Skip to content

GitLab

  • Menu
Projects Groups Snippets
  • Help
    • Help
    • Support
    • Community forum
    • Submit feedback
  • Sign in / Register
  • GHC GHC
  • Project information
    • Project information
    • Activity
    • Labels
    • Members
  • Repository
    • Repository
    • Files
    • Commits
    • Branches
    • Tags
    • Contributors
    • Graph
    • Compare
    • Locked Files
  • Issues 4,865
    • Issues 4,865
    • List
    • Boards
    • Service Desk
    • Milestones
    • Iterations
  • Merge requests 461
    • Merge requests 461
  • CI/CD
    • CI/CD
    • Pipelines
    • Jobs
    • Schedules
    • Test Cases
  • Deployments
    • Deployments
    • Releases
  • Analytics
    • Analytics
    • Value stream
    • CI/CD
    • Code review
    • Insights
    • Issue
    • Repository
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Activity
  • Graph
  • Create a new issue
  • Jobs
  • Commits
  • Issue Boards
Collapse sidebar
  • Glasgow Haskell Compiler
  • GHCGHC
  • Issues
  • #9539
Closed
Open
Created Sep 01, 2014 by jwlato@trac-jwlato

TQueue can lead to thread starvation

For background, please see this SO question

When using TQueue, a sufficiently fast/persistent writer can result in the reader never getting scheduled, causing the queue to continually grow and lost concurrency.

I believe the issue is caused by the definition of readTQueue:

readTQueue :: TQueue a -> STM a
readTQueue (TQueue read write) = do
  xs <- readTVar read
  case xs of
    (x:xs') -> do writeTVar read xs'
                  return x
    [] -> do ys <- readTVar write
             case ys of
               [] -> retry
               _  -> case reverse ys of
                       [] -> error "readTQueue"
                       (z:zs) -> do writeTVar write []
                                    writeTVar read zs
                                    return z

Note that the last case needs to traverse the write-end of the queue within the STM transaction. If the list is sufficiently large, a writer can commit a new transaction much more quickly, invalidating the read transaction. If threads continue to write to the queue, the reader will never get an opportunity to commit (and the list will grow, exacerbating the problem).

This alternative definition seems to fix the problem, but I don't know if there are other drawbacks to using it.

readTQueue' :: TQueue a -> STM a
readTQueue' (TQueue read write) = do
  xs <- readTVar read
  case xs of
    (x:xs') -> do writeTVar read xs'
                  return x
    [] -> do ys <- readTVar write
             case ys of
               [] -> retry
               _  -> do writeTVar write []
                        let (z:zs) = reverse ys
                        writeTVar read zs
                        return z
Trac metadata
Trac field Value
Version 7.8.2
Type Bug
TypeOfFailure OtherFailure
Priority normal
Resolution Unresolved
Component libraries (other)
Test case
Differential revisions
BlockedBy
Related
Blocking
CC
Operating system
Architecture
To upload designs, you'll need to enable LFS and have an admin enable hashed storage. More information
Assignee
Assign to
Time tracking