1. 02 Apr, 2007 1 commit
  2. 11 Oct, 2006 1 commit
    • Simon Marlow's avatar
      Module header tidyup, phase 1 · 49c98d14
      Simon Marlow authored
      This patch is a start on removing import lists and generally tidying
      up the top of each module.  In addition to removing import lists:
      
         - Change DATA.IOREF -> Data.IORef etc.
         - Change List -> Data.List etc.
         - Remove $Id$
         - Update copyrights
         - Re-order imports to put non-GHC imports last
         - Remove some unused and duplicate imports
      49c98d14
  3. 04 Aug, 2006 1 commit
  4. 07 Apr, 2006 1 commit
    • Simon Marlow's avatar
      Reorganisation of the source tree · 0065d5ab
      Simon Marlow authored
      Most of the other users of the fptools build system have migrated to
      Cabal, and with the move to darcs we can now flatten the source tree
      without losing history, so here goes.
      
      The main change is that the ghc/ subdir is gone, and most of what it
      contained is now at the top level.  The build system now makes no
      pretense at being multi-project, it is just the GHC build system.
      
      No doubt this will break many things, and there will be a period of
      instability while we fix the dependencies.  A straightforward build
      should work, but I haven't yet fixed binary/source distributions.
      Changes to the Building Guide will follow, too.
      0065d5ab
  5. 02 Feb, 2006 1 commit
  6. 19 Jul, 2005 1 commit
    • simonpj's avatar
      [project @ 2005-07-19 16:44:50 by simonpj] · a7ecdf96
      simonpj authored
      WARNING: this is a big commit.  You might want 
      	to wait a few days before updating, in case I've 
      	broken something.
      
      	However, if any of the changes are what you wanted,
      	please check it out and test!
      
      This commit does three main things:
      
      1. A re-organisation of the way that GHC handles bindings in HsSyn.
         This has been a bit of a mess for quite a while.  The key new
         types are
      
      	-- Bindings for a let or where clause
      	data HsLocalBinds id
      	  = HsValBinds (HsValBinds id)
      	  | HsIPBinds  (HsIPBinds id)
      	  | EmptyLocalBinds
      
      	-- Value bindings (not implicit parameters)
      	data HsValBinds id
      	  = ValBindsIn  -- Before typechecking
      		(LHsBinds id) [LSig id]	-- Not dependency analysed
      					-- Recursive by default
      
      	  | ValBindsOut	-- After typechecking
      		[(RecFlag, LHsBinds id)]-- Dependency analysed
      
      2. Implement Mark Jones's idea of increasing polymoprhism
         by using type signatures to cut the strongly-connected components
         of a recursive group.  As a consequence, GHC no longer insists
         on the contexts of the type signatures of a recursive group
         being identical.
      
         This drove a significant change: the renamer no longer does dependency
         analysis.  Instead, it attaches a free-variable set to each binding,
         so that the type checker can do the dep anal.  Reason: the typechecker
         needs to do *two* analyses:
      	one to find the true mutually-recursive groups
      		(which we need so we can build the right CoreSyn)
      	one to find the groups in which to typecheck, taking
      		account of type signatures
      
      3. Implement non-ground SPECIALISE pragmas, as promised, and as
         requested by Remi and Ross.  Certainly, this should fix the 
         current problem with GHC, namely that if you have
      	g :: Eq a => a -> b -> b
         then you can now specialise thus
      	SPECIALISE g :: Int -> b -> b
          (This didn't use to work.)
      
         However, it goes further than that.  For example:
      	f :: (Eq a, Ix b) => a -> b -> b
         then you can make a partial specialisation
      	SPECIALISE f :: (Eq a) => a -> Int -> Int
      
          In principle, you can specialise f to *any* type that is
          "less polymorphic" (in the sense of subsumption) than f's 
          actual type.  Such as
      	SPECIALISE f :: Eq a => [a] -> Int -> Int
          But I haven't tested that.
      
          I implemented this by doing the specialisation in the typechecker
          and desugarer, rather than leaving around the strange SpecPragmaIds,
          for the specialiser to find.  Indeed, SpecPragmaIds have vanished 
          altogether (hooray).
      
          Pragmas in general are handled more tidily.  There's a new
          data type HsBinds.Prag, which lives in an AbsBinds, and carries
          pragma info from the typechecker to the desugarer.
      
      
      Smaller things
      
      - The loop in the renamer goes via RnExpr, instead of RnSource.
        (That makes it more like the type checker.)
      
      - I fixed the thing that was causing 'check_tc' warnings to be 
        emitted.
      a7ecdf96
  7. 04 Apr, 2005 1 commit
    • simonpj's avatar
      [project @ 2005-04-04 11:55:11 by simonpj] · d551dbfe
      simonpj authored
      This commit combines three overlapping things:
      
      1.  Make rebindable syntax work for do-notation. The idea
          here is that, in particular, (>>=) can have a type that
          has class constraints on its argument types, e.g.
             (>>=) :: (Foo m, Baz a) => m a -> (a -> m b) -> m b
          The consequence is that a BindStmt and ExprStmt must have
          individual evidence attached -- previously it was one
          batch of evidence for the entire Do
          
          Sadly, we can't do this for MDo, because we use bind at
          a polymorphic type (to tie the knot), so we still use one
          blob of evidence (now in the HsStmtContext) for MDo.
          
          For arrow syntax, the evidence is in the HsCmd.
          
          For list comprehensions, it's all built-in anyway.
          
          So the evidence on a BindStmt is only used for ordinary
          do-notation.
      
      2.  Tidy up HsSyn.  In particular:
      
      	- Eliminate a few "Out" forms, which we can manage
      	without (e.g. 
      
      	- It ought to be the case that the type checker only
      	decorates the syntax tree, but doesn't change one
      	construct into another.  That wasn't true for NPat,
      	LitPat, NPlusKPat, so I've fixed that.
      
      	- Eliminate ResultStmts from Stmt.  They always had
      	to be the last Stmt, which led to awkward pattern
      	matching in some places; and the benefits didn't seem
      	to outweigh the costs.  Now each construct that uses
      	[Stmt] has a result expression too (e.g. GRHS).
      
      
      3.  Make 'deriving( Ix )' generate a binding for unsafeIndex,
          rather than for index.  This is loads more efficient.
      
          (This item only affects TcGenDeriv, but some of point (2)
          also affects TcGenDeriv, so it has to be in one commit.)
      d551dbfe
  8. 18 Mar, 2005 1 commit
    • simonmar's avatar
      [project @ 2005-03-18 13:37:27 by simonmar] · d1c1b7d0
      simonmar authored
      Flags cleanup.
      
      Basically the purpose of this commit is to move more of the compiler's
      global state into DynFlags, which is moving in the direction we need
      to go for the GHC API which can have multiple active sessions
      supported by a single GHC instance.
      
      Before:
      
      $ grep 'global_var' */*hs | wc -l
           78
      
      After:
      
      $ grep 'global_var' */*hs | wc -l
           27
      
      Well, it's an improvement.  Most of what's left won't really affect
      our ability to host multiple sessions.
      
      Lots of static flags have become dynamic flags (yay!).  Notably lots
      of flags that we used to think of as "driver" flags, like -I and -L,
      are now dynamic.  The most notable static flags left behind are the
      "way" flags, eg. -prof.  It would be nice to fix this, but it isn't
      urgent.
      
