Skip to content
Snippets Groups Projects
Commit 3c6a193f authored by sof's avatar sof
Browse files

[project @ 1997-07-26 22:48:58 by sof]

parent 05a23752
No related merge requests found
Showing
with 317 additions and 0 deletions
module ShouldSucceed where
class Eq' a where
deq :: a -> a -> Bool
instance Eq' Int where
deq x y = True
instance (Eq' a) => Eq' [a] where
deq (a:as) (b:bs) = if (deq a b) then (deq as bs) else False
f x = deq x [1]
module ShouldSucceed where
class Eq' a where
doubleeq :: a -> a -> Bool
class (Eq' a) => Ord' a where
lt :: a -> a -> Bool
instance Eq' Int where
doubleeq x y = True
instance Ord' Int where
lt x y = True
f x y | lt x 1 = True
| otherwise = False
module ShouldSucceed where
(x,y) = (\p -> p,\q -> q)
--!!! Duplicate class assertion
module ShouldSucceed where
class Eq' a where
doubleeq :: a -> a -> Bool
class (Eq' a) => Ord' a where
lt :: a -> a -> Bool
instance Eq' Int where
doubleeq x y = True
instance (Eq' a, Eq' a) => Eq' [a] where
doubleeq x y = True
f x y = doubleeq x [1]
interface ShouldSucceed where {
class Eq' a where { deq }
instance <Eq' Int>
instance Eq' a => <Eq' [a]>
dand :: Bool -> Bool -> Bool
f :: Eq' t93 => t93 -> t93 -> Bool
}
module ShouldSucceed where
-- See also tcfail060.hs
class Eq' a where
deq :: a -> a -> Bool
instance Eq' Int where
deq x y = True
instance (Eq' a) => Eq' [a] where
deq (a:as) (b:bs) = dand (f a b) (f as bs)
dand True True = True
dand x y = False
f :: Eq' a => a -> a -> Bool
f p q = dand (deq p q) (deq [1::Int] [2::Int])
module ShouldSucceed where
class Eq2 a where
doubleeq :: a -> a -> Bool
class (Eq2 a) => Ord2 a where
lt :: a -> a -> Bool
instance Eq2 Int where
doubleeq x y = True
instance Ord2 Int where
lt x y = True
instance (Eq2 a,Ord2 a) => Eq2 [a] where
doubleeq xs ys = True
f x y = doubleeq x [1]
module ShouldSucceed where
class Eq2 a where
deq :: a -> a -> Bool
foo :: a -> a
instance Eq2 Int where
deq x y = True
foo x = x
instance (Eq2 a) => Eq2 [a] where
deq (a:as) (b:bs) = if (deq a (foo b)) then (deq as (foo bs)) else False
foo x = x
f x = deq x [1]
module ShouldSucceed where
class Eq2 a where
deq :: a -> a -> Bool
instance (Eq2 a) => Eq2 [a] where
deq (a:as) (b:bs) = if (deq a b) then (deq as bs) else False
instance Eq2 Int where
deq x y = True
module ShouldSucceed where
class Eq1 a where
deq :: a -> a -> Bool
instance (Eq1 a) => Eq1 [a] where
deq (a:as) (b:bs) = deq a b
instance Eq1 Int where
deq x y = True
module ShouldSucceed where
class Eq1 a where
deq :: a -> a -> Bool
instance Eq1 Int where
deq x y = True
instance (Eq1 a) => Eq1 [a] where
deq (a:as) (b:bs) = if (deq a b) then (deq as bs) else False
f x (y:ys) = deq x ys
module ShouldSucceed where
data X a = Tag a
class Reps r where
f :: r -> r -> r
instance Reps (X q) where
-- f (Tag x) (Tag y) = Tag y
f x y = y
instance Reps Bool where
f True True = True
f x y = False
g x = f x x
module ShouldSucceed where
data Boolean = FF | TT
idb :: Boolean -> Boolean
idb x = x
module Digraphs where
import TheUtils
import Set
import List (partition )
