Forked from
Glasgow Haskell Compiler / GHC
Source project has a limited visibility.
-
See https://github.com/ghc-proposals/ghc-proposals/pull/540/ for a complete description for the motivation for this feature. The `-jsem` option allows a build tool to pass a semaphore to GHC which GHC can use in order to control how much parallelism it requests. GHC itself acts as a client in the GHC jobserver protocol. ``` GHC Jobserver Protocol ~~~~~~~~~~~~~~~~~~~~~~ This proposal introduces the GHC Jobserver Protocol. This protocol allows a server to dynamically invoke many instances of a client process, while restricting all of those instances to use no more than <n> capabilities. This is achieved by coordination over a system semaphore (either a POSIX semaphore [6]_ in the case of Linux and Darwin, or a Win32 semaphore [7]_ in the case of Windows platforms). There are two kinds of participants in the GHC Jobserver protocol: - The *jobserver* creates a system semaphore with a certain number of available tokens. Each time the jobserver wants to spawn a new jobclient subprocess, it **must** first acquire a single token from the semaphore, before spawning the subprocess. This token **must** be released once the subprocess terminates. Once work is finished, the jobserver **must** destroy the semaphore it created. - A *jobclient* is a subprocess spawned by the jobserver or another jobclient. Each jobclient starts with one available token (its *implicit token*, which was acquired by the parent which spawned it), and can request more tokens through the Jobserver Protocol by waiting on the semaphore. Each time a jobclient wants to spawn a new jobclient subprocess, it **must** pass on a single token to the child jobclient. This token can either be the jobclient's implicit token, or another token which the jobclient acquired from the semaphore. Each jobclient **must** release exactly as many tokens as it has acquired from the semaphore (this does not include the implicit tokens). ``` Build tools such as cabal act as jobservers in the protocol and are responsibile for correctly creating, cleaning up and managing the semaphore. Adds a new submodule (semaphore-compat) for managing and interacting with semaphores in a cross-platform way. Fixes #19349
See https://github.com/ghc-proposals/ghc-proposals/pull/540/ for a complete description for the motivation for this feature. The `-jsem` option allows a build tool to pass a semaphore to GHC which GHC can use in order to control how much parallelism it requests. GHC itself acts as a client in the GHC jobserver protocol. ``` GHC Jobserver Protocol ~~~~~~~~~~~~~~~~~~~~~~ This proposal introduces the GHC Jobserver Protocol. This protocol allows a server to dynamically invoke many instances of a client process, while restricting all of those instances to use no more than <n> capabilities. This is achieved by coordination over a system semaphore (either a POSIX semaphore [6]_ in the case of Linux and Darwin, or a Win32 semaphore [7]_ in the case of Windows platforms). There are two kinds of participants in the GHC Jobserver protocol: - The *jobserver* creates a system semaphore with a certain number of available tokens. Each time the jobserver wants to spawn a new jobclient subprocess, it **must** first acquire a single token from the semaphore, before spawning the subprocess. This token **must** be released once the subprocess terminates. Once work is finished, the jobserver **must** destroy the semaphore it created. - A *jobclient* is a subprocess spawned by the jobserver or another jobclient. Each jobclient starts with one available token (its *implicit token*, which was acquired by the parent which spawned it), and can request more tokens through the Jobserver Protocol by waiting on the semaphore. Each time a jobclient wants to spawn a new jobclient subprocess, it **must** pass on a single token to the child jobclient. This token can either be the jobclient's implicit token, or another token which the jobclient acquired from the semaphore. Each jobclient **must** release exactly as many tokens as it has acquired from the semaphore (this does not include the implicit tokens). ``` Build tools such as cabal act as jobservers in the protocol and are responsibile for correctly creating, cleaning up and managing the semaphore. Adds a new submodule (semaphore-compat) for managing and interacting with semaphores in a cross-platform way. Fixes #19349
Code owners
Assign users and groups as approvers for specific file changes. Learn more.