1. 17 Nov, 2015 1 commit
  2. 14 Nov, 2015 1 commit
  3. 13 Nov, 2015 1 commit
    • Alan Zimmerman's avatar
      APIAnnotations:add Locations in hsSyn for layout · 2290c8bd
      Alan Zimmerman authored
      Summary:
      At the moment ghc-exactprint, which uses the GHC API Annotations to
      provide a framework for roundtripping Haskell source code with optional
      AST edits, has to implement a horrible workaround to manage the points
      where layout needs to be captured.
      
      These are
      
          MatchGroup
          HsDo
          HsCmdDo
          HsLet
          LetStmt
          HsCmdLet
          GRHSs
      
      To provide a more natural representation, the contents subject to layout
      rules need to be wrapped in a SrcSpan.
      
      This commit does this.
      
      Trac ticket #10250
      
      Test Plan: ./validate
      
      Reviewers: hvr, goldfire, bgamari, austin, mpickering
      
      Reviewed By: mpickering
      
      Subscribers: thomie, mpickering
      
      Differential Revision: https://phabricator.haskell.org/D1370
      
      GHC Trac Issues: #10250
      2290c8bd
  4. 11 Nov, 2015 1 commit
    • Alan Zimmerman's avatar
      Remove fun_infix from Funbind, as it is now in Match · f0f9365f
      Alan Zimmerman authored
      One of the changes D538 introduced is to add `m_fun_id_infix` to `Match`
      
      ```lang=hs
      data Match id body
        = Match {
              m_fun_id_infix :: (Maybe (Located id,Bool)),
                -- fun_id and fun_infix for functions with multiple equations
                -- only present for a RdrName. See note [fun_id in Match]
              m_pats :: [LPat id], -- The patterns
              m_type :: (Maybe (LHsType id)),
                                       -- A type signature for the result of the match
                                       -- Nothing after typechecking
              m_grhss :: (GRHSs id body)
        } deriving (Typeable)
      ```
      
      This was done to track the individual locations and fixity of the
      `fun_id` for each of the defining equations for a function when there
      are more than one.
      
      For example, the function `(&&&)` is defined with some prefix and some
      infix equations below.
      
      ```lang=hs
          (&&&  ) [] [] =  []
          xs    &&&   [] =  xs
          (  &&&  ) [] ys =  ys
      ```
      
      This means that the fun_infix is now superfluous in the `FunBind`. This
      has not been removed as a potentially risky change just before 7.10 RC2,
      and so must be done after.
      
      This ticket captures that task, which includes processing these fields
      through the renamer and beyond.
      
      Ticket #9988 introduced these fields into `Match` through renaming, this
      ticket it to continue through type checking and then remove it from
      `FunBind` completely.
      
      The split happened so that #9988 could land in 7.10
      
      Trac ticket : #10061
      
      Test Plan: ./validate
      
      Reviewers: goldfire, austin, simonpj, bgamari
      
      Reviewed By: bgamari
      
      Subscribers: simonpj, thomie, mpickering
      
      Differential Revision: https://phabricator.haskell.org/D1285
      
      GHC Trac Issues: #10061
      f0f9365f
  5. 18 May, 2015 1 commit
    • Simon Peyton Jones's avatar
      Refactor tuple constraints · ffc21506
      Simon Peyton Jones authored
      Make tuple constraints be handled by a perfectly ordinary
      type class, with the component constraints being the
      superclasses:
          class (c1, c2) => (c2, c2)
      
      This change was provoked by
      
        #10359  inability to re-use a given tuple
                constraint as a whole
      
        #9858   confusion between term tuples
                and constraint tuples
      
      but it's generally a very nice simplification. We get rid of
       -  In Type, the TuplePred constructor of PredTree,
          and all the code that dealt with TuplePreds
       -  In TcEvidence, the constructors EvTupleMk, EvTupleSel
      
      See Note [How tuples work] in TysWiredIn.
      
      Of course, nothing is ever entirely simple. This one
      proved quite fiddly.
      
      - I did quite a bit of renaming, which makes this patch
        touch a lot of modules. In partiuclar tupleCon -> tupleDataCon.
      
      - I made constraint tuples known-key rather than wired-in.
        This is different to boxed/unboxed tuples, but it proved
        awkward to have all the superclass selectors wired-in.
        Easier just to use the standard mechanims.
      