data Digraph vertex = MkDigraph [vertex]
type Edge vertex = (vertex, vertex)
type Cycle vertex = [vertex]
mkDigraph = MkDigraph
stronglyConnComp :: Eq vertex => [Edge vertex] -> [vertex] -> [[vertex]]
stronglyConnComp es vs
= snd (span_tree (new_range reversed_edges)
([],[])
( snd (dfs (new_range es) ([],[]) vs) )
)
where
reversed_edges = map swap es
swap :: Edge v -> Edge v
swap (x,y) = (y, x)
new_range [] w = []
new_range ((x,y):xys) w
= if x==w
then (y : (new_range xys w))
else (new_range xys w)
span_tree r (vs,ns) [] = (vs,ns)
span_tree r (vs,ns) (x:xs)
| x `elem` vs = span_tree r (vs,ns) xs
| otherwise = span_tree r (vs',(x:ns'):ns) xs
where
(vs',ns') = dfs r (x:vs,[]) (r x)
dfs r (vs,ns) [] = (vs,ns)
dfs r (vs,ns) (x:xs) | x `elem` vs = dfs r (vs,ns) xs
| otherwise = dfs r (vs',(x:ns')++ns) xs
where
(vs',ns') = dfs r (x:vs,[]) (r x)
isCyclic :: Eq vertex => [Edge vertex] -> [vertex] -> Bool
isCyclic edges [v] = (v,v) `elem` edges
isCyclic edges vs = True
topSort :: (Eq vertex) => [Edge vertex] -> [vertex]
-> MaybeErr [vertex] [[vertex]]
topSort edges vertices
= case cycles of
[] -> Succeeded [v | [v] <- singletons]
_ -> Failed cycles
where
sccs = stronglyConnComp edges vertices
(cycles, singletons) = partition (isCyclic edges) sccs
type FlattenedDependencyInfo vertex name code
= [(vertex, Set name, Set name, code)]
mkVertices :: FlattenedDependencyInfo vertex name code -> [vertex]
mkVertices info = [ vertex | (vertex,_,_,_) <- info]
mkEdges :: (Eq vertex, Ord name) =>
[vertex]
-> FlattenedDependencyInfo vertex name code
-> [Edge vertex]
mkEdges vertices flat_info
= [ (source_vertex, target_vertex)
| (source_vertex, _, used_names, _) <- flat_info,
target_name <- setToList used_names,
target_vertex <- vertices_defining target_name flat_info
]
where
vertices_defining name flat_info
= [ vertex | (vertex, names_defined, _, _) <- flat_info,
name `elementOf` names_defined
]
lookupVertex :: (Eq vertex, Ord name) =>
FlattenedDependencyInfo vertex name code
-> vertex
-> code
lookupVertex flat_info vertex
= head code_list
where
code_list = [ code | (vertex',_,_,code) <- flat_info, vertex == vertex']
isRecursiveCycle :: (Eq vertex) => Cycle vertex -> [Edge vertex] -> Bool
isRecursiveCycle [vertex] edges = (vertex, vertex) `elem` edges
isRecursiveCycle cycle edges = True
-- may go to TheUtils
data MaybeErr a b = Succeeded a | Failed b
module ShouldSucceed where
data Pair a b = MkPair a b
f x = [ a | (MkPair c a) <- x ]
module ShouldSucc where
f [] = []
f (x:xs) = x : (f xs)
module ShouldSucc where
data T a = D (B a) | C
data B b = X | Y b
instance (Eq a) => Eq (T a) where
(D x) == (D y) = x == y
C == C = True
a == b = False
a /= b = not (a == b)
instance (Eq b) => Eq (B b) where
X == X = True
(Y a) == (Y b) = a == b
a == b = False
a /= b = not (a == b)
module ShouldSucceed where
x = 'a'
(y:ys) = ['a','b','c'] where p = x
module ShouldSucceed where
data Boolean = FF | TT
idb :: Boolean -> Boolean
idb x = x
module ShouldSucc where
f [] = []
f (x:xs) = x : (f xs)
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment