Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
I
integer-simple
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
This is an archived project. Repository and other project resources are read-only.
Show more breadcrumbs
Glasgow Haskell Compiler
Packages
integer-simple
Commits
107afb1b
Commit
107afb1b
authored
17 years ago
by
Ian Lynagh
Browse files
Options
Downloads
Patches
Plain Diff
Sprinkle on some strictness annotations
parent
51274a43
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
GHC/Integer.hs
+52
-52
52 additions, 52 deletions
GHC/Integer.hs
integer.cabal
+1
-1
1 addition, 1 deletion
integer.cabal
with
53 additions
and
53 deletions
GHC/Integer.hs
+
52
−
52
View file @
107afb1b
{-#
OPTIONS_GHC -fno-i
mplicit
-p
relude #-}
{-#
LANGUAGE NoI
mplicit
P
relude
, BangPatterns
#-}
-----------------------------------------------------------------------------
-- |
...
...
@@ -109,7 +109,7 @@ twoToTheThirtytwoInteger :: Integer
twoToTheThirtytwoInteger
=
Positive
twoToTheThirtytwoPositive
encodeDoubleInteger
::
Integer
->
Int
#
->
Double
#
encodeDoubleInteger
i
j
encodeDoubleInteger
(
!
i
)
(
!
j
)
=
encodeDouble
#
(
toInt
#
(
i
`
quotInteger
`
twoToTheThirtytwoInteger
))
(
toInt
#
i
)
j
...
...
@@ -118,7 +118,7 @@ foreign import ccall unsafe "__2Int_encodeDouble"
encodeDouble
#
::
Int
#
->
Int
#
->
Int
#
->
Double
#
encodeFloatInteger
::
Integer
->
Int
#
->
Float
#
encodeFloatInteger
i
j
=
encodeFloat
#
(
toInt
#
i
)
j
encodeFloatInteger
(
!
i
)
(
!
j
)
=
encodeFloat
#
(
toInt
#
i
)
j
foreign
import
ccall
unsafe
"__int_encodeFloat"
encodeFloat
#
::
Int
#
->
Int
#
->
Float
#
...
...
@@ -146,8 +146,8 @@ floatFromInteger (Positive p) = floatFromPositive p
floatFromInteger
(
Negative
p
)
=
negateFloat
#
(
floatFromPositive
p
)
andInteger
::
Integer
->
Integer
->
Integer
Naught
`
andInteger
`
_
=
Naught
_
`
andInteger
`
Naught
=
Naught
Naught
`
andInteger
`
(
!
_
)
=
Naught
(
!
_
)
`
andInteger
`
Naught
=
Naught
Positive
x
`
andInteger
`
Positive
y
=
digitsToInteger
(
x
`
andDigits
`
y
)
{-
To calculate x & -y we need to calculate
...
...
@@ -189,8 +189,8 @@ Negative x `andInteger` Negative y = let x' = x `minusPositive` onePositive
in
digitsToNegativeInteger
z'
orInteger
::
Integer
->
Integer
->
Integer
Naught
`
orInteger
`
i
=
i
i
`
orInteger
`
Naught
=
i
Naught
`
orInteger
`
(
!
i
)
=
i
(
!
i
)
`
orInteger
`
Naught
=
i
Positive
x
`
orInteger
`
Positive
y
=
Positive
(
x
`
orDigits
`
y
)
{-
x | -y = - (twosComplement (x | twosComplement y))
...
...
@@ -219,8 +219,8 @@ Negative x `orInteger` Negative y = let x' = x `minusPositive` onePositive
in
digitsToNegativeInteger
z'
xorInteger
::
Integer
->
Integer
->
Integer
Naught
`
xorInteger
`
i
=
i
i
`
xorInteger
`
Naught
=
i
Naught
`
xorInteger
`
(
!
i
)
=
i
(
!
i
)
`
xorInteger
`
Naught
=
i
Positive
x
`
xorInteger
`
Positive
y
=
digitsToInteger
(
x
`
xorDigits
`
y
)
{-
x ^ -y = - (twosComplement (x ^ twosComplement y))
...
...
@@ -272,8 +272,8 @@ Positive p1 `plusInteger` Negative p2 = case p1 `comparePositive` p2 of
EQ
->
Naught
LT
->
Negative
(
p2
`
minusPositive
`
p1
)
Negative
p1
`
plusInteger
`
Positive
p2
=
Positive
p2
`
plusInteger
`
Negative
p1
Naught
`
plusInteger
`
i
=
i
i
`
plusInteger
`
Naught
=
i
Naught
`
plusInteger
`
(
!
i
)
=
i
(
!
i
)
`
plusInteger
`
Naught
=
i
minusInteger
::
Integer
->
Integer
->
Integer
i1
`
minusInteger
`
i2
=
i1
`
plusInteger
`
negateInteger
i2
...
