1. 23 Sep, 2003 1 commit
    • simonmar's avatar
      [project @ 2003-09-23 14:32:57 by simonmar] · abbc5a0b
      simonmar authored
      - Convert many of the optimisation options into dynamic options (that is,
        they can be mentioned in {-# OPTIONS #-} pragmas).
      
      - Add a new way to specify constructor-field unboxing on a selective
        basis.  To tell the compiler to unbox a constructor field, do this:
      
            data T = T !!Int
      
        and GHC will store that field unboxed if possible.  If it isn't possible
        (say, because the field has a sum type) then the annotation is ignored.
      
        The -funbox-strict-fields flag is now a dynamic flag, and has the same
        effect as replacing all the '!' annotations with '!!'.
      abbc5a0b
  2. 25 Jun, 2003 1 commit
  3. 24 Jun, 2003 1 commit
    • simonpj's avatar
      [project @ 2003-06-24 07:58:18 by simonpj] · 16e4ce4c
      simonpj authored
      ----------------------------------------------
      	Add support for Ross Paterson's arrow notation
      	----------------------------------------------
      
      Ross Paterson's ICFP'01 paper described syntax to support John Hughes's
      "arrows", rather as do-notation supports monads.  Except that do-notation is
      relatively modest -- you can write monads by hand without much trouble --
      whereas arrow-notation is more-or-less essential for writing arrow programs.
      It desugars to a massive pile of tuple construction and selection!
      
      For some time, Ross has had a pre-processor for arrow notation, but the
      resulting type error messages (reported in terms of the desugared code)
      are impenetrable.  This commit integrates the syntax into GHC.  The
      type error messages almost certainly still require tuning, but they should
      be better than with the pre-processor.
      
      Main syntactic changes (enabled with -farrows)
      
         exp ::= ... | proc pat -> cmd
      
         cmd ::= exp1 -<  exp2   |  exp1 >-  exp2
      	|  exp1 -<< exp2   |  exp1 >>- exp2
      	| \ pat1 .. patn -> cmd
      	| let decls in cmd
      	| if exp then cmd1 else cmd2
      	| do { cstmt1 .. cstmtn ; cmd }
      	| (| exp |) cmd1 .. cmdn
      	| cmd1 qop cmd2
      	| case exp of { calts }
      
         cstmt :: = let decls
      	 |   pat <- cmd
      	 |   rec { cstmt1 .. cstmtn }
      	 |   cmd
      
      New keywords and symbols:
      	proc rec
      	-<   >-   -<<   >>-
      	(|  |)
      
      The do-notation in cmds was not described in Ross's ICFP'01 paper; instead
      it's in his chapter in The Fun of Programming (Plagrave 2003).
      
      The four arrow-tail forms (-<) etc cover
        (a) which order the pices come in (-<  vs  >-), and
        (b) whether the locally bound variables can be used in the
      		arrow part (-<  vs  -<<) .
      In previous presentations, the higher-order-ness (b) was inferred,
      but it makes a big difference to the typing required so it seems more
      consistent to be explicit.
      
      The 'rec' form is also available in do-notation:
        * you can use 'rec' in an ordinary do, with the obvious meaning
        * using 'mdo' just says "infer the minimal recs"
      
      
      Still to do
      ~~~~~~~~~~~
      Top priority is the user manual.
      
      The implementation still lacks an implementation of
      the case form of cmd.
      
      
      Implementation notes
      ~~~~~~~~~~~~~~~~~~~~
      Cmds are parsed, and indeed renamed, as expressions.  The type checker
      distinguishes the two.
      16e4ce4c
  4. 02 Jun, 2003 2 commits
    • simonpj's avatar
      [project @ 2003-06-02 14:26:54 by simonpj] · eda83294
      simonpj authored
      Wibbles to nested tuples
      eda83294
    • simonpj's avatar
      [project @ 2003-06-02 13:28:08 by simonpj] · 663a01b2
      simonpj authored
      -------------------------------------
            Fix the big-tuple-from-desugaring problem
      	-------------------------------------
      
      The desugarer generates a tuple from
      	- mutually recursive bindings
      	- pattern bindings
      
      If either bind a lot of variables, GHC can generate a big
      tuple that isn't in the library, with subsequent disaster.
      
      This commit fixes the problem, by using nested tuples.  It
      does *not* fix the problem with big tuples written by the
      user. And there's still a potential desugarer problem with
      parallel list comprehensions that bind a lot of variables
      (and parallel array comprehensions) -- but I expect they are
      much much rarer.
      