      - While I was fiddling with known-key names, I split the TH Name
        definitions out of DsMeta into a new module THNames.  That meant
        that the known-key names can all be gathered in PrelInfo, without
        causing module loops.
      
      - I found that the parser was parsing an import item like
            T( .. )
        as a *data constructor* T, and then using setRdrNameSpace to
        fix it.  Stupid!  So I changed the parser to parse a *type
        constructor* T, which means less use of setRdrNameSpace.
      
        I also improved setRdrNameSpace to behave better on Exact Names.
        Largely on priciple; I don't think it matters a lot.
      
      - When compiling a data type declaration for a wired-in thing like
        tuples (,), or lists, we don't really need to look at the
        declaration.  We have the wired-in thing!  And not doing so avoids
        having to line up the uniques for data constructor workers etc.
        See Note [Declarations for wired-in things]
      
      - I found that FunDeps.oclose wasn't taking superclasses into
        account; easily fixed.
      
      - Some error message refactoring for invalid constraints in TcValidity
      
      - Haddock needs to absorb the change too; so there is a submodule update
      ffc21506
  6. 14 May, 2015 1 commit
  7. 13 May, 2015 1 commit
    • Simon Peyton Jones's avatar
      Refactor tuple constraints · 130e93aa
      Simon Peyton Jones authored
      Make tuple constraints be handled by a perfectly ordinary
      type class, with the component constraints being the
      superclasses:
          class (c1, c2) => (c2, c2)
      
      This change was provoked by
      
        #10359  inability to re-use a given tuple
                constraint as a whole
      
        #9858   confusion between term tuples
                and constraint tuples
      
      but it's generally a very nice simplification. We get rid of
       -  In Type, the TuplePred constructor of PredTree,
          and all the code that dealt with TuplePreds
       -  In TcEvidence, the constructors EvTupleMk, EvTupleSel
      
      See Note [How tuples work] in TysWiredIn.
      
      Of course, nothing is ever entirely simple. This one
      proved quite fiddly.
      
      - I did quite a bit of renaming, which makes this patch
        touch a lot of modules. In partiuclar tupleCon -> tupleDataCon.
      
      - I made constraint tuples known-key rather than wired-in.
        This is different to boxed/unboxed tuples, but it proved
        awkward to have all the superclass selectors wired-in.
        Easier just to use the standard mechanims.
      
      - While I was fiddling with known-key names, I split the TH Name
        definitions out of DsMeta into a new module THNames.  That meant
        that the known-key names can all be gathered in PrelInfo, without
        causing module loops.
      
      - I found that the parser was parsing an import item like
            T( .. )
        as a *data constructor* T, and then using setRdrNameSpace to
        fix it.  Stupid!  So I changed the parser to parse a *type
        constructor* T, which means less use of setRdrNameSpace.
      
        I also improved setRdrNameSpace to behave better on Exact Names.
        Largely on priciple; I don't think it matters a lot.
      
      - When compiling a data type declaration for a wired-in thing like
        tuples (,), or lists, we don't really need to look at the
        declaration.  We have the wired-in thing!  And not doing so avoids
        having to line up the uniques for data constructor workers etc.
        See Note [Declarations for wired-in things]
      
      - I found that FunDeps.oclose wasn't taking superclasses into
        account; easily fixed.
      
      - Some error message refactoring for invalid constraints in TcValidity
      130e93aa
  8. 06 May, 2015 2 commits
  9. 16 Jan, 2015 1 commit
    • Alan Zimmerman's avatar
      API Annotations tweaks. · 11881ec6
      Alan Zimmerman authored
      Summary:
      HsTyLit now has SourceText
      
      Update documentation of HsSyn to reflect which annotations are attached to which element.
      
      Ensure that the parser always keeps HsSCC and HsTickPragma values, to
      be ignored in the desugar phase if not needed
      
      Bringing in SourceText for pragmas
      
      Add Location in NPlusKPat
      
      Add Location in FunDep
      
      Make RecCon payload Located
      
      Explicitly add AnnVal to RdrName where it is compound
      
      Add Location in IPBind
      
      Add Location to name in IEThingAbs
      
      Add Maybe (Located id,Bool) to Match to track fun_id,infix
        This includes converting Match into a record and adding a note about why
        the fun_id needs to be replicated in the Match.
      
      Add Location in KindedTyVar
      
      Sort out semi-colons for parsing
      
        - import statements
        - stmts
        - decls
        - decls_cls
        - decls_inst
      
      This updates the haddock submodule.
      