      On the way, lots of cleanup has happened.  Everything related to
      static and dynamic flags lives in StaticFlags and DynFlags
      respectively, and they share a common command-line parser library in
      CmdLineParser.  The flags related to modes (--makde, --interactive
      etc.) are now private to the front end: in fact private to Main
      itself, for now.
      d1c1b7d0
  9. 03 Mar, 2005 1 commit
    • chak's avatar
      [project @ 2005-03-03 11:48:02 by chak] · 706ebc79
      chak authored
      Merge to STABLE
      
      Fixed two bugs:
      * #1035575 from SourceForge (by adding smart constructors for source tuple
        construction at value and type level)
      * Parallel array comprehensions were handled wrongly
        - The singleton expression-pattern pair `()'-`[:():]' is the neutral element
          for cross products (comma notation in comprehensions), but not for
          parallel comprehensions.
        - Now groups of parallel statements are handled separately (which is more
          like the vanilla list comprehension case).
        - The code is too general in that it correctly handles cross-products of
          groups of parallel qualifiers.  As this is correctly handled in the
          list and the array comprehension case, the syntax may be generalised to
          allow arbitrary nesting of cross-products and parallel qualifiers.
      706ebc79
  10. 22 Dec, 2004 1 commit
    • simonpj's avatar
      [project @ 2004-12-22 12:06:13 by simonpj] · d7c402a3
      simonpj authored
      ----------------------------------------
           New Core invariant: keep case alternatives in sorted order
      	----------------------------------------
      
      We now keep the alternatives of a Case in the Core language in sorted
      order.  Sorted, that is,
      	by constructor tag	for DataAlt
      	by literal		for LitAlt
      
      The main reason is that it makes matching and equality testing more robust.
      But in fact some lines of code vanished from SimplUtils.mkAlts.
      
      
      WARNING: no change to interface file formats, but you'll need to recompile
      your libraries so that they generate interface files that respect the
      invariant.
      d7c402a3
  11. 30 Sep, 2004 1 commit
    • simonpj's avatar
      [project @ 2004-09-30 10:35:15 by simonpj] · 23f40f0e
      simonpj authored
      ------------------------------------
      	Add Generalised Algebraic Data Types
      	------------------------------------
      
      This rather big commit adds support for GADTs.  For example,
      
          data Term a where
       	  Lit :: Int -> Term Int
      	  App :: Term (a->b) -> Term a -> Term b
      	  If  :: Term Bool -> Term a -> Term a
      	  ..etc..
      
          eval :: Term a -> a
          eval (Lit i) = i
          eval (App a b) = eval a (eval b)
          eval (If p q r) | eval p    = eval q
          		    | otherwise = eval r
      
      
      Lots and lots of of related changes throughout the compiler to make
      this fit nicely.
      
      One important change, only loosely related to GADTs, is that skolem
      constants in the typechecker are genuinely immutable and constant, so
      we often get better error messages from the type checker.  See
      TcType.TcTyVarDetails.
      
      There's a new module types/Unify.lhs, which has purely-functional
      unification and matching for Type. This is used both in the typechecker
      (for type refinement of GADTs) and in Core Lint (also for type refinement).
      23f40f0e
  12. 30 Dec, 2003 1 commit
    • simonpj's avatar
      [project @ 2003-12-30 16:29:17 by simonpj] · f714e6b6
      simonpj authored
      ----------------------------
              Re-do kind inference (again)
      	----------------------------
      
         [WARNING: interface file binary representation has
         (as usual) changed slightly; recompile your libraries!]
      
      Inspired by the lambda-cube, for some time GHC has used
      	type Kind = Type
      That is, kinds were represented by the same data type as types.
      
      But GHC also supports unboxed types and unboxed tuples, and these
      complicate the kind system by requiring a sub-kind relationship.
      Notably, an unboxed tuple is acceptable as the *result* of a
      function but not as an *argument*.  So we have the following setup:
      
      		 ?
      		/ \
      	       /   \
      	      ??   (#)
      	     /  \
                  *   #
      
      where	*    [LiftedTypeKind]   means a lifted type
      	#    [UnliftedTypeKind] means an unlifted type
      	(#)  [UbxTupleKind]     means unboxed tuple
      	??   [ArgTypeKind]      is the lub of *,#
      	?    [OpenTypeKind]	means any type at all
      
      In particular:
      
        error :: forall a:?. String -> a
        (->)  :: ?? -> ? -> *
        (\(x::t) -> ...)	Here t::?? (i.e. not unboxed tuple)
      
      All this has beome rather difficult to accommodate with Kind=Type, so this
      commit splits the two.
      
        * Kind is a distinct type, defined in types/Kind.lhs
      
        * IfaceType.IfaceKind disappears: we just re-use Kind.Kind
      
        * TcUnify.unifyKind is a distinct unifier for kinds
      
        * TyCon no longer needs KindCon and SuperKindCon variants
      
        * TcUnify.zapExpectedType takes an expected Kind now, so that
          in TcPat.tcMonoPatBndr we can express that the bound variable
          must have an argTypeKind (??).
      
      The big change is really that kind inference is much more systematic and
      well behaved.  In particular, a kind variable can unify only with a
      "simple kind", which is built from * and (->).  This deals neatly
      with awkward questions about how we can combine sub-kinding with type
      inference.
      
      Lots of small consequential changes, especially to the kind-checking
      plumbing in TcTyClsDecls.  (We played a bit fast and loose before, and
      now we have to be more honest, in particular about how kind inference
      works for type synonyms.  They can have kinds like (* -> #), so
      
      This cures two long-standing SourceForge bugs
      
      * 753777 (tcfail115.hs), which used erroneously to pass,
        but crashed in the code generator
            type T a = Int -> (# Int, Int #)
            f :: T a -> T a
            f t = \x -> case t x of r -> r
      
      * 753780 (tc167.hs), which used erroneously to fail
            f :: (->) Int# Int#
      
      
      Still, the result is not entirely satisfactory.  In particular
      
      * The error message from tcfail115 is pretty obscure
      
      * SourceForge bug 807249 (Instance match failure on openTypeKind)
        is not fixed.  Alas.
      f714e6b6
  13. 10 Dec, 2003 1 commit
    • simonmar's avatar
      [project @ 2003-12-10 14:15:16 by simonmar] · 55042138
      simonmar authored
      Add accurate source location annotations to HsSyn
      -------------------------------------------------
      
      Every syntactic entity in HsSyn is now annotated with a SrcSpan, which
      details the exact beginning and end points of that entity in the
      original source file.  All honest compilers should do this, and it was
      about time GHC did the right thing.
      
      The most obvious benefit is that we now have much more accurate error
      messages; when running GHC inside emacs for example, the cursor will
      jump to the exact location of an error, not just a line somewhere
      nearby.  We haven't put a huge amount of effort into making sure all
      the error messages are accurate yet, so there could be some tweaking
      still needed, although the majority of messages I've seen have been
      spot-on.
      
      Error messages now contain a column number in addition to the line
      number, eg.
      
         read001.hs:25:10: Variable not in scope: `+#'
      
      To get the full text span info, use the new option -ferror-spans.  eg.
      
         read001.hs:25:10-11: Variable not in scope: `+#'
      
      I'm not sure whether we should do this by default.  Emacs won't
      understand the new error format, for one thing.
      
      In a more elaborate editor setting (eg. Visual Studio), we can arrange
      to actually highlight the subexpression containing an error.  Eventually
      this information will be used so we can find elements in the abstract
      syntax corresponding to text locations, for performing high-level editor
      functions (eg. "tell me the type of this expression I just highlighted").
      