      The fix isn't fully tested yet -- I'll try to do that today.
      663a01b2
  5. 19 Feb, 2003 1 commit
  6. 27 Sep, 2002 1 commit
    • simonpj's avatar
      [project @ 2002-09-27 08:20:43 by simonpj] · dbc254c3
      simonpj authored
      --------------------------------
              Implement recursive do-notation
      	--------------------------------
      
      This commit adds recursive do-notation, which Hugs has had for some time.
      
      	mdo { x <- foo y ;
      	      y <- baz x ;
      	      return (y,x) }
      
      turns into
      
      	do { (x,y) <- mfix (\~(x,y) -> do { x <- foo y;
      					    y <- baz x }) ;
      	     return (y,x) }
      
      This is all based on work by Levent Erkok and John Lanuchbury.
      
      The really tricky bit is in the renamer (RnExpr.rnMDoStmts) where
      we break things up into minimal segments.  The rest is easy, including
      the type checker.
      
      Levent laid the groundwork, and Simon finished it off. Needless to say,
      I couldn't resist tidying up other stuff, so there's no guaranteed I
      have not broken something.
      dbc254c3
  7. 13 Sep, 2002 1 commit
    • simonpj's avatar
      [project @ 2002-09-13 15:02:25 by simonpj] · 9af77fa4
      simonpj authored
      --------------------------------------
      	Make Template Haskell into the HEAD
      	--------------------------------------
      
      This massive commit transfers to the HEAD all the stuff that
      Simon and Tim have been doing on Template Haskell.  The
      meta-haskell-branch is no more!
      
      WARNING: make sure that you
      
        * Update your links if you are using link trees.
          Some modules have been added, some have gone away.
      
        * Do 'make clean' in all library trees.
          The interface file format has changed, and you can
          get strange panics (sadly) if GHC tries to read old interface files:
          e.g.  ghc-5.05: panic! (the `impossible' happened, GHC version 5.05):
      	  Binary.get(TyClDecl): ForeignType
      
        * You need to recompile the rts too; Linker.c has changed
      
      
      However the libraries are almost unaltered; just a tiny change in
      Base, and to the exports in Prelude.
      
      
      NOTE: so far as TH itself is concerned, expression splices work
      fine, but declaration splices are not complete.
      
      
      		---------------
      		The main change
      		---------------
      
      The main structural change: renaming and typechecking have to be
      interleaved, because we can't rename stuff after a declaration splice
      until after we've typechecked the stuff before (and the splice
      itself).
      
      * Combine the renamer and typecheker monads into one
      	(TcRnMonad, TcRnTypes)
        These two replace TcMonad and RnMonad
      
      * Give them a single 'driver' (TcRnDriver).  This driver
        replaces TcModule.lhs and Rename.lhs
      
      * The haskell-src library package has a module
      	Language/Haskell/THSyntax
        which defines the Haskell data type seen by the TH programmer.
      
      * New modules:
      	hsSyn/Convert.hs 	converts THSyntax -> HsSyn
      	deSugar/DsMeta.hs 	converts HsSyn -> THSyntax
      
      * New module typecheck/TcSplice type-checks Template Haskell splices.
      
      		-------------
      		Linking stuff
      		-------------
      
      * ByteCodeLink has been split into
      	ByteCodeLink	(which links)
      	ByteCodeAsm	(which assembles)
      
      * New module ghci/ObjLink is the object-code linker.
      
      * compMan/CmLink is removed entirely (was out of place)
        Ditto CmTypes (which was tiny)
      
      * Linker.c initialises the linker when it is first used (no need to call
        initLinker any more).  Template Haskell makes it harder to know when
        and whether to initialise the linker.
      
      
      	-------------------------------------
      	Gathering the LIE in the type checker
      	-------------------------------------
      
      * Instead of explicitly gathering constraints in the LIE
      	tcExpr :: RenamedExpr -> TcM (TypecheckedExpr, LIE)
        we now dump the constraints into a mutable varabiable carried
        by the monad, so we get
      	tcExpr :: RenamedExpr -> TcM TypecheckedExpr
      
        Much less clutter in the code, and more efficient too.
        (Originally suggested by Mark Shields.)
      
      
      		-----------------
      		Remove "SysNames"
      		-----------------
      
      Because the renamer and the type checker were entirely separate,
      we had to carry some rather tiresome implicit binders (or "SysNames")
      along inside some of the HsDecl data structures.  They were both
      tiresome and fragile.
      