      Test Plan: ./validate
      
      Reviewers: hvr, austin, goldfire, simonpj
      
      Reviewed By: simonpj
      
      Subscribers: thomie, carter
      
      Differential Revision: https://phabricator.haskell.org/D538
      11881ec6
  10. 03 Dec, 2014 1 commit
  11. 28 Nov, 2014 1 commit
  12. 27 Nov, 2014 1 commit
  13. 21 Nov, 2014 2 commits
    • Alan Zimmerman's avatar
      AST changes to prepare for API annotations, for #9628 · 7927658e
      Alan Zimmerman authored
      Summary:
      AST changes to prepare for API annotations
      
      Add locations to parts of the AST so that API annotations can
      then be added.
      
      The outline of the whole process is captured here
      https://ghc.haskell.org/trac/ghc/wiki/GhcAstAnnotations
      
      This change updates the haddock submodule.
      
      Test Plan: sh ./validate
      
      Reviewers: austin, simonpj, Mikolaj
      
      Reviewed By: simonpj, Mikolaj
      
      Subscribers: thomie, goldfire, carter
      
      Differential Revision: https://phabricator.haskell.org/D426
      
      GHC Trac Issues: #9628
      7927658e
    • Simon Peyton Jones's avatar
      Implement full co/contra-variant subsumption checking (fixes Trac #9569) · b6855422
      Simon Peyton Jones authored
      This is a pretty big patch, but which substantially iproves the subsumption
      check.  Trac #9569 was the presenting example, showing how type inference could
      depend rather delicately on eta expansion.  But there are other less exotic
      examples; see Note [Co/contra-variance of subsumption checking] in TcUnify.
      
      The driving change is to TcUnify.tcSubType.  But also
      
      * HsWrapper gets a new constructor WpFun, which behaves very like CoFun:
             if     wrap1 :: exp_arg <= act_arg
                    wrap2 :: act_res <= exp_res
             then   WpFun wrap1 wrap2 : (act_arg -> arg_res) <= (exp_arg -> exp_res)
      
      * I generalised TcExp.tcApp to call tcSubType on the result,
        rather than tcUnifyType.  I think this just makes it consistent
        with everything else, notably tcWrapResult.
      
      As usual I ended up doing some follow-on refactoring
      
      * AmbigOrigin is gone (in favour of TypeEqOrigin)
      * Combined BindPatSigCtxt and PatSigCxt into one
      * Improved a bit of error message generation
      b6855422
  14. 05 Jun, 2014 1 commit
    • Simon Peyton Jones's avatar
      Fix egregious instantiation bug in matchOneConLike (fixing Trac #9023) · 0a55a3ca
      Simon Peyton Jones authored
      We simply weren't giving anything like the right instantiating types
      to patSynInstArgTys in matchOneConLike.
      
      To get these instantiating types would have involved matching the
      result type of the pattern synonym with the pattern type, which is
      tiresome.  So instead I changed ConPatOut so that instead of recording
      the type of the *whole* pattern (in old field pat_ty), it not records
      the *instantiating* types (in new field pat_arg_tys).  Then we canuse
      TcHsSyn.conLikeResTy to get the pattern type when needed.
      
      There are lots of knock-on incidental effects, but they mostly made
      the code simpler, so I'm happy.
      0a55a3ca
  15. 15 May, 2014 1 commit
    • Herbert Valerio Riedel's avatar
      Add LANGUAGE pragmas to compiler/ source files · 23892440
      Herbert Valerio Riedel authored
      In some cases, the layout of the LANGUAGE/OPTIONS_GHC lines has been
      reorganized, while following the convention, to
      
      - place `{-# LANGUAGE #-}` pragmas at the top of the source file, before
        any `{-# OPTIONS_GHC #-}`-lines.
      
      - Moreover, if the list of language extensions fit into a single
        `{-# LANGUAGE ... -#}`-line (shorter than 80 characters), keep it on one
        line. Otherwise split into `{-# LANGUAGE ... -#}`-lines for each
        individual language extension. In both cases, try to keep the
        enumeration alphabetically ordered.
        (The latter layout is preferable as it's more diff-friendly)
      
      While at it, this also replaces obsolete `{-# OPTIONS ... #-}` pragma
      occurences by `{-# OPTIONS_GHC ... #-}` pragmas.
      23892440
  16. 13 Apr, 2014 1 commit
  17. 03 Apr, 2014 1 commit
  18. 20 Jan, 2014 1 commit
    • cactus's avatar
      Implement pattern synonyms · 4f8369bf
      cactus authored
      This patch implements Pattern Synonyms (enabled by -XPatternSynonyms),
      allowing y ou to assign names to a pattern and abstract over it.
      