...
@@ -283,7 +283,7 @@ Positive p1 `timesInteger` Positive p2 = Positive (p1 `timesPositive` p2)
Negative
p1
`
timesInteger
`
Negative
p2
=
Positive
(
p1
`
timesPositive
`
p2
)
Positive
p1
`
timesInteger
`
Negative
p2
=
Negative
(
p1
`
timesPositive
`
p2
)
Negative
p1
`
timesInteger
`
Positive
p2
=
Negative
(
p1
`
timesPositive
`
p2
)
_
`
timesInteger
`
_
=
Naught
(
!
_
)
`
timesInteger
`
(
!
_
)
=
Naught
divModInteger
::
Integer
->
Integer
->
(
#
Integer
,
Integer
#
)
n
`
divModInteger
`
d
=
...
...
@@ -295,8 +295,8 @@ n `divModInteger` d =
else
(
#
q
,
r
#
)
quotRemInteger
::
Integer
->
Integer
->
(
#
Integer
,
Integer
#
)
Naught
`
quotRemInteger
`
_
=
(
#
Naught
,
Naught
#
)
_
`
quotRemInteger
`
Naught
Naught
`
quotRemInteger
`
(
!
_
)
=
(
#
Naught
,
Naught
#
)
(
!
_
)
`
quotRemInteger
`
Naught
=
(
#
errorInteger
,
errorInteger
#
)
-- XXX Can't happen
-- XXX _ `quotRemInteger` Naught = error "Division by zero"
Positive
p1
`
quotRemInteger
`
Positive
p2
=
p1
`
quotRemPositive
`
p2
...
...
@@ -321,11 +321,11 @@ x `remInteger` y = case x `quotRemInteger` y of
compareInteger
::
Integer
->
Integer
->
Ordering
Positive
x
`
compareInteger
`
Positive
y
=
x
`
comparePositive
`
y
Positive
_
`
compareInteger
`
_
=
GT
Positive
_
`
compareInteger
`
(
!
_
)
=
GT
Naught
`
compareInteger
`
Naught
=
EQ
Naught
`
compareInteger
`
Negative
_
=
GT
Negative
x
`
compareInteger
`
Negative
y
=
y
`
comparePositive
`
x
_
`
compareInteger
`
_
=
LT
(
!
_
)
`
compareInteger
`
(
!
_
)
=
LT
eqInteger
::
Integer
->
Integer
->
Bool
x
`
eqInteger
`
y
=
case
x
`
compareInteger
`
y
of
...
...
@@ -368,7 +368,7 @@ signumInteger (Positive _) = oneInteger
-- XXX This isn't a great hash function
hashInteger
::
Integer
->
Int
#
hashInteger
_
=
42
#
hashInteger
(
!
_
)
=
42
#
-------------------------------------------------------------------
-- The hard work is done on positive numbers
...
...
@@ -456,15 +456,15 @@ Some x xs `comparePositive` Some y ys = case xs `comparePositive` ys of
else
EQ
res
->
res
None
`
comparePositive
`
None
=
EQ
_
`
comparePositive
`
None
=
GT
None
`
comparePositive
`
_
=
LT
(
!
_
)
`
comparePositive
`
None
=
GT
None
`
comparePositive
`
(
!
_
)
=
LT
plusPositive
::
Positive
->
Positive
->
Positive
plusPositive
=
addWithCarry
0
##
plusPositive
x0
y0
=
addWithCarry
0
##
x0
y0
where
-- digit `elem` [0, 1]
addWithCarry
::
Digit
->
Positive
->
Positive
->
Positive
addWithCarry
c
xs
None
=
addOnCarry
c
xs
addWithCarry
c
None
ys
=
addOnCarry
c
ys
addWithCarry
c
(
!
xs
)
None
=
addOnCarry
c
xs
addWithCarry
c
None
(
!
ys
)
=
addOnCarry
c
ys
addWithCarry
c
xs
@
(
Some
x
xs'
)
ys
@
(
Some
y
ys'
)
=
if
x
`
ltWord
#
`
y
then
addWithCarry
c
ys
xs
-- Now x >= y
...
...