      Now that the typechecker and renamer are more intimately coupled,
      we can eliminate SysNames (well, mostly... default methods still
      carry something similar).
      
      		-------------
      		Clean up HsPat
      		-------------
      
      One big clean up is this: instead of having two HsPat types (InPat and
      OutPat), they are now combined into one.  This is more consistent with
      the way that HsExpr etc is handled; there are some 'Out' constructors
      for the type checker output.
      
      So:
      	HsPat.InPat	--> HsPat.Pat
      	HsPat.OutPat	--> HsPat.Pat
      	No 'pat' type parameter in HsExpr, HsBinds, etc
      
      	Constructor patterns are nicer now: they use
      		HsPat.HsConDetails
      	for the three cases of constructor patterns:
      		prefix, infix, and record-bindings
      
      	The *same* data type HsConDetails is used in the type
      	declaration of the data type (HsDecls.TyData)
      
      Lots of associated clean-up operations here and there.  Less code.
      Everything is wonderful.
      9af77fa4
  8. 13 Feb, 2002 1 commit
  9. 11 Feb, 2002 1 commit
    • chak's avatar
      [project @ 2002-02-11 08:20:38 by chak] · 10fcd78c
      chak authored
      *******************************
      		       * Merging from ghc-ndp-branch *
      		       *******************************
      
      This commit merges the current state of the "parallel array extension" and
      includes the following:
      
      * (Almost) completed Milestone 1:
        - The option `-fparr' activates the H98 extension for parallel arrays.
        - These changes have a high likelihood of conflicting (in the CVS sense)
          with other changes to GHC and are the reason for merging now.
        - ToDo: There are still some (less often used) functions not implemented in
      	  `PrelPArr' and a mechanism is needed to automatically import
      	  `PrelPArr' iff `-fparr' is given.  Documentation that should go into
      	  the Commentary is currently in `ghc/compiler/ndpFlatten/TODO'.
      
      * Partial Milestone 2:
        - The option `-fflatten' activates the flattening transformation and `-ndp'
          selects the "ndp" way (where all libraries have to be compiled with
          flattening).  The way option `-ndp' automagically turns on `-fparr' and
          `-fflatten'.
        - Almost all changes are in the new directory `ndpFlatten' and shouldn't
          affect the rest of the compiler.  The only exception are the options and
          the points in `HscMain' where the flattening phase is called when
          `-fflatten' is given.
        - This isn't usable yet, but already implements function lifting,
          vectorisation, and a new analysis that determines which parts of a module
          have to undergo the flattening transformation.  Missing are data structure
          and function specialisation, the unboxed array library (including fusion
          rules), and lots of testing.
      
      I have just run the regression tests on the thing without any problems.  So,
      it seems, as if we haven't broken anything crucial.
      10fcd78c
  10. 12 Jul, 2001 1 commit
    • simonpj's avatar
      [project @ 2001-07-12 16:21:22 by simonpj] · ab46fd8e
      simonpj authored
      --------------------------------------------
      	Fix another bug in the squash-newtypes story.
      	--------------------------------------------
      
      [This one was spotted by Marcin, and is now enshrined in test tc130.]
      
      The desugarer straddles the boundary between the type checker and
      Core, so it sometimes needs to look through newtypes/implicit parameters
      and sometimes not.  This is really a bit painful, but I can't think of
      a better way to do it.
      
      The only simple way to fix things was to pass a bit more type
      information in the HsExpr type, from the type checker to the desugarer.
      That led to the non-local changes you can see.
      
      On the way I fixed one other thing.  In various HsSyn constructors
      there is a Type that is bogus (bottom) before the type checker, and
      filled in with a real type by the type checker.  In one place it was
      a (Maybe Type) which was Nothing before, and (Just ty) afterwards.
      I've defined a type synonym HsTypes.PostTcType for this, and a named
      bottom value HsTypes.placeHolderType to use when you want the bottom
      value.
      ab46fd8e
  11. 25 Jun, 2001 1 commit
    • simonpj's avatar
      [project @ 2001-06-25 08:09:57 by simonpj] · d069cec2
      simonpj authored
      ----------------
      	Squash newtypes
      	----------------
      
      This commit squashes newtypes and their coerces, from the typechecker
      onwards.  The original idea was that the coerces would not get in the
      way of optimising transformations, but despite much effort they continue
      to do so.   There's no very good reason to retain newtype information
      beyond the typechecker, so now we don't.
      