      The rundown is this:
      
        * Named patterns are introduced by the new 'pattern' keyword, and can
          be either *unidirectional* or *bidirectional*. A unidirectional
          pattern is, in the simplest sense, simply an 'alias' for a pattern,
          where the LHS may mention variables to occur in the RHS. A
          bidirectional pattern synonym occurs when a pattern may also be used
          in expression context.
      
        * Unidirectional patterns are declared like thus:
      
              pattern P x <- x:_
      
          The synonym 'P' may only occur in a pattern context:
      
              foo :: [Int] -> Maybe Int
              foo (P x) = Just x
              foo _     = Nothing
      
        * Bidirectional patterns are declared like thus:
      
              pattern P x y = [x, y]
      
          Here, P may not only occur as a pattern, but also as an expression
          when given values for 'x' and 'y', i.e.
      
              bar :: Int -> [Int]
              bar x = P x 10
      
        * Patterns can't yet have their own type signatures; signatures are inferred.
      
        * Pattern synonyms may not be recursive, c.f. type synonyms.
      
        * Pattern synonyms are also exported/imported using the 'pattern'
          keyword in an import/export decl, i.e.
      
              module Foo (pattern Bar) where ...
      
          Note that pattern synonyms share the namespace of constructors, so
          this disambiguation is required as a there may also be a 'Bar'
          type in scope as well as the 'Bar' pattern.
      
        * The semantics of a pattern synonym differ slightly from a typical
          pattern: when using a synonym, the pattern itself is matched,
          followed by all the arguments. This means that the strictness
          differs slightly:
      
              pattern P x y <- [x, y]
      
              f (P True True) = True
              f _             = False
      
              g [True, True] = True
              g _            = False
      
          In the example, while `g (False:undefined)` evaluates to False,
          `f (False:undefined)` results in undefined as both `x` and `y`
          arguments are matched to `True`.
      
      For more information, see the wiki:
      
          https://ghc.haskell.org/trac/ghc/wiki/PatternSynonyms
          https://ghc.haskell.org/trac/ghc/wiki/PatternSynonyms/ImplementationReviewed-by: Simon Peyton Jones's avatarSimon Peyton Jones <simonpj@microsoft.com>
      Signed-off-by: default avatarAustin Seipp <austin@well-typed.com>
      4f8369bf
  19. 27 Nov, 2013 1 commit
    • Joachim Breitner's avatar
      Roleify TcCoercion · 9d643cf6
      Joachim Breitner authored
      Previously, TcCoercion were only used to represent boxed Nominal
      coercions. In order to also talk about boxed Representational coercions
      in the type checker, we add Roles to TcCoercion. Again, we closely
      mirror Coercion.
      
      The roles are verified by a few assertions, and at the latest after
      conversion to Coercion. I have put my trust in the comprehensiveness of
      the testsuite here, but any role error after desugaring popping up now
      might be caused by this refactoring.
      9d643cf6
  20. 04 Oct, 2013 1 commit
  21. 28 Jul, 2013 1 commit
  22. 25 Apr, 2013 1 commit
  23. 14 Feb, 2013 1 commit
    • Simon Peyton Jones's avatar
      Add OverloadedLists, allowing list syntax to be overloaded · 3234a4ad
      Simon Peyton Jones authored
      This work was all done by
         Achim Krause <achim.t.krause@gmail.com>
         George Giorgidze <giorgidze@gmail.com>
         Weijers Jeroen <jeroen.weijers@uni-tuebingen.de>
      
      It allows list syntax, such as [a,b], [a..b] and so on, to be
      overloaded so that it works for a variety of types.
      