      Performance of the compiler doesn't seem to be adversely affected.
      Parsing is still quicker than in 6.0.1, for example.
      
      Implementation:
      
      This was an excrutiatingly painful change to make: both Simon P.J. and
      myself have been working on it for the last three weeks or so.  The
      basic changes are:
      
       - a new datatype SrcSpan, which represents a beginning and end position
         in a source file.
      
       - To reduce the pain as much as possible, we also defined:
      
            data Located e = L SrcSpan e
      
       - Every datatype in HsSyn has an equivalent Located version.  eg.
      
            type LHsExpr id = Located (HsExpr id)
      
         and pretty much everywhere we used to use HsExpr we now use
         LHsExpr.  Believe me, we thought about this long and hard, and
         all the other options were worse :-)
      
      
      Additional changes/cleanups we made at the same time:
      
        - The abstract syntax for bindings is now less arcane.  MonoBinds
          and HsBinds with their built-in list constructors have gone away,
          replaced by HsBindGroup and HsBind (see HsSyn/HsBinds.lhs).
      
        - The various HsSyn type synonyms have now gone away (eg. RdrNameHsExpr,
          RenamedHsExpr, and TypecheckedHsExpr are now HsExpr RdrName,
          HsExpr Name, and HsExpr Id respectively).
      
        - Utilities over HsSyn are now collected in a new module HsUtils.
          More stuff still needs to be moved in here.
      
        - MachChar now has a real Char instead of an Int.  All GHC versions that
          can compile GHC now support 32-bit Chars, so this was a simplification.
      55042138
  14. 09 Oct, 2003 1 commit
    • simonpj's avatar
      [project @ 2003-10-09 11:58:39 by simonpj] · 98688c6e
      simonpj authored
      -------------------------
      		GHC heart/lung transplant
      		-------------------------
      
      This major commit changes the way that GHC deals with importing
      types and functions defined in other modules, during renaming and
      typechecking.  On the way I've changed or cleaned up numerous other
      things, including many that I probably fail to mention here.
      
      Major benefit: GHC should suck in many fewer interface files when
      compiling (esp with -O).  (You can see this with -ddump-rn-stats.)
      
      It's also some 1500 lines of code shorter than before.
      
      **	So expect bugs!  I can do a 3-stage bootstrap, and run
      **	the test suite, but you may be doing stuff I havn't tested.
      ** 	Don't update if you are relying on a working HEAD.
      
      
      In particular, (a) External Core and (b) GHCi are very little tested.
      
      	But please, please DO test this version!
      
      
      	------------------------
      		Big things
      	------------------------
      
      Interface files, version control, and importing declarations
      ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
      * There is a totally new data type for stuff that lives in interface files:
      	Original names			IfaceType.IfaceExtName
      	Types				IfaceType.IfaceType
      	Declarations (type,class,id)	IfaceSyn.IfaceDecl
      	Unfoldings			IfaceSyn.IfaceExpr
        (Previously we used HsSyn for type/class decls, and UfExpr for unfoldings.)
        The new data types are in iface/IfaceType and iface/IfaceSyn.  They are
        all instances of Binary, so they can be written into interface files.
        Previous engronkulation concering the binary instance of RdrName has
        gone away -- RdrName is not an instance of Binary any more.  Nor does
        Binary.lhs need to know about the ``current module'' which it used to,
        which made it specialised to GHC.
      
        A good feature of this is that the type checker for source code doesn't
        need to worry about the possibility that we might be typechecking interface
        file stuff.  Nor does it need to do renaming; we can typecheck direct from
        IfaceSyn, saving a whole pass (module TcIface)
      
      * Stuff from interface files is sucked in *lazily*, rather than being eagerly
        sucked in by the renamer. Instead, we use unsafeInterleaveIO to capture
        a thunk for the unfolding of an imported function (say).  If that unfolding
        is every pulled on, TcIface will scramble over the unfolding, which may
        in turn pull in the interface files of things mentioned in the unfolding.
      
        The External Package State is held in a mutable variable so that it
        can be side-effected by this lazy-sucking-in process (which may happen
        way later, e.g. when the simplifier runs).   In effect, the EPS is a kind
        of lazy memo table, filled in as we suck things in.  Or you could think
        of it as a global symbol table, populated on demand.
      
      * This lazy sucking is very cool, but it can lead to truly awful bugs. The
        intent is that updates to the symbol table happen atomically, but very bad
        things happen if you read the variable for the table, and then force a
        thunk which updates the table.  Updates can get lost that way. I regret
        this subtlety.
      
        One example of the way it showed up is that the top level of TidyPgm
        (which updates the global name cache) to be much more disciplined about
        those updates, since TidyPgm may itself force thunks which allocate new
        names.
      
      * Version numbering in interface files has changed completely, fixing
        one major bug with ghc --make.  Previously, the version of A.f changed
        only if A.f's type and unfolding was textually different.  That missed
        changes to things that A.f's unfolding mentions; which was fixed by
        eagerly sucking in all of those things, and listing them in the module's
        usage list.  But that didn't work with --make, because they might have
        been already sucked in.
      
        Now, A.f's version changes if anything reachable from A.f (via interface
        files) changes.  A module with unchanged source code needs recompiling
        only if the versions of any of its free variables changes. [This isn't
        quite right for dictionary functions and rules, which aren't mentioned
        explicitly in the source.  There are extensive comments in module MkIface,
        where all version-handling stuff is done.]
      
      * We don't need equality on HsDecls any more (because they aren't used in
        interface files).  Instead we have a specialised equality for IfaceSyn
        (eqIfDecl etc), which uses IfaceEq instead of Bool as its result type.
        See notes in IfaceSyn.
      
      * The horrid bit of the renamer that tried to predict what instance decls
        would be needed has gone entirely.  Instead, the type checker simply
        sucks in whatever instance decls it needs, when it needs them.  Easy!
      
        Similarly, no need for 'implicitModuleFVs' and 'implicitTemplateHaskellFVs'
        etc.  Hooray!
      
      
      Types and type checking
      ~~~~~~~~~~~~~~~~~~~~~~~
      * Kind-checking of types is far far tidier (new module TcHsTypes replaces
        the badly-named TcMonoType).  Strangely, this was one of my
        original goals, because the kind check for types is the Right Place to
        do type splicing, but it just didn't fit there before.
      
      * There's a new representation for newtypes in TypeRep.lhs.  Previously
        they were represented using "SourceTypes" which was a funny compromise.
        Now they have their own constructor in the Type datatype.  SourceType
        has turned back into PredType, which is what it used to be.
      
      * Instance decl overlap checking done lazily.  Consider
      	instance C Int b
      	instance C a Int
        These were rejected before as overlapping, because when seeking
        (C Int Int) one couldn't tell which to use.  But there's no problem when
        seeking (C Bool Int); it can only be the second.
      
        So instead of checking for overlap when adding a new instance declaration,
        we check for overlap when looking up an Inst.  If we find more than one
        matching instance, we see if any of the candidates dominates the others
        (in the sense of being a substitution instance of all the others);
        and only if not do we report an error.
      
      
      
      	------------------------
      	     Medium things
      	------------------------
      
      * The TcRn monad is generalised a bit further.  It's now based on utils/IOEnv.lhs,
        the IO monad with an environment.  The desugarer uses the monad too,
        so that anything it needs can get faulted in nicely.
      