      Main points:
      
      * The post-typechecker suite of Type-manipulating functions is in
      types/Type.lhs, as before.   But now there's a new suite in types/TcType.lhs.
      The difference is that in the former, newtype are transparent, while in
      the latter they are opaque.  The typechecker should only import TcType,
      not Type.
      
      * The operations in TcType are all non-monadic, and most of them start with
      "tc" (e.g. tcSplitTyConApp).  All the monadic operations (used exclusively
      by the typechecker) are in a new module, typecheck/TcMType.lhs
      
      * I've grouped newtypes with predicate types, thus:
      	data Type = TyVarTy Tyvar | ....
      		  | SourceTy SourceType
      
      	data SourceType = NType TyCon [Type]
      			| ClassP Class [Type]
      			| IParam Type
      
      [SourceType was called PredType.]  This is a little wierd in some ways,
      because NTypes can't occur in qualified types.   However, the idea is that
      a SourceType is a type that is opaque to the type checker, but transparent
      to the rest of the compiler, and newtypes fit that as do implicit parameters
      and dictionaries.
      
      * Recursive newtypes still retain their coreces, exactly as before. If
      they were transparent we'd get a recursive type, and that would make
      various bits of the compiler diverge (e.g. things which do type comparison).
      
      * I've removed types/Unify.lhs (non-monadic type unifier and matcher),
      merging it into TcType.
      
      Ditto typecheck/TcUnify.lhs (monadic unifier), merging it into TcMType.
      d069cec2
  12. 11 Jun, 2001 1 commit
    • simonpj's avatar
      [project @ 2001-06-11 12:24:51 by simonpj] · 2c6d73e2
      simonpj authored
      --------------------------------------
      	Tidy up and improve "pattern contexts"
      	--------------------------------------
      
      In various places (renamer, typechecker, desugarer) we need to know
      what the context of a pattern match is (case expression, function defn,
      let binding, etc).  This commit tidies up the story quite a bit.  I
      think it represents a net decrease in code, and certainly it improves the
      error messages from:
      
      	f x x = 3
      
      Prevsiously we got a message like "Conflicting bindings for x in a pattern match",
      but not it says "..in a defn of function f".
      
      WARNING: the tidy up had a more global effect than I originally expected,
      so it's possible that some other error messages look a bit peculiar.  They
      should be easy to fix, but tell us!
      2c6d73e2
  13. 08 May, 2001 1 commit
    • simonpj's avatar
      [project @ 2001-05-08 14:44:37 by simonpj] · 7c72bad5
      simonpj authored
      ****	MERGE WITH 5.00 BRANCH     ********
      
      	--------------------------------------
      	Make parallel list comprehensions work
      	--------------------------------------
      
      There were two bugs
      
      1.  The desugaring in DsListComp was generating code that failed Lint.
          I've restructured it quite a lot.
      
      2.  More seriously, in a ParStmt, the last 'stmt' may be a guard;
          but previously both guards and the result of a list comprehension
          were encoded as an ExprStmt (see HsExpr.Stmt), using the fact that
          the stmt was last in the list to make the difference between a guard
          and a result.  But in parallel list comp this isn't right:
      
      	[ e | x <- xs, guard | y <- ys ]
      
          Here 'guard' is last in its list, but isn't an overall result.
      
          The sensible fix is to properly distinguish
      	"here's the answer" 			 (ResultStmt)
      	"here's a guard or an imperative action" (ExprStmt)
      
          The fix is rather easy, but touched quite a lot of files.  On the
          way I tidied up the parser a little.
      7c72bad5
  14. 10 Apr, 2001 1 commit
    • lewie's avatar
      [project @ 2001-04-10 22:34:47 by lewie] · 54cbdfde
      lewie authored
      Don't use foldr/build if we've got a parallel list comp.  We'd need to
      have/generate a family of functions foldr{2,3,...} to do anything nicer here.
      54cbdfde
  15. 26 Feb, 2001 1 commit
    • simonmar's avatar
      [project @ 2001-02-26 15:06:57 by simonmar] · 1c62b517
      simonmar authored
      Implement do-style bindings on the GHCi command line.
      
      The syntax for a command-line is exactly that of a do statement, with
      the following meanings:
      
        - `pat <- expr'
          performs expr, and binds each of the variables in pat.
      