      The design is described here:
          http://hackage.haskell.org/trac/ghc/wiki/OverloadedLists
      
      Eg. you can use it for maps, so that
              [(1,"foo"), (4,"bar")] :: Map Int String
      
      The main changes
       * The ExplicitList constructor of HsExpr gets witness field
       * Ditto ArithSeq constructor
       * Ditto the ListPat constructor of HsPat
      
      Everything else flows from this.
      3234a4ad
  24. 13 Feb, 2013 1 commit
  25. 04 Jan, 2013 1 commit
    • Simon Peyton Jones's avatar
      Allow empty case expressions (and lambda-case) with -XEmptyCase · 3671e674
      Simon Peyton Jones authored
      The main changes are:
        * Parser accepts empty case alternatives
        * Renamer checks that -XEmptyCase is on in that case
        * (Typechecker is pretty much unchanged.)
        * Desugarer desugars empty case alternatives, esp:
            - Match.matchWrapper and Match.match now accept empty eqns
            - New function matchEmpty deals with the empty case
            - See Note [Empty case alternatives] in Match
      
      This patch contains most of the work, but it's a bit mixed up
      with a refactoring of MatchGroup that I did at the same time
      (next commit).
      3671e674
  26. 18 Oct, 2012 1 commit
    • ian@well-typed.com's avatar
      Refactor the way dump flags are handled · d4a19643
      ian@well-typed.com authored
      We were being inconsistent about how we tested whether dump flags
      were enabled; in particular, sometimes we also checked the verbosity,
      and sometimes we didn't.
      
      This lead to oddities such as "ghc -v4" printing an "Asm code" section
      which didn't contain any code, and "-v4" enabled some parts of
      "-ddump-deriv" but not others.
      
      Now all the tests use dopt, which also takes the verbosity into account
      as appropriate.
      d4a19643
  27. 16 Oct, 2012 1 commit
    • ian@well-typed.com's avatar
      Some alpha renaming · cd33eefd
      ian@well-typed.com authored
      Mostly d -> g (matching DynFlag -> GeneralFlag).
      Also renamed if* to when*, matching the Haskell if/when names
      cd33eefd
  28. 03 Oct, 2012 1 commit
    • Simon Peyton Jones's avatar
      This big patch re-factors the way in which arrow-syntax is handled · ba56d20d
      Simon Peyton Jones authored
      All the work was done by Dan Winograd-Cort.
      
      The main thing is that arrow comamnds now have their own
      data type HsCmd (defined in HsExpr).  Previously it was
      punned with the HsExpr type, which was jolly confusing,
      and made it hard to do anything arrow-specific.
      
      To make this work, we now parameterise
        * MatchGroup
        * Match
        * GRHSs, GRHS
        * StmtLR and friends
      over the "body", that is the kind of thing they
      enclose.  This "body" parameter can be instantiated to
      either LHsExpr or LHsCmd respectively.
      
      Everything else is really a knock-on effect; there should
      be no change (yet!) in behaviour.  But it should be a sounder
      basis for fixing bugs.
      ba56d20d
  29. 17 Sep, 2012 1 commit
  30. 16 Jul, 2012 1 commit
  31. 19 Jan, 2012 1 commit
  32. 07 Jan, 2012 1 commit
  33. 05 Dec, 2011 1 commit
    • Simon Peyton Jones's avatar
      Allow full constraint solving under a for-all (Trac #5595) · 2e6dcdf7
      Simon Peyton Jones authored
      The main idea is that when we unify
          forall a. t1  ~  forall a. t2
      we get constraints from unifying t1~t2 that mention a.
      We are producing a coercion witnessing the equivalence of
      the for-alls, and inside *that* coercion we need bindings
      for the solved constraints arising from t1~t2.
      
      We didn't have way to do this before.  The big change is
      that here's a new type TcEvidence.TcCoercion, which is
      much like Coercion.Coercion except that there's a slot
      for TcEvBinds in it.
      
      This has a wave of follow-on changes. Not deep but broad.
      
      * New module TcEvidence, which now contains the HsWrapper
        TcEvBinds, EvTerm etc types that used to be in HsBinds
      
      * The typechecker works exclusively in terms of TcCoercion.
      
      * The desugarer converts TcCoercion to Coercion
      
      * The main payload is in TcUnify.unifySigmaTy. This is the
        function that had a gross hack before, but is now beautiful.
      
      * LCoercion is gone!  Hooray.
      