      * Reduce the number of wired-in things; in particular Word and Integer
        are no longer wired in.  The latter required HsLit.HsInteger to get a
        Type argument.  The 'derivable type classes' data types (:+:, :*: etc)
        are not wired in any more either (see stuff about derivable type classes
        below).
      
      * The PersistentComilerState is now held in a mutable variable
        in the HscEnv.  Previously (a) it was passed to and then returned by
        many top-level functions, which was painful; (b) it was invariably
        accompanied by the HscEnv.  This change tidies up top-level plumbing
        without changing anything important.
      
      * Derivable type classes are treated much more like 'deriving' clauses.
        Previously, the Ids for the to/from functions lived inside the TyCon,
        but now the TyCon simply records their existence (with a simple boolean).
        Anyone who wants to use them must look them up in the environment.
      
        This in turn makes it easy to generate the to/from functions (done
        in types/Generics) using HsSyn (like TcGenDeriv for ordinary derivings)
        instead of CoreSyn, which in turn means that (a) we don't have to figure
        out all the type arguments etc; and (b) it'll be type-checked for us.
        Generally, the task of generating the code has become easier, which is
        good for Manuel, who wants to make it more sophisticated.
      
      * A Name now says what its "parent" is. For example, the parent of a data
        constructor is its type constructor; the parent of a class op is its
        class.  This relationship corresponds exactly to the Avail data type;
        there may be other places we can exploit it.  (I made the change so that
        version comparison in interface files would be a bit easier; but in
        fact it tided up other things here and there (see calls to
        Name.nameParent).  For example, the declaration pool, of declararations
        read from interface files, but not yet used, is now keyed only by the 'main'
        name of the declaration, not the subordinate names.
      
      * New types OccEnv and OccSet, with the usual operations.
        OccNames can be efficiently compared, because they have uniques, thanks
        to the hashing implementation of FastStrings.
      
      * The GlobalRdrEnv is now keyed by OccName rather than RdrName.  Not only
        does this halve the size of the env (because we don't need both qualified
        and unqualified versions in the env), but it's also more efficient because
        we can use a UniqFM instead of a FiniteMap.
      
        Consequential changes to Provenance, which has moved to RdrName.
      
      * External Core remains a bit of a hack, as it was before, done with a mixture
        of HsDecls (so that recursiveness and argument variance is still inferred),
        and IfaceExprs (for value declarations).  It's not thoroughly tested.
      
      
      	------------------------
      	     Minor things
      	------------------------
      
      * DataCon fields dcWorkId, dcWrapId combined into a single field
        dcIds, that is explicit about whether the data con is a newtype or not.
        MkId.mkDataConWorkId and mkDataConWrapId are similarly combined into
        MkId.mkDataConIds
      
      * Choosing the boxing strategy is done for *source* type decls only, and
        hence is now in TcTyDecls, not DataCon.
      
      * WiredIn names are distinguished by their n_sort field, not by their location,
        which was rather strange
      
      * Define Maybes.mapCatMaybes :: (a -> Maybe b) -> [a] -> [b]
        and use it here and there
      
      * Much better pretty-printing of interface files (--show-iface)
      
      Many, many other small things.
      
      
      	------------------------
      	     File changes
      	------------------------
      * New iface/ subdirectory
      * Much of RnEnv has moved to iface/IfaceEnv
      * MkIface and BinIface have moved from main/ to iface/
      * types/Variance has been absorbed into typecheck/TcTyDecls
      * RnHiFiles and RnIfaces have vanished entirely.  Their
        work is done by iface/LoadIface
      * hsSyn/HsCore has gone, replaced by iface/IfaceSyn
      * typecheck/TcIfaceSig has gone, replaced by iface/TcIface
      * typecheck/TcMonoType has been renamed to typecheck/TcHsType
      * basicTypes/Var.hi-boot and basicTypes/Generics.hi-boot have gone altogether
      98688c6e
  15. 23 Sep, 2003 1 commit
    • simonmar's avatar
      [project @ 2003-09-23 14:32:57 by simonmar] · abbc5a0b
      simonmar authored
      - Convert many of the optimisation options into dynamic options (that is,
        they can be mentioned in {-# OPTIONS #-} pragmas).
      
      - Add a new way to specify constructor-field unboxing on a selective
        basis.  To tell the compiler to unbox a constructor field, do this:
      
            data T = T !!Int
      
        and GHC will store that field unboxed if possible.  If it isn't possible
        (say, because the field has a sum type) then the annotation is ignored.
      
        The -funbox-strict-fields flag is now a dynamic flag, and has the same
        effect as replacing all the '!' annotations with '!!'.
      abbc5a0b
  16. 25 Jun, 2003 1 commit
  17. 24 Jun, 2003 1 commit
    • simonpj's avatar
      [project @ 2003-06-24 07:58:18 by simonpj] · 16e4ce4c
      simonpj authored
      ----------------------------------------------
      	Add support for Ross Paterson's arrow notation
      	----------------------------------------------
      
      Ross Paterson's ICFP'01 paper described syntax to support John Hughes's
      "arrows", rather as do-notation supports monads.  Except that do-notation is
      relatively modest -- you can write monads by hand without much trouble --
      whereas arrow-notation is more-or-less essential for writing arrow programs.
      It desugars to a massive pile of tuple construction and selection!
      
      For some time, Ross has had a pre-processor for arrow notation, but the
      resulting type error messages (reported in terms of the desugared code)
      are impenetrable.  This commit integrates the syntax into GHC.  The
      type error messages almost certainly still require tuning, but they should
      be better than with the pre-processor.
      
      Main syntactic changes (enabled with -farrows)
      
         exp ::= ... | proc pat -> cmd
      
         cmd ::= exp1 -<  exp2   |  exp1 >-  exp2
      	|  exp1 -<< exp2   |  exp1 >>- exp2
      	| \ pat1 .. patn -> cmd
      	| let decls in cmd
      	| if exp then cmd1 else cmd2
      	| do { cstmt1 .. cstmtn ; cmd }
      	| (| exp |) cmd1 .. cmdn
      	| cmd1 qop cmd2
      	| case exp of { calts }
      
         cstmt :: = let decls
      	 |   pat <- cmd
      	 |   rec { cstmt1 .. cstmtn }
      	 |   cmd
      
      New keywords and symbols:
      	proc rec
      	-<   >-   -<<   >>-
      	(|  |)
      
      The do-notation in cmds was not described in Ross's ICFP'01 paper; instead
      it's in his chapter in The Fun of Programming (Plagrave 2003).
      
      The four arrow-tail forms (-<) etc cover
        (a) which order the pices come in (-<  vs  >-), and
        (b) whether the locally bound variables can be used in the
      		arrow part (-<  vs  -<<) .
      In previous presentations, the higher-order-ness (b) was inferred,
      but it makes a big difference to the typing required so it seems more
      consistent to be explicit.
      
      The 'rec' form is also available in do-notation:
        * you can use 'rec' in an ordinary do, with the obvious meaning
        * using 'mdo' just says "infer the minimal recs"
      
      
      Still to do
      ~~~~~~~~~~~
      Top priority is the user manual.
      
      The implementation still lacks an implementation of
      the case form of cmd.
      