        - `let pat = expr; ...'
          binds each of the variables in pat, doesn't do any evaluation
      
        - `expr'
          behaves as `it <- expr' if expr is IO-typed, or `let it = expr'
          followed by `print it' otherwise.
      1c62b517
  16. 25 Jan, 2001 1 commit
  17. 24 Nov, 2000 1 commit
  18. 07 Nov, 2000 1 commit
  19. 18 Oct, 2000 1 commit
  20. 28 Sep, 2000 1 commit
    • simonpj's avatar
      [project @ 2000-09-28 13:04:14 by simonpj] · 861e836e
      simonpj authored
      ------------------------------------
      	   Mainly PredTypes (28 Sept 00)
      	------------------------------------
      
      Three things in this commit:
      
      	1.  Main thing: tidy up PredTypes
      	2.  Move all Keys into PrelNames
      	3.  Check for unboxed tuples in function args
      
      1. Tidy up PredTypes
      ~~~~~~~~~~~~~~~~~~~~
      The main thing in this commit is to modify the representation of Types
      so that they are a (much) better for the qualified-type world.  This
      should simplify Jeff's life as he proceeds with implicit parameters
      and functional dependencies.  In particular, PredType, introduced by
      Jeff, is now blessed and dignified with a place in TypeRep.lhs:
      
      	data PredType  = Class  Class [Type]
      		       | IParam Name  Type
      
      Consider these examples:
      	f :: (Eq a) => a -> Int
      	g :: (?x :: Int -> Int) => a -> Int
      	h :: (r\l) => {r} => {l::Int | r}
      
      Here the "Eq a" and "?x :: Int -> Int" and "r\l" are all called
      *predicates*, and are represented by a PredType.  (We don't support
      TREX records yet, but the setup is designed to expand to allow them.)
      
      In addition, Type gains an extra constructor:
      
      	data Type = .... | PredTy PredType
      
      so that PredType is injected directly into Type.  So the type
      	p => t
      is represented by
      	PredType p `FunTy` t
      
      I have deleted the hackish IPNote stuff; predicates are dealt with entirely
      through PredTys, not through NoteTy at all.
      
      
      2.  Move Keys into PrelNames
      ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
      This is just a housekeeping operation. I've moved all the pre-assigned Uniques
      (aka Keys) from Unique.lhs into PrelNames.lhs.  I've also moved knowKeyRdrNames
      from PrelInfo down into PrelNames.  This localises in PrelNames lots of stuff
      about predefined names.  Previously one had to alter three files to add one,
      now only one.
      
      3.  Unboxed tuples
      ~~~~~~~~~~~~~~~~~~
      Add a static check for unboxed tuple arguments.  E.g.
      	data T = T (# Int, Int #)
      is illegal
      861e836e
  21. 11 Jul, 2000 1 commit
  22. 25 May, 2000 1 commit
    • simonpj's avatar
      [project @ 2000-05-25 12:41:14 by simonpj] · 495ef8bd
      simonpj authored
      ~~~~~~~~~~~~
      		Apr/May 2000
      		~~~~~~~~~~~~
      
      This is a pretty big commit!  It adds stuff I've been working on
      over the last month or so.  DO NOT MERGE IT WITH 4.07!
      
      Interface file formats have changed a little; you'll need
      to make clean before remaking.
      
      						Simon PJ
      
      Recompilation checking
      ~~~~~~~~~~~~~~~~~~~~~~
      Substantial improvement in recompilation checking.  The version management
      is now entirely internal to GHC.  ghc-iface.lprl is dead!
      
      The trick is to generate the new interface file in two steps:
        - first convert Types etc to HsTypes etc, and thereby
      	build a new ParsedIface
        - then compare against the parsed (but not renamed) version of the old
      	interface file
      Doing this meant adding code to convert *to* HsSyn things, and to
      compare HsSyn things for equality.  That is the main tedious bit.
      
      Another improvement is that we now track version info for
      fixities and rules, which was missing before.
      
