			-- desugared body
	 -> DsM (CoreExpr, Type)
672 673
mkLambda ty p ce = do
    v <- newSysLocalDs ty
674
    let errMsg = ptext (sLit "DsListComp.deLambda: internal error!")
675 676 677 678
        ce'ty  = exprType ce
    cerr <- mkErrorAppDs pAT_ERROR_ID ce'ty errMsg
    res <- matchSimply (Var v) (StmtCtxt PArrComp) p ce cerr
    return (mkLams [v] res, ce'ty)
chak's avatar
chak committed
679 680 681 682 683 684 685

-- obtain the element type of the parallel array produced by the given Core
-- expression
--
parrElemType   :: CoreExpr -> Type
parrElemType e  = 
  case splitTyConApp_maybe (exprType e) of
686
    Just (tycon, [ty]) | tycon == parrTyCon -> ty
chak's avatar
chak committed
687 688 689
    _							  -> panic
      "DsListComp.parrElemType: not a parallel array type"
\end{code}
690 691 692 693 694

Translation for monad comprehensions

\begin{code}
-- Entry point for monad comprehension desugaring
695 696
dsMonadComp :: [LStmt Id] -> DsM CoreExpr
dsMonadComp stmts = dsMcStmts stmts
697

698 699 700
dsMcStmts :: [LStmt Id] -> DsM CoreExpr
dsMcStmts []                    = panic "dsMcStmts"
dsMcStmts (L loc stmt : lstmts) = putSrcSpanDs loc (dsMcStmt stmt lstmts)
701

702
---------------
703 704 705 706 707 708 709
dsMcStmt :: Stmt Id -> [LStmt Id] -> DsM CoreExpr

dsMcStmt (LastStmt body ret_op) stmts
  = ASSERT( null stmts )
    do { body' <- dsLExpr body
       ; ret_op' <- dsExpr ret_op
       ; return (App ret_op' body') }
710 711

--   [ .. | let binds, stmts ]
712 713
dsMcStmt (LetStmt binds) stmts 
  = do { rest <- dsMcStmts stmts
714 715 716
       ; dsLocalBinds binds rest }

--   [ .. | a <- m, stmts ]
717 718 719
dsMcStmt (BindStmt pat rhs bind_op fail_op) stmts
  = do { rhs' <- dsLExpr rhs
       ; dsMcBindStmt pat rhs' bind_op fail_op stmts }
720 721 722 723 724

-- Apply `guard` to the `exp` expression
--
--   [ .. | exp, stmts ]
--
725
dsMcStmt (ExprStmt exp then_exp guard_exp _) stmts 
726 727 728
  = do { exp'       <- dsLExpr exp
       ; guard_exp' <- dsExpr guard_exp
       ; then_exp'  <- dsExpr then_exp
729
       ; rest       <- dsMcStmts stmts
730 731 732 733 734 735 736 737 738
       ; return $ mkApps then_exp' [ mkApps guard_exp' [exp']
                                   , rest ] }

-- Transform statements desugar like this:
--
--   [ .. | qs, then f by e ]  ->  f (\q_v -> e) [| qs |]
--
-- where [| qs |] is the desugared inner monad comprehenion generated by the
-- statements `qs`.
739 740 741
dsMcStmt (TransformStmt stmts binders usingExpr maybeByExpr return_op bind_op) stmts_rest
  = do { expr <- dsInnerMonadComp stmts binders return_op
       ; let binders_tup_type = mkBigCoreTupTy $ map idType binders
742 743 744 745 746 747
       ; usingExpr' <- dsLExpr usingExpr
       ; using_args <- case maybeByExpr of
            Nothing -> return [expr]
            Just byExpr -> do
                byExpr' <- dsLExpr byExpr
                us <- newUniqueSupply
748 749 750
                tup_binder <- newSysLocalDs binders_tup_type
                let byExprWrapper = mkTupleCase us binders byExpr' tup_binder (Var tup_binder)
                return [Lam tup_binder byExprWrapper, expr]
751 752

       ; let pat = mkBigLHsVarPatTup binders
753
             rhs = mkApps usingExpr' ((Type binders_tup_type) : using_args)
754