      Many many fiddly changes in conssequence.  But it's nice.
      2e6dcdf7
  34. 04 Nov, 2011 1 commit
  35. 02 Nov, 2011 1 commit
    • Simon Marlow's avatar
      Overhaul of infrastructure for profiling, coverage (HPC) and breakpoints · 7bb0447d
      Simon Marlow authored
      User visible changes
      ====================
      
      Profilng
      --------
      
      Flags renamed (the old ones are still accepted for now):
      
        OLD            NEW
        ---------      ------------
        -auto-all      -fprof-auto
        -auto          -fprof-exported
        -caf-all       -fprof-cafs
      
      New flags:
      
        -fprof-auto              Annotates all bindings (not just top-level
                                 ones) with SCCs
      
        -fprof-top               Annotates just top-level bindings with SCCs
      
        -fprof-exported          Annotates just exported bindings with SCCs
      
        -fprof-no-count-entries  Do not maintain entry counts when profiling
                                 (can make profiled code go faster; useful with
                                 heap profiling where entry counts are not used)
      
      Cost-centre stacks have a new semantics, which should in most cases
      result in more useful and intuitive profiles.  If you find this not to
      be the case, please let me know.  This is the area where I have been
      experimenting most, and the current solution is probably not the
      final version, however it does address all the outstanding bugs and
      seems to be better than GHC 7.2.
      
      Stack traces
      ------------
      
      +RTS -xc now gives more information.  If the exception originates from
      a CAF (as is common, because GHC tends to lift exceptions out to the
      top-level), then the RTS walks up the stack and reports the stack in
      the enclosing update frame(s).
      
      Result: +RTS -xc is much more useful now - but you still have to
      compile for profiling to get it.  I've played around a little with
      adding 'head []' to GHC itself, and +RTS -xc does pinpoint the problem
      quite accurately.
      
      I plan to add more facilities for stack tracing (e.g. in GHCi) in the
      future.
      
      Coverage (HPC)
      --------------
      
       * derived instances are now coloured yellow if they weren't used
       * likewise record field names
       * entry counts are more accurate (hpc --fun-entry-count)
       * tab width is now correct (markup was previously off in source with
         tabs)
      
      Internal changes
      ================
      
      In Core, the Note constructor has been replaced by
      
              Tick (Tickish b) (Expr b)
      
      which is used to represent all the kinds of source annotation we
      support: profiling SCCs, HPC ticks, and GHCi breakpoints.
      
      Depending on the properties of the Tickish, different transformations
      apply to Tick.  See CoreUtils.mkTick for details.
      
      Tickets
      =======
      
      This commit closes the following tickets, test cases to follow:
      
        - Close #2552: not a bug, but the behaviour is now more intuitive
          (test is T2552)
      
        - Close #680 (test is T680)
      
        - Close #1531 (test is result001)
      
        - Close #949 (test is T949)
      
        - Close #2466: test case has bitrotted (doesn't compile against current
          version of vector-space package)
      7bb0447d
  36. 06 Sep, 2011 1 commit
    • batterseapower's avatar
      Implement -XConstraintKind · 9729fe7c
      batterseapower authored
      Basically as documented in http://hackage.haskell.org/trac/ghc/wiki/KindFact,
      this patch adds a new kind Constraint such that:
      
        Show :: * -> Constraint
        (?x::Int) :: Constraint
        (Int ~ a) :: Constraint
      
      And you can write *any* type with kind Constraint to the left of (=>):
      even if that type is a type synonym, type variable, indexed type or so on.
      
      The following (somewhat related) changes are also made:
       1. We now box equality evidence. This is required because we want
          to give (Int ~ a) the *lifted* kind Constraint
       2. For similar reasons, implicit parameters can now only be of
          a lifted kind. (?x::Int#) => ty is now ruled out
       3. Implicit parameter constraints are now allowed in superclasses
          and instance contexts (this just falls out as OK with the new
          constraint solver)
      
      Internally the following major changes were made:
       1. There is now no PredTy in the Type data type. Instead
          GHC checks the kind of a type to figure out if it is a predicate
       2. There is now no AClass TyThing: we represent classes as TyThings
          just as a ATyCon (classes had TyCons anyway)
       3. What used to be (~) is now pretty-printed as (~#). The box
          constructor EqBox :: (a ~# b) -> (a ~ b)
       4. The type LCoercion is used internally in the constraint solver
          and type checker to represent coercions with free variables
          of type (a ~ b) rather than (a ~# b)
      9729fe7c
  37. 14 Jul, 2011 1 commit
    • Ian Lynagh's avatar
      Separate the warning flags into their own datatype · 493ea4ab
      Ian Lynagh authored
      The -w flag wasn't turning off a few warnings (Opt_WarnMissingImportList,
      Opt_WarnMissingLocalSigs, Opt_WarnIdentities). Rather than just adding
      them, I've separated the Opt_Warn* contructors off into their own type,
      so -w now just sets the list of warning flags to [].
      493ea4ab
  38. 04 May, 2011 1 commit