      
      Interface file reading
      ~~~~~~~~~~~~~~~~~~~~~~
      Make interface files reading more robust.
        * If the old interface file is unreadable, don't fail. [bug fix]
      
        * If the old interface file mentions interfaces
          that are unreadable, don't fail. [bug fix]
      
        * When we can't find the interface file,
          print the directories we are looking in.  [feature]
      
      
      Type signatures
      ~~~~~~~~~~~~~~~
        * New flag -ddump-types to print type signatures
      
      
      Type pruning
      ~~~~~~~~~~~~
      When importing
      	data T = T1 A | T2 B | T3 C
      it seems excessive to import the types A, B, C as well, unless
      the constructors T1, T2 etc are used.  A,B,C might be more types,
      and importing them may mean reading more interfaces, and so on.
       So the idea is that the renamer will just import the decl
      	data T
      unless one of the constructors is used.  This turns out to be quite
      easy to implement.  The downside is that we must make sure the
      constructors are always available if they are really needed, so
      I regard this as an experimental feature.
      
      
      Elimininate ThinAir names
      ~~~~~~~~~~~~~~~~~~~~~~~~~
      Eliminate ThinAir.lhs and all its works.  It was always a hack, and now
      the desugarer carries around an environment I think we can nuke ThinAir
      altogether.
      
      As part of this, I had to move all the Prelude RdrName defns from PrelInfo
      to PrelMods --- so I renamed PrelMods as PrelNames.
      
      I also had to move the builtinRules so that they are injected by the renamer
      (rather than appearing out of the blue in SimplCore).  This is if anything simpler.
      
      Miscellaneous
      ~~~~~~~~~~~~~
      * Tidy up the data types involved in Rules
      
      * Eliminate RnEnv.better_provenance; use Name.hasBetterProv instead
      
      * Add Unique.hasKey :: Uniquable a => a -> Unique -> Bool
        It's useful in a lot of places
      
      * Fix a bug in interface file parsing for __U[!]
      495ef8bd
  23. 27 Mar, 2000 1 commit
    • simonpj's avatar
      [project @ 2000-03-27 13:24:12 by simonpj] · a127213c
      simonpj authored
      a) Move Unfolding and UnfoldingGuidance to CoreSyn
         As a result, remove several SOURCE imports
         Shrink CoreSyn.hi-boot considerably
         Delete CoreUnfold.hi-boot altogether
      
      b) Add CoreUtils.exprIsConApp_maybe
         Use in PrelRules to fix a bug in the dataToTag rule
      
      c) Fix boolean polarity error in Simplify.lhs
      a127213c
  24. 23 Mar, 2000 1 commit
    • simonpj's avatar
      [project @ 2000-03-23 17:45:17 by simonpj] · 111cee3f
      simonpj authored
      This utterly gigantic commit is what I've been up to in background
      mode in the last couple of months.  Originally the main goal
      was to get rid of Con (staturated constant applications)
      in the CoreExpr type, but one thing led to another, and I kept
      postponing actually committing.   Sorry.
      
      	Simon, 23 March 2000
      
      
      I've tested it pretty thoroughly, but doubtless things will break.
      
      Here are the highlights
      
      * Con is gone; the CoreExpr type is simpler
      * NoRepLits have gone
      * Better usage info in interface files => less recompilation
      * Result type signatures work
      * CCall primop is tidied up
      * Constant folding now done by Rules
      * Lots of hackery in the simplifier
      * Improvements in CPR and strictness analysis
      
      Many bug fixes including
      
      * Sergey's DoCon compiles OK; no loop in the strictness analyser
      * Volker Wysk's programs don't crash the CPR analyser
      
      I have not done much on measuring compilation times and binary sizes;
      they could have got worse.  I think performance has got significantly
      better, though, in most cases.
      
      
      Removing the Con form of Core expressions
      ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
      The big thing is that
      
        For every constructor C there are now *two* Ids:
      
      	C is the constructor's *wrapper*. It evaluates and unboxes arguments
      	before calling $wC.  It has a perfectly ordinary top-level defn
      	in the module defining the data type.
      
      	$wC is the constructor's *worker*.  It is like a primop that simply
      	allocates and builds the constructor value.  Its arguments are the
      	actual representation arguments of the constructor.
      	Its type may be different to C, because:
      		- useless dict args are dropped
      		- strict args may be flattened
      
        For every primop P there is *one* Id, its (curried) Id
      
        Neither contructor worker Id nor the primop Id have a defminition anywhere.
        Instead they are saturated during the core-to-STG pass, and the code generator
        generates code for them directly. The STG language still has saturated
        primops and constructor applications.
      
      * The Const type disappears, along with Const.lhs.  The literal part
        of Const.lhs reappears as Literal.lhs.  Much tidying up in here,
        to bring all the range checking into this one module.
      
      * I got rid of NoRep literals entirely.  They just seem to be too much trouble.
      