      
      Implementation notes
      ~~~~~~~~~~~~~~~~~~~~
      Cmds are parsed, and indeed renamed, as expressions.  The type checker
      distinguishes the two.
      16e4ce4c
  18. 02 Jun, 2003 2 commits
    • simonpj's avatar
      [project @ 2003-06-02 14:26:54 by simonpj] · eda83294
      simonpj authored
      Wibbles to nested tuples
      eda83294
    • simonpj's avatar
      [project @ 2003-06-02 13:28:08 by simonpj] · 663a01b2
      simonpj authored
      -------------------------------------
            Fix the big-tuple-from-desugaring problem
      	-------------------------------------
      
      The desugarer generates a tuple from
      	- mutually recursive bindings
      	- pattern bindings
      
      If either bind a lot of variables, GHC can generate a big
      tuple that isn't in the library, with subsequent disaster.
      
      This commit fixes the problem, by using nested tuples.  It
      does *not* fix the problem with big tuples written by the
      user. And there's still a potential desugarer problem with
      parallel list comprehensions that bind a lot of variables
      (and parallel array comprehensions) -- but I expect they are
      much much rarer.
      
      The fix isn't fully tested yet -- I'll try to do that today.
      663a01b2
  19. 19 Feb, 2003 1 commit
  20. 27 Sep, 2002 1 commit
    • simonpj's avatar
      [project @ 2002-09-27 08:20:43 by simonpj] · dbc254c3
      simonpj authored
      --------------------------------
              Implement recursive do-notation
      	--------------------------------
      
      This commit adds recursive do-notation, which Hugs has had for some time.
      
      	mdo { x <- foo y ;
      	      y <- baz x ;
      	      return (y,x) }
      
      turns into
      
      	do { (x,y) <- mfix (\~(x,y) -> do { x <- foo y;
      					    y <- baz x }) ;
      	     return (y,x) }
      
      This is all based on work by Levent Erkok and John Lanuchbury.
      
      The really tricky bit is in the renamer (RnExpr.rnMDoStmts) where
      we break things up into minimal segments.  The rest is easy, including
      the type checker.
      
      Levent laid the groundwork, and Simon finished it off. Needless to say,
      I couldn't resist tidying up other stuff, so there's no guaranteed I
      have not broken something.
      dbc254c3
  21. 13 Sep, 2002 1 commit
    • simonpj's avatar
      [project @ 2002-09-13 15:02:25 by simonpj] · 9af77fa4
      simonpj authored
      --------------------------------------
      	Make Template Haskell into the HEAD
      	--------------------------------------
      
      This massive commit transfers to the HEAD all the stuff that
      Simon and Tim have been doing on Template Haskell.  The
      meta-haskell-branch is no more!
      
      WARNING: make sure that you
      
        * Update your links if you are using link trees.
          Some modules have been added, some have gone away.
      
        * Do 'make clean' in all library trees.
          The interface file format has changed, and you can
          get strange panics (sadly) if GHC tries to read old interface files:
          e.g.  ghc-5.05: panic! (the `impossible' happened, GHC version 5.05):
      	  Binary.get(TyClDecl): ForeignType
      
        * You need to recompile the rts too; Linker.c has changed
      
      
      However the libraries are almost unaltered; just a tiny change in
      Base, and to the exports in Prelude.
      
      
      NOTE: so far as TH itself is concerned, expression splices work
      fine, but declaration splices are not complete.
      
      
      		---------------
      		The main change
      		---------------
      
      The main structural change: renaming and typechecking have to be
      interleaved, because we can't rename stuff after a declaration splice
      until after we've typechecked the stuff before (and the splice
      itself).
      
      * Combine the renamer and typecheker monads into one
      	(TcRnMonad, TcRnTypes)
        These two replace TcMonad and RnMonad
      
      * Give them a single 'driver' (TcRnDriver).  This driver
        replaces TcModule.lhs and Rename.lhs
      
      * The haskell-src library package has a module
      	Language/Haskell/THSyntax
        which defines the Haskell data type seen by the TH programmer.
      
      * New modules:
      	hsSyn/Convert.hs 	converts THSyntax -> HsSyn
      	deSugar/DsMeta.hs 	converts HsSyn -> THSyntax
      
      * New module typecheck/TcSplice type-checks Template Haskell splices.
      
      		-------------
      		Linking stuff
      		-------------
      
      * ByteCodeLink has been split into
      	ByteCodeLink	(which links)
      	ByteCodeAsm	(which assembles)
      
      * New module ghci/ObjLink is the object-code linker.
      
      * compMan/CmLink is removed entirely (was out of place)
        Ditto CmTypes (which was tiny)
      
      * Linker.c initialises the linker when it is first used (no need to call
        initLinker any more).  Template Haskell makes it harder to know when
        and whether to initialise the linker.
      
      
      	-------------------------------------
      	Gathering the LIE in the type checker
      	-------------------------------------
      
      * Instead of explicitly gathering constraints in the LIE
      	tcExpr :: RenamedExpr -> TcM (TypecheckedExpr, LIE)
        we now dump the constraints into a mutable varabiable carried
        by the monad, so we get
      	tcExpr :: RenamedExpr -> TcM TypecheckedExpr
      
        Much less clutter in the code, and more efficient too.
        (Originally suggested by Mark Shields.)
      
      
      		-----------------
      		Remove "SysNames"
      		-----------------
      
      Because the renamer and the type checker were entirely separate,
      we had to carry some rather tiresome implicit binders (or "SysNames")
      along inside some of the HsDecl data structures.  They were both
      tiresome and fragile.
      
      Now that the typechecker and renamer are more intimately coupled,
      we can eliminate SysNames (well, mostly... default methods still
      carry something similar).
      
      		-------------
      		Clean up HsPat
      		-------------
      
      One big clean up is this: instead of having two HsPat types (InPat and
      OutPat), they are now combined into one.  This is more consistent with
      the way that HsExpr etc is handled; there are some 'Out' constructors
      for the type checker output.
      
      So:
      	HsPat.InPat	--> HsPat.Pat
      	HsPat.OutPat	--> HsPat.Pat
      	No 'pat' type parameter in HsExpr, HsBinds, etc
      
      	Constructor patterns are nicer now: they use
      		HsPat.HsConDetails
      	for the three cases of constructor patterns:
      		prefix, infix, and record-bindings
      
      	The *same* data type HsConDetails is used in the type
      	declaration of the data type (HsDecls.TyData)
      
      Lots of associated clean-up operations here and there.  Less code.
      Everything is wonderful.
      9af77fa4
  22. 13 Feb, 2002 1 commit
  23. 11 Feb, 2002 1 commit
    • chak's avatar
      [project @ 2002-02-11 08:20:38 by chak] · 10fcd78c
      chak authored
      *******************************
      		       * Merging from ghc-ndp-branch *
      		       *******************************
      
      This commit merges the current state of the "parallel array extension" and
      includes the following:
      
      * (Almost) completed Milestone 1:
        - The option `-fparr' activates the H98 extension for parallel arrays.
        - These changes have a high likelihood of conflicting (in the CVS sense)
          with other changes to GHC and are the reason for merging now.
        - ToDo: There are still some (less often used) functions not implemented in
      	  `PrelPArr' and a mechanism is needed to automatically import
      	  `PrelPArr' iff `-fparr' is given.  Documentation that should go into
      	  the Commentary is currently in `ghc/compiler/ndpFlatten/TODO'.
      
      * Partial Milestone 2:
        - The option `-fflatten' activates the flattening transformation and `-ndp'
          selects the "ndp" way (where all libraries have to be compiled with
          flattening).  The way option `-ndp' automagically turns on `-fparr' and
          `-fflatten'.
        - Almost all changes are in the new directory `ndpFlatten' and shouldn't
          affect the rest of the compiler.  The only exception are the options and
          the points in `HscMain' where the flattening phase is called when
          `-fflatten' is given.
        - This isn't usable yet, but already implements function lifting,
          vectorisation, and a new analysis that determines which parts of a module
          have to undergo the flattening transformation.  Missing are data structure
          and function specialisation, the unboxed array library (including fusion
          rules), and lots of testing.
      