755
       ; dsMcBindStmt pat rhs bind_op noSyntaxExpr stmts_rest }
756 757 758

-- Group statements desugar like this:
--
759 760
--   [| (q, then group by e using f); rest |]
--   --->  f {qt} (\qv -> e) [| q; return qv |] >>= \ n_tup -> 
761
--         case unzip n_tup of qv' -> [| rest |]
762 763 764 765 766 767 768 769
--
-- where   variables (v1:t1, ..., vk:tk) are bound by q
--         qv = (v1, ..., vk)
--         qt = (t1, ..., tk)
--         (>>=) :: m2 a -> (a -> m3 b) -> m3 b
--         f :: forall a. (a -> t) -> m1 a -> m2 (n a)
--         n_tup :: n qt
--         unzip :: n qt -> (n t1, ..., n tk)    (needs Functor n)
770 771 772 773 774 775 776

dsMcStmt (GroupStmt { grpS_stmts = stmts, grpS_bndrs = bndrs
                    , grpS_by = by, grpS_using = using
                    , grpS_ret = return_op, grpS_bind = bind_op
                    , grpS_fmap = fmap_op }) stmts_rest
  = do { let (from_bndrs, to_bndrs) = unzip bndrs
             from_bndr_tys          = map idType from_bndrs	-- Types ty
777 778

       -- Desugar an inner comprehension which outputs a list of tuples of the "from" binders
779
       ; expr <- dsInnerMonadComp stmts from_bndrs return_op
780 781 782

       -- Work out what arguments should be supplied to that expression: i.e. is an extraction
       -- function required? If so, create that desugared function and add to arguments
783
       ; usingExpr' <- dsLExpr using
784 785 786
       ; usingArgs <- case by of
                        Nothing   -> return [expr]
                        Just by_e -> do { by_e' <- dsLExpr by_e
787
                                        ; lam <- matchTuple from_bndrs by_e'
788
                                        ; return [lam, expr] }
789 790

       -- Generate the expressions to build the grouped list
791 792
       -- Build a pattern that ensures the consumer binds into the NEW binders, 
       -- which hold monads rather than single values
793
       ; fmap_op' <- dsExpr fmap_op
794 795
       ; bind_op' <- dsExpr bind_op
       ; let bind_ty = exprType bind_op'    -- m2 (n (a,b,c)) -> (n (a,b,c) -> r1) -> r2
796 797 798 799 800 801 802 803 804 805
             n_tup_ty = funArgTy $ funArgTy $ funResultTy bind_ty   -- n (a,b,c)
             tup_n_ty = mkBigCoreVarTupTy to_bndrs

       ; body       <- dsMcStmts stmts_rest
       ; n_tup_var  <- newSysLocalDs n_tup_ty
       ; tup_n_var  <- newSysLocalDs tup_n_ty
       ; tup_n_expr <- mkMcUnzipM fmap_op' n_tup_var from_bndr_tys
       ; us         <- newUniqueSupply
       ; let rhs'  = mkApps usingExpr' usingArgs
             body' = mkTupleCase us to_bndrs body tup_n_var tup_n_expr
806 807
		   
       ; return (mkApps bind_op' [rhs', Lam n_tup_var body']) }
808 809 810 811 812

-- Parallel statements. Use `Control.Monad.Zip.mzip` to zip parallel
-- statements, for example:
--
--   [ body | qs1 | qs2 | qs3 ]
813 814
--     ->  [ body | (bndrs1, (bndrs2, bndrs3)) 
--                     <- [bndrs1 | qs1] `mzip` ([bndrs2 | qs2] `mzip` [bndrs3 | qs3]) ]
815
--
816 817 818
-- where `mzip` has type
--   mzip :: forall a b. m a -> m b -> m (a,b)
-- NB: we need a polymorphic mzip because we call it several times
819

820
dsMcStmt (ParStmt pairs mzip_op bind_op return_op) stmts_rest
821 822
 = do  { exps_w_tys  <- mapM ds_inner pairs   -- Pairs (exp :: m ty, ty)
       ; mzip_op'    <- dsExpr mzip_op
823 824

       ; let -- The pattern variables
825
             pats = map (mkBigLHsVarPatTup . snd) pairs
826 827
             -- Pattern with tuples of variables
             -- [v1,v2,v3]  =>  (v1, (v2, v3))
828 829 830 831 832
             pat = foldr1 (\p1 p2 -> mkLHsPatTup [p1, p2]) pats
	     (rhs, _) = foldr1 (\(e1,t1) (e2,t2) -> 
                                 (mkApps mzip_op' [Type t1, Type t2, e1, e2],
                                  mkBoxedTupleTy [t1,t2])) 
                               exps_w_tys
833

834 835
       ; dsMcBindStmt pat rhs bind_op noSyntaxExpr stmts_rest }
  where
836 837
    ds_inner (stmts, bndrs) = do { exp <- dsInnerMonadComp stmts bndrs mono_ret_op
                                 ; return (exp, tup_ty) }
838
       where 
839 840
         mono_ret_op = HsWrap (WpTyApp tup_ty) return_op
         tup_ty      = mkBigCoreVarTupTy bndrs
841