      * Because Con's don't exist any more, the funny C { args } syntax
        disappears from inteface files.
      
      
      Parsing
      ~~~~~~~
      * Result type signatures now work
      	f :: Int -> Int = \x -> x
      	-- The Int->Int is the type of f
      
      	g x y :: Int = x+y
      	-- The Int is the type of the result of (g x y)
      
      
      Recompilation checking and make
      ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
      * The .hi file for a modules is not touched if it doesn't change.  (It used to
        be touched regardless, forcing a chain of recompilations.)  The penalty for this
        is that we record exported things just as if they were mentioned in the body of
        the module.  And the penalty for that is that we may recompile a module when
        the only things that have changed are the things it is passing on without using.
        But it seems like a good trade.
      
      * -recomp is on by default
      
      Foreign declarations
      ~~~~~~~~~~~~~~~~~~~~
      * If you say
      	foreign export zoo :: Int -> IO Int
        then you get a C produre called 'zoo', not 'zzoo' as before.
        I've also added a check that complains if you export (or import) a C
        procedure whose name isn't legal C.
      
      
      Code generation and labels
      ~~~~~~~~~~~~~~~~~~~~~~~~~~
      * Now that constructor workers and wrappers have distinct names, there's
        no need to have a Foo_static_closure and a Foo_closure for constructor Foo.
        I nuked the entire StaticClosure story.  This has effects in some of
        the RTS headers (i.e. s/static_closure/closure/g)
      
      
      Rules, constant folding
      ~~~~~~~~~~~~~~~~~~~~~~~
      * Constant folding becomes just another rewrite rule, attached to the Id for the
        PrimOp.   To achieve this, there's a new form of Rule, a BuiltinRule (see CoreSyn.lhs).
        The prelude rules are in prelude/PrelRules.lhs, while simplCore/ConFold.lhs has gone.
      
      * Appending of constant strings now works, using fold/build fusion, plus
        the rewrite rule
      	unpack "foo" c (unpack "baz" c n)  =  unpack "foobaz" c n
        Implemented in PrelRules.lhs
      
      * The CCall primop is tidied up quite a bit.  There is now a data type CCall,
        defined in PrimOp, that packages up the info needed for a particular CCall.
        There is a new Id for each new ccall, with an big "occurrence name"
      	{__ccall "foo" gc Int# -> Int#}
        In interface files, this is parsed as a single Id, which is what it is, really.
      
      Miscellaneous
      ~~~~~~~~~~~~~
      * There were numerous places where the host compiler's
        minInt/maxInt was being used as the target machine's minInt/maxInt.
        I nuked all of these; everything is localised to inIntRange and inWordRange,
        in Literal.lhs
      
      * Desugaring record updates was broken: it didn't generate correct matches when
        used withe records with fancy unboxing etc.  It now uses matchWrapper.
      
      * Significant tidying up in codeGen/SMRep.lhs
      
      * Add __word, __word64, __int64 terminals to signal the obvious types
        in interface files.  Add the ability to print word values in hex into
        C code.
      
      * PrimOp.lhs is no longer part of a loop.  Remove PrimOp.hi-boot*
      
      
      Types
      ~~~~~
      * isProductTyCon no longer returns False for recursive products, nor
        for unboxed products; you have to test for these separately.
        There's no reason not to do CPR for recursive product types, for example.
        Ditto splitProductType_maybe.
      
      Simplification
      ~~~~~~~~~~~~~~~
      * New -fno-case-of-case flag for the simplifier.  We use this in the first run
        of the simplifier, where it helps to stop messing up expressions that
        the (subsequent) full laziness pass would otherwise find float out.
        It's much more effective than previous half-baked hacks in inlining.
      
        Actually, it turned out that there were three places in Simplify.lhs that
        needed to know use this flag.
      
      * Make the float-in pass push duplicatable bindings into the branches of
        a case expression, in the hope that we never have to allocate them.
        (see FloatIn.sepBindsByDropPoint)
      
      * Arrange that top-level bottoming Ids get a NOINLINE pragma
        This reduced gratuitous inlining of error messages.
        But arrange that such things still get w/w'd.
      
      * Arrange that a strict argument position is regarded as an 'interesting'
        context, so that if we see
      	foldr k z (g x)
        then we'll be inclined to inline g; this can expose a build.
      
      * There was a missing case in CoreUtils.exprEtaExpandArity that meant
        we were missing some obvious cases for eta expansion
        Also improve the code when handling applications.
      
      * Make record selectors (identifiable by their IdFlavour) into "cheap" operations.
      	  [The change is a 2-liner in CoreUtils.exprIsCheap]
        This means that record selection may be inlined into function bodies, which
        greatly improves the arities of overloaded functions.
      
      * Make a cleaner job of inlining "lone variables".  There was some distributed
        cunning, but I've centralised it all now in SimplUtils.analyseCont, which
        analyses the context of a call to decide whether it is "interesting".
      
      * Don't specialise very small functions in Specialise.specDefn
        It's better to inline it.  Rather like the worker/wrapper case.
      
      * Be just a little more aggressive when floating out of let rhss.
        See comments with Simplify.wantToExpose
        A small change with an occasional big effect.
      
      * Make the inline-size computation think that
      	case x of I# x -> ...
        is *free*.
      
      
      CPR analysis
      ~~~~~~~~~~~~
      * Fix what was essentially a bug in CPR analysis.  Consider
      
      	letrec f x = let g y = let ... in f e1
      		     in
      		     if ... then (a,b) else g x
      
        g has the CPR property if f does; so when generating the final annotated
        RHS for f, we must use an envt in which f is bound to its final abstract
        value.  This wasn't happening.  Instead, f was given the CPR tag but g
        wasn't; but of course the w/w pass gives rotten results in that case!!
        (Because f's CPR-ness relied on g's.)
      
        On they way I tidied up the code in CprAnalyse.  It's quite a bit shorter.
      
        The fact that some data constructors return a constructed product shows
        up in their CPR info (MkId.mkDataConId) not in CprAnalyse.lhs
      
      
      
      Strictness analysis and worker/wrapper
      ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
      * BIG THING: pass in the demand to StrictAnal.saExpr.  This affects situations
        like
      	f (let x = e1 in (x,x))
        where f turns out to have strictness u(SS), say.  In this case we can
        mark x as demanded, and use a case expression for it.
      
        The situation before is that we didn't "know" that there is the u(SS)
        demand on the argument, so we simply computed that the body of the let
        expression is lazy in x, and marked x as lazily-demanded.  Then even after
        f was w/w'd we got
      
      	let x = e1 in case (x,x) of (a,b) -> $wf a b
      
        and hence
      
      	let x = e1 in $wf a b
      
        I found a much more complicated situation in spectral/sphere/Main.shade,
        which improved quite a bit with this change.
      
      * Moved the StrictnessInfo type from IdInfo to Demand.  It's the logical
        place for it, and helps avoid module loops
      
      * Do worker/wrapper for coerces even if the arity is zero.  Thus:
      	stdout = coerce Handle (..blurg..)
        ==>
      	wibble = (...blurg...)
      	stdout = coerce Handle wibble
        This is good because I found places where we were saying
      	case coerce t stdout of { MVar a ->
      	...
      	case coerce t stdout of { MVar b ->
      	...
        and the redundant case wasn't getting eliminated because of the coerce.
      111cee3f
  25. 17 Jun, 1999 1 commit
  26. 18 May, 1999 1 commit
  27. 02 Dec, 1998 1 commit
  28. 08 Jan, 1998 1 commit
    • simonm's avatar
      [project @ 1998-01-08 18:03:08 by simonm] · 9dd6e1c2
      simonm authored
      The Great Multi-Parameter Type Classes Merge.
      
      Notes from Simon (abridged):
      
      * Multi-parameter type classes are fully implemented.
      * Error messages from the type checker should be noticeably improved
      * Warnings for unused bindings (-fwarn-unused-names)
      * many other minor bug fixes.
      
      Internally there are the following changes
      
      * Removal of Haskell 1.2 compatibility.
      * Dramatic clean-up of the PprStyle stuff.
      * The type Type has been substantially changed.
      * The dictionary for each class is represented by a new
        data type for that purpose, rather than by a tuple.
      9dd6e1c2
  29. 02 Dec, 1997 1 commit
  30. 13 Jun, 1997 1 commit
  31. 05 Jun, 1997 1 commit
  32. 19 May, 1997 1 commit
  33. 14 Mar, 1997 1 commit
  34. 06 Jan, 1997 1 commit
  35. 19 Dec, 1996 1 commit
  36. 30 Jun, 1996 1 commit
  37. 11 Jun, 1996 1 commit
  38. 05 Jun, 1996 1 commit
  39. 17 May, 1996 1 commit