      I have just run the regression tests on the thing without any problems.  So,
      it seems, as if we haven't broken anything crucial.
      10fcd78c
  24. 12 Jul, 2001 1 commit
    • simonpj's avatar
      [project @ 2001-07-12 16:21:22 by simonpj] · ab46fd8e
      simonpj authored
      --------------------------------------------
      	Fix another bug in the squash-newtypes story.
      	--------------------------------------------
      
      [This one was spotted by Marcin, and is now enshrined in test tc130.]
      
      The desugarer straddles the boundary between the type checker and
      Core, so it sometimes needs to look through newtypes/implicit parameters
      and sometimes not.  This is really a bit painful, but I can't think of
      a better way to do it.
      
      The only simple way to fix things was to pass a bit more type
      information in the HsExpr type, from the type checker to the desugarer.
      That led to the non-local changes you can see.
      
      On the way I fixed one other thing.  In various HsSyn constructors
      there is a Type that is bogus (bottom) before the type checker, and
      filled in with a real type by the type checker.  In one place it was
      a (Maybe Type) which was Nothing before, and (Just ty) afterwards.
      I've defined a type synonym HsTypes.PostTcType for this, and a named
      bottom value HsTypes.placeHolderType to use when you want the bottom
      value.
      ab46fd8e
  25. 25 Jun, 2001 1 commit
    • simonpj's avatar
      [project @ 2001-06-25 08:09:57 by simonpj] · d069cec2
      simonpj authored
      ----------------
      	Squash newtypes
      	----------------
      
      This commit squashes newtypes and their coerces, from the typechecker
      onwards.  The original idea was that the coerces would not get in the
      way of optimising transformations, but despite much effort they continue
      to do so.   There's no very good reason to retain newtype information
      beyond the typechecker, so now we don't.
      
      Main points:
      
      * The post-typechecker suite of Type-manipulating functions is in
      types/Type.lhs, as before.   But now there's a new suite in types/TcType.lhs.
      The difference is that in the former, newtype are transparent, while in
      the latter they are opaque.  The typechecker should only import TcType,
      not Type.
      
      * The operations in TcType are all non-monadic, and most of them start with
      "tc" (e.g. tcSplitTyConApp).  All the monadic operations (used exclusively
      by the typechecker) are in a new module, typecheck/TcMType.lhs
      
      * I've grouped newtypes with predicate types, thus:
      	data Type = TyVarTy Tyvar | ....
      		  | SourceTy SourceType
      
      	data SourceType = NType TyCon [Type]
      			| ClassP Class [Type]
      			| IParam Type
      
      [SourceType was called PredType.]  This is a little wierd in some ways,
      because NTypes can't occur in qualified types.   However, the idea is that
      a SourceType is a type that is opaque to the type checker, but transparent
      to the rest of the compiler, and newtypes fit that as do implicit parameters
      and dictionaries.
      
      * Recursive newtypes still retain their coreces, exactly as before. If
      they were transparent we'd get a recursive type, and that would make
      various bits of the compiler diverge (e.g. things which do type comparison).
      
      * I've removed types/Unify.lhs (non-monadic type unifier and matcher),
      merging it into TcType.
      
      Ditto typecheck/TcUnify.lhs (monadic unifier), merging it into TcMType.
      d069cec2
  26. 11 Jun, 2001 1 commit
    • simonpj's avatar
      [project @ 2001-06-11 12:24:51 by simonpj] · 2c6d73e2
      simonpj authored
      --------------------------------------
      	Tidy up and improve "pattern contexts"
      	--------------------------------------
      
      In various places (renamer, typechecker, desugarer) we need to know
      what the context of a pattern match is (case expression, function defn,
      let binding, etc).  This commit tidies up the story quite a bit.  I
      think it represents a net decrease in code, and certainly it improves the
      error messages from:
      
      	f x x = 3
      
      Prevsiously we got a message like "Conflicting bindings for x in a pattern match",
      but not it says "..in a defn of function f".
      
      WARNING: the tidy up had a more global effect than I originally expected,
      so it's possible that some other error messages look a bit peculiar.  They
      should be easy to fix, but tell us!
      2c6d73e2
  27. 08 May, 2001 1 commit
    • simonpj's avatar
      [project @ 2001-05-08 14:44:37 by simonpj] · 7c72bad5
      simonpj authored
      ****	MERGE WITH 5.00 BRANCH     ********
      
      	--------------------------------------
      	Make parallel list comprehensions work
      	--------------------------------------
      
      There were two bugs
      
      1.  The desugaring in DsListComp was generating code that failed Lint.
          I've restructured it quite a lot.
      
      2.  More seriously, in a ParStmt, the last 'stmt' may be a guard;
          but previously both guards and the result of a list comprehension
          were encoded as an ExprStmt (see HsExpr.Stmt), using the fact that
          the stmt was last in the list to make the difference between a guard
          and a result.  But in parallel list comp this isn't right:
      
      	[ e | x <- xs, guard | y <- ys ]
      
          Here 'guard' is last in its list, but isn't an overall result.
      
          The sensible fix is to properly distinguish
      	"here's the answer" 			 (ResultStmt)
      	"here's a guard or an imperative action" (ExprStmt)
      
          The fix is rather easy, but touched quite a lot of files.  On the
          way I tidied up the parser a little.
      7c72bad5
  28. 10 Apr, 2001 1 commit
    • lewie's avatar
      [project @ 2001-04-10 22:34:47 by lewie] · 54cbdfde
      lewie authored
      Don't use foldr/build if we've got a parallel list comp.  We'd need to
      have/generate a family of functions foldr{2,3,...} to do anything nicer here.
      54cbdfde
  29. 26 Feb, 2001 1 commit
    • simonmar's avatar
      [project @ 2001-02-26 15:06:57 by simonmar] · 1c62b517
      simonmar authored
      Implement do-style bindings on the GHCi command line.
      
      The syntax for a command-line is exactly that of a do statement, with
      the following meanings:
      
        - `pat <- expr'
          performs expr, and binds each of the variables in pat.
      
        - `let pat = expr; ...'
          binds each of the variables in pat, doesn't do any evaluation
      
        - `expr'
          behaves as `it <- expr' if expr is IO-typed, or `let it = expr'
          followed by `print it' otherwise.
      1c62b517
  30. 25 Jan, 2001 1 commit
  31. 24 Nov, 2000 1 commit
  32. 07 Nov, 2000 1 commit
  33. 18 Oct, 2000 1 commit
  34. 28 Sep, 2000 1 commit
    • simonpj's avatar
      [project @ 2000-09-28 13:04:14 by simonpj] · 861e836e
      simonpj authored
      ------------------------------------
      	   Mainly PredTypes (28 Sept 00)
      	------------------------------------
      
      Three things in this commit:
      
      	1.  Main thing: tidy up PredTypes
      	2.  Move all Keys into PrelNames
      	3.  Check for unboxed tuples in function args
      
      1. Tidy up PredTypes
      ~~~~~~~~~~~~~~~~~~~~
      The main thing in this commit is to modify the representation of Types
      so that they are a (much) better for the qualified-type world.  This
      should simplify Jeff's life as he proceeds with implicit parameters
      and functional dependencies.  In particular, PredType, introduced by
      Jeff, is now blessed and dignified with a place in TypeRep.lhs:
      
      	data PredType  = Class  Class [Type]
      		       | IParam Name  Type
      
      Consider these examples:
      	f :: (Eq a) => a -> Int
      	g :: (?x :: Int -> Int) => a -> Int
      	h :: (r\l) => {r} => {l::Int | r}
      
      Here the "Eq a" and "?x :: Int -> Int" and "r\l" are all called
      *predicates*, and are represented by a PredType.  (We don't support
      TREX records yet, but the setup is designed to expand to allow them.)
      
      In addition, Type gains an extra constructor:
      
      	data Type = .... | PredTy PredType
      
      so that PredType is injected directly into Type.  So the type
      	p => t
      is represented by
      	PredType p `FunTy` t
      
      I have deleted the hackish IPNote stuff; predicates are dealt with entirely
      through PredTys, not through NoteTy at all.
      
      
      2.  Move Keys into PrelNames
      ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
      This is just a housekeeping operation. I've moved all the pre-assigned Uniques
      (aka Keys) from Unique.lhs into PrelNames.lhs.  I've also moved knowKeyRdrNames
      from PrelInfo down into PrelNames.  This localises in PrelNames lots of stuff
      about predefined names.  Previously one had to alter three files to add one,
      now only one.
      
      3.  Unboxed tuples
      ~~~~~~~~~~~~~~~~~~
      Add a static check for unboxed tuple arguments.  E.g.
      	data T = T (# Int, Int #)
      is illegal
      861e836e
  35. 11 Jul, 2000 1 commit
  36. 25 May, 2000 1 commit
    • simonpj's avatar
      [project @ 2000-05-25 12:41:14 by simonpj] · 495ef8bd
      simonpj authored
      ~~~~~~~~~~~~
      		Apr/May 2000
      		~~~~~~~~~~~~
      
      This is a pretty big commit!  It adds stuff I've been working on
      over the last month or so.  DO NOT MERGE IT WITH 4.07!
      
      Interface file formats have changed a little; you'll need
      to make clean before remaking.
      
      						Simon PJ
      
      Recompilation checking
      ~~~~~~~~~~~~~~~~~~~~~~
      Substantial improvement in recompilation checking.  The version management
      is now entirely internal to GHC.  ghc-iface.lprl is dead!
      
      The trick is to generate the new interface file in two steps:
        - first convert Types etc to HsTypes etc, and thereby
      	build a new ParsedIface
        - then compare against the parsed (but not renamed) version of the old
      	interface file
      Doing this meant adding code to convert *to* HsSyn things, and to
      compare HsSyn things for equality.  That is the main tedious bit.
      
      Another improvement is that we now track version info for
      fixities and rules, which was missing before.
      
      
      Interface file reading
      ~~~~~~~~~~~~~~~~~~~~~~
      Make interface files reading more robust.
        * If the old interface file is unreadable, don't fail. [bug fix]
      
        * If the old interface file mentions interfaces
          that are unreadable, don't fail. [bug fix]
      
        * When we can't find the interface file,
          print the directories we are looking in.  [feature]
      
      
      Type signatures
      ~~~~~~~~~~~~~~~
        * New flag -ddump-types to print type signatures
      
      
      Type pruning
      ~~~~~~~~~~~~
      When importing
      	data T = T1 A | T2 B | T3 C
      it seems excessive to import the types A, B, C as well, unless
      the constructors T1, T2 etc are used.  A,B,C might be more types,
      and importing them may mean reading more interfaces, and so on.
       So the idea is that the renamer will just import the decl
      	data T
      unless one of the constructors is used.  This turns out to be quite
      easy to implement.  The downside is that we must make sure the
      constructors are always available if they are really needed, so
      I regard this as an experimental feature.
      
      
      Elimininate ThinAir names
      ~~~~~~~~~~~~~~~~~~~~~~~~~
      Eliminate ThinAir.lhs and all its works.  It was always a hack, and now
      the desugarer carries around an environment I think we can nuke ThinAir
      altogether.
      
      As part of this, I had to move all the Prelude RdrName defns from PrelInfo
      to PrelMods --- so I renamed PrelMods as PrelNames.
      
      I also had to move the builtinRules so that they are injected by the renamer
      (rather than appearing out of the blue in SimplCore).  This is if anything simpler.
      
      Miscellaneous
      ~~~~~~~~~~~~~
      * Tidy up the data types involved in Rules
      
      * Eliminate RnEnv.better_provenance; use Name.hasBetterProv instead
      
      * Add Unique.hasKey :: Uniquable a => a -> Unique -> Bool
        It's useful in a lot of places
      
      * Fix a bug in interface file parsing for __U[!]
      495ef8bd
  37. 27 Mar, 2000 1 commit
    • simonpj's avatar
      [project @ 2000-03-27 13:24:12 by simonpj] · a127213c
      simonpj authored
      a) Move Unfolding and UnfoldingGuidance to CoreSyn
         As a result, remove several SOURCE imports
         Shrink CoreSyn.hi-boot considerably
         Delete CoreUnfold.hi-boot altogether
      
      b) Add CoreUtils.exprIsConApp_maybe
         Use in PrelRules to fix a bug in the dataToTag rule
      
      c) Fix boolean polarity error in Simplify.lhs
      a127213c
  38. 23 Mar, 2000 1 commit
    • simonpj's avatar
      [project @ 2000-03-23 17:45:17 by simonpj] · 111cee3f
      simonpj authored
      This utterly gigantic commit is what I've been up to in background
      mode in the last couple of months.  Originally the main goal
      was to get rid of Con (staturated constant applications)
      in the CoreExpr type, but one thing led to another, and I kept
      postponing actually committing.   Sorry.
      
      	Simon, 23 March 2000
      
      
      I've tested it pretty thoroughly, but doubtless things will break.
      
      Here are the highlights
      
      * Con is gone; the CoreExpr type is simpler
      * NoRepLits have gone
      * Better usage info in interface files => less recompilation
      * Result type signatures work
      * CCall primop is tidied up
      * Constant folding now done by Rules
      * Lots of hackery in the simplifier
      * Improvements in CPR and strictness analysis
      
      Many bug fixes including
      
      * Sergey's DoCon compiles OK; no loop in the strictness analyser
      * Volker Wysk's programs don't crash the CPR analyser
      
      I have not done much on measuring compilation times and binary sizes;
      they could have got worse.  I think performance has got significantly
      better, though, in most cases.
      
      
      Removing the Con form of Core expressions
      ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
      The big thing is that
      
        For every constructor C there are now *two* Ids:
      
      	C is the constructor's *wrapper*. It evaluates and unboxes arguments
      	before calling $wC.  It has a perfectly ordinary top-level defn
      	in the module defining the data type.
      
      	$wC is the constructor's *worker*.  It is like a primop that simply
      	allocates and builds the constructor value.  Its arguments are the
      	actual representation arguments of the constructor.
      	Its type may be different to C, because:
      		- useless dict args are dropped
      		- strict args may be flattened
      
        For every primop P there is *one* Id, its (curried) Id
      
        Neither contructor worker Id nor the primop Id have a defminition anywhere.
        Instead they are saturated during the core-to-STG pass, and the code generator
        generates code for them directly. The STG language still has saturated
        primops and constructor applications.
      
      * The Const type disappears, along with Const.lhs.  The literal part
        of Const.lhs reappears as Literal.lhs.  Much tidying up in here,
        to bring all the range checking into this one module.
      