842 843 844 845 846 847 848 849 850
dsMcStmt stmt _ = pprPanic "dsMcStmt: unexpected stmt" (ppr stmt)


matchTuple :: [Id] -> CoreExpr -> DsM CoreExpr
-- (matchTuple [a,b,c] body)
--       returns the Core term
--  \x. case x of (a,b,c) -> body 
matchTuple ids body
  = do { us <- newUniqueSupply
851
       ; tup_id <- newSysLocalDs (mkBigCoreVarTupTy ids)
852
       ; return (Lam tup_id $ mkTupleCase us ids body tup_id (Var tup_id)) }
853 854 855 856 857 858 859 860 861

-- general `rhs' >>= \pat -> stmts` desugaring where `rhs'` is already a
-- desugared `CoreExpr`
dsMcBindStmt :: LPat Id
             -> CoreExpr        -- ^ the desugared rhs of the bind statement
             -> SyntaxExpr Id
             -> SyntaxExpr Id
             -> [LStmt Id]
             -> DsM CoreExpr
862 863
dsMcBindStmt pat rhs' bind_op fail_op stmts
  = do  { body     <- dsMcStmts stmts 
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
        ; bind_op' <- dsExpr bind_op
        ; var      <- selectSimpleMatchVarL pat
        ; let bind_ty = exprType bind_op' 	-- rhs -> (pat -> res1) -> res2
              res1_ty = funResultTy (funArgTy (funResultTy bind_ty))
        ; match <- matchSinglePat (Var var) (StmtCtxt DoExpr) pat
                                  res1_ty (cantFailMatchResult body)
        ; match_code <- handle_failure pat match fail_op
        ; return (mkApps bind_op' [rhs', Lam var match_code]) }

  where
    -- In a monad comprehension expression, pattern-match failure just calls
    -- the monadic `fail` rather than throwing an exception
    handle_failure pat match fail_op
      | matchCanFail match
        = do { fail_op' <- dsExpr fail_op
             ; fail_msg <- mkStringExpr (mk_fail_msg pat)
             ; extractMatchResult match (App fail_op' fail_msg) }
      | otherwise
        = extractMatchResult match (error "It can't fail") 

    mk_fail_msg :: Located e -> String
    mk_fail_msg pat = "Pattern match failure in monad comprehension at " ++ 
                      showSDoc (ppr (getLoc pat))

-- Desugar nested monad comprehensions, for example in `then..` constructs
889 890 891 892 893 894
--    dsInnerMonadComp quals [a,b,c] ret_op
-- returns the desugaring of 
--       [ (a,b,c) | quals ]

dsInnerMonadComp :: [LStmt Id]
                 -> [Id]	-- Return a tuple of these variables
895
                 -> HsExpr Id	-- The monomorphic "return" operator
896 897
                 -> DsM CoreExpr
dsInnerMonadComp stmts bndrs ret_op
898
  = dsMcStmts (stmts ++ [noLoc (LastStmt (mkBigLHsVarTup bndrs) ret_op)])
899 900 901 902 903 904 905 906

-- The `unzip` function for `GroupStmt` in a monad comprehensions
--
--   unzip :: m (a,b,..) -> (m a,m b,..)
--   unzip m_tuple = ( liftM selN1 m_tuple
--                   , liftM selN2 m_tuple
--                   , .. )
--
907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
--   mkMcUnzipM fmap ys [t1, t2]
--     = ( fmap (selN1 :: (t1, t2) -> t1) ys
--       , fmap (selN2 :: (t1, t2) -> t2) ys )

mkMcUnzipM :: CoreExpr		-- fmap
	   -> Id		-- Of type n (a,b,c)
	   -> [Type]		-- [a,b,c]
	   -> DsM CoreExpr	-- Of type (n a, n b, n c)
mkMcUnzipM fmap_op ys elt_tys
  = do { xs     <- mapM newSysLocalDs elt_tys
       ; tup_xs <- newSysLocalDs (mkBigCoreTupTy elt_tys)

       ; let arg_ty = idType ys
             mk_elt i = mkApps fmap_op  -- fmap :: forall a b. (a -> b) -> n a -> n b
                           [ Type arg_ty, Type (elt_tys !! i)
                           , mk_sel i, Var ys]

             mk_sel n = Lam tup_xs $ 
                        mkTupleSelector xs (xs !! n) tup_xs (Var tup_xs)
926

927
       ; return (mkBigCoreTup (map mk_elt [0..length elt_tys - 1])) }
928
\end{code}