      * I got rid of NoRep literals entirely.  They just seem to be too much trouble.
      
      * Because Con's don't exist any more, the funny C { args } syntax
        disappears from inteface files.
      
      
      Parsing
      ~~~~~~~
      * Result type signatures now work
      	f :: Int -> Int = \x -> x
      	-- The Int->Int is the type of f
      
      	g x y :: Int = x+y
      	-- The Int is the type of the result of (g x y)
      
      
      Recompilation checking and make
      ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
      * The .hi file for a modules is not touched if it doesn't change.  (It used to
        be touched regardless, forcing a chain of recompilations.)  The penalty for this
        is that we record exported things just as if they were mentioned in the body of
        the module.  And the penalty for that is that we may recompile a module when
        the only things that have changed are the things it is passing on without using.
        But it seems like a good trade.
      
      * -recomp is on by default
      
      Foreign declarations
      ~~~~~~~~~~~~~~~~~~~~
      * If you say
      	foreign export zoo :: Int -> IO Int
        then you get a C produre called 'zoo', not 'zzoo' as before.
        I've also added a check that complains if you export (or import) a C
        procedure whose name isn't legal C.
      
      
      Code generation and labels
      ~~~~~~~~~~~~~~~~~~~~~~~~~~
      * Now that constructor workers and wrappers have distinct names, there's
        no need to have a Foo_static_closure and a Foo_closure for constructor Foo.
        I nuked the entire StaticClosure story.  This has effects in some of
        the RTS headers (i.e. s/static_closure/closure/g)
      
      
      Rules, constant folding
      ~~~~~~~~~~~~~~~~~~~~~~~
      * Constant folding becomes just another rewrite rule, attached to the Id for the
        PrimOp.   To achieve this, there's a new form of Rule, a BuiltinRule (see CoreSyn.lhs).
        The prelude rules are in prelude/PrelRules.lhs, while simplCore/ConFold.lhs has gone.
      
      * Appending of constant strings now works, using fold/build fusion, plus
        the rewrite rule
      	unpack "foo" c (unpack "baz" c n)  =  unpack "foobaz" c n
        Implemented in PrelRules.lhs
      
      * The CCall primop is tidied up quite a bit.  There is now a data type CCall,
        defined in PrimOp, that packages up the info needed for a particular CCall.
        There is a new Id for each new ccall, with an big "occurrence name"
      	{__ccall "foo" gc Int# -> Int#}
        In interface files, this is parsed as a single Id, which is what it is, really.
      
      Miscellaneous
      ~~~~~~~~~~~~~
      * There were numerous places where the host compiler's
        minInt/maxInt was being used as the target machine's minInt/maxInt.
        I nuked all of these; everything is localised to inIntRange and inWordRange,
        in Literal.lhs
      
      * Desugaring record updates was broken: it didn't generate correct matches when
        used withe records with fancy unboxing etc.  It now uses matchWrapper.
      
      * Significant tidying up in codeGen/SMRep.lhs
      
      * Add __word, __word64, __int64 terminals to signal the obvious types
        in interface files.  Add the ability to print word values in hex into
        C code.
      
      * PrimOp.lhs is no longer part of a loop.  Remove PrimOp.hi-boot*
      
      
      Types
      ~~~~~
      * isProductTyCon no longer returns False for recursive products, nor
        for unboxed products; you have to test for these separately.
        There's no reason not to do CPR for recursive product types, for example.
        Ditto splitProductType_maybe.
      
      Simplification
      ~~~~~~~~~~~~~~~
      * New -fno-case-of-case flag for the simplifier.  We use this in the first run
        of the simplifier, where it helps to stop messing up expressions that
        the (subsequent) full laziness pass would otherwise find float out.
        It's much more effective than previous half-baked hacks in inlining.
      
        Actually, it turned out that there were three places in Simplify.lhs that
        needed to know use this flag.
      
      * Make the float-in pass push duplicatable bindings into the branches of
        a case expression, in the hope that we never have to allocate them.
        (see FloatIn.sepBindsByDropPoint)
      
      * Arrange that top-level bottoming Ids get a NOINLINE pragma
        This reduced gratuitous inlining of error messages.
        But arrange that such things still get w/w'd.
      
      * Arrange that a strict argument position is regarded as an 'interesting'
        context, so that if we see
      	foldr k z (g x)
        then we'll be inclined to inline g; this can expose a build.
      
      * There was a missing case in CoreUtils.exprEtaExpandArity that meant
        we were missing some obvious cases for eta expansion
        Also improve the code when handling applications.
      
      * Make record selectors (identifiable by their IdFlavour) into "cheap" operations.
      	  [The change is a 2-liner in CoreUtils.exprIsCheap]
        This means that record selection may be inlined into function bodies, which
        greatly improves the arities of overloaded functions.
      
      * Make a cleaner job of inlining "lone variables".  There was some distributed
        cunning, but I've centralised it all now in SimplUtils.analyseCont, which
        analyses the context of a call to decide whether it is "interesting".
      
      * Don't specialise very small functions in Specialise.specDefn
        It's better to inline it.  Rather like the worker/wrapper case.
      
      * Be just a little more aggressive when floating out of let rhss.
        See comments with Simplify.wantToExpose
        A small change with an occasional big effect.
      
      * Make the inline-size computation think that
      	case x of I# x -> ...
        is *free*.
      
      
      CPR analysis
      ~~~~~~~~~~~~
      * Fix what was essentially a bug in CPR analysis.  Consider
      
      	letrec f x = let g y = let ... in f e1
      		     in
      		     if ... then (a,b) else g x
      
        g has the CPR property if f does; so when generating the final annotated
        RHS for f, we must use an envt in which f is bound to its final abstract
        value.  This wasn't happening.  Instead, f was given the CPR tag but g
        wasn't; but of course the w/w pass gives rotten results in that case!!
        (Because f's CPR-ness relied on g's.)
      
        On they way I tidied up the code in CprAnalyse.  It's quite a bit shorter.
      
        The fact that some data constructors return a constructed product shows
        up in their CPR info (MkId.mkDataConId) not in CprAnalyse.lhs
      
      
      
      Strictness analysis and worker/wrapper
      ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
      * BIG THING: pass in the demand to StrictAnal.saExpr.  This affects situations
        like
      	f (let x = e1 in (x,x))
        where f turns out to have strictness u(SS), say.  In this case we can
        mark x as demanded, and use a case expression for it.
      
        The situation before is that we didn't "know" that there is the u(SS)
        demand on the argument, so we simply computed that the body of the let
        expression is lazy in x, and marked x as lazily-demanded.  Then even after
        f was w/w'd we got
      
      	let x = e1 in case (x,x) of (a,b) -> $wf a b
      
        and hence
      
      	let x = e1 in $wf a b
      
        I found a much more complicated situation in spectral/sphere/Main.shade,
        which improved quite a bit with this change.
      
      * Moved the StrictnessInfo type from IdInfo to Demand.  It's the logical
        place for it, and helps avoid module loops
      
      * Do worker/wrapper for coerces even if the arity is zero.  Thus:
      	stdout = coerce Handle (..blurg..)
        ==>
      	wibble = (...blurg...)
      	stdout = coerce Handle wibble
        This is good because I found places where we were saying
      	case coerce t stdout of { MVar a ->
      	...
      	case coerce t stdout of { MVar b ->
      	...
        and the redundant case wasn't getting eliminated because of the coerce.
      111cee3f
  39. 17 Jun, 1999 1 commit