@@ -494,9 +494,9 @@ plusPositive = addWithCarry 0##
-- digit `elem` [0, 1]
addOnCarry
::
Digit
->
Positive
->
Positive
addOnCarry
c
ws
=
if
c
`
eqWord
#
`
0
##
then
ws
else
succPositive
ws
addOnCarry
(
!
c
)
(
!
ws
)
=
if
c
`
eqWord
#
`
0
##
then
ws
else
succPositive
ws
-- digit `elem` [0, 1]
succPositive
::
Positive
->
Positive
...
...
@@ -520,17 +520,17 @@ Some x xs `minusPositive` Some y ys
case
z
`
plusWord
#
`
x
of
z'
->
-- z = 2^n + (x - y), calculated without overflow
Some
z'
((
xs
`
minusPositive
`
ys
)
`
minusPositive
`
onePositive
)
xs
`
minusPositive
`
None
=
xs
None
`
minusPositive
`
_
=
errorPositive
-- XXX Can't happen
(
!
xs
)
`
minusPositive
`
None
=
xs
None
`
minusPositive
`
(
!
_
)
=
errorPositive
-- XXX Can't happen
-- XXX None `minusPositive` _ = error "minusPositive: Requirement x > y not met"
timesPositive
::
Positive
->
Positive
->
Positive
-- XXX None's can't happen here:
None
`
timesPositive
`
_
=
errorPositive
_
`
timesPositive
`
None
=
errorPositive
None
`
timesPositive
`
(
!
_
)
=
errorPositive
(
!
_
)
`
timesPositive
`
None
=
errorPositive
-- x and y are the last digits in Positive numbers, so are not 0:
Some
x
None
`
timesPositive
`
Some
y
None
=
x
`
timesDigit
`
y
xs
@
(
Some
_
None
)
`
timesPositive
`
ys
=
ys
`
timesPositive
`
xs
xs
@
(
Some
_
None
)
`
timesPositive
`
(
!
ys
)
=
ys
`
timesPositive
`
xs
-- y is the last digit in a Positive number, so is not 0:
Some
x
xs'
`
timesPositive
`
ys
@
(
Some
y
None
)
=
-- We could actually skip this test, and everything would
...
...
@@ -556,7 +556,7 @@ Suppose we have 2n bits in a Word. Then
~~~~~~~ - all fit in 2n bits
-}
timesDigit
::
Digit
->
Digit
->
Positive
timesDigit
x
y
timesDigit
(
!
x
)
(
!
y
)
=
case
splitHalves
x
of
(
#
xh
,
xl
#
)
->
case
splitHalves
y
of
...
...
@@ -592,13 +592,13 @@ timesDigit x y
else
Some
0
##
(
Some
high
None
)
`
plusPositive
`
low
splitHalves
::
Digit
->
(
#
{- High -}
Digit
,
{- Low -}
Digit
#
)
splitHalves
x
=
(
#
x
`
uncheckedShiftRL
#
`
highHalfShift
Unit
,
x
`
and
#
`
lowHalfMask
Unit
#
)
splitHalves
(
!
x
)
=
(
#
x
`
uncheckedShiftRL
#
`
highHalfShift
Unit
,
x
`
and
#
`
lowHalfMask
Unit
#
)
-- Assumes 0 <= i <= 31
shiftLPositive
::
Positive
->
Int
#
->
Positive
shiftLPositive
None
_
=
None
-- XXX Can't happen
shiftLPositive
p
i
=
shiftLPositive
None
(
!
_
)
=
None
-- XXX Can't happen
shiftLPositive
(
!
p
)
(
!
i
)
=
case
WORD_SIZE_IN_BITS
#
-#
i
of
j
->
let
f
carry
None
=
if
carry
`
eqWord
#
`
0
##
then
None
...
...
@@ -612,7 +612,7 @@ shiftLPositive p i =
-- Long division
quotRemPositive
::
Positive
->
Positive
->
(
#
Integer
,
Integer
#
)
xs
`
quotRemPositive
`
ys
(
!
xs
)
`
quotRemPositive
`
(
!
ys
)
=
case
f
xs
of
(
#
d
,
m
#
)
->
(
#
digitsMaybeZeroToInteger
d
,
digitsMaybeZeroToInteger
m
#
)
...
...
@@ -620,10 +620,10 @@ xs `quotRemPositive` ys
subtractors
::
Positives
subtractors
=
mkSubtractors
(
WORD_SIZE_IN_BITS
#
-#
1
#
)
mkSubtractors
n
=
if
n
==#
0
#
then
Cons
ys
Nil
else
Cons
(
ys
`
shiftLPositive
`
n
)
(
mkSubtractors
(
n
-#
1
#
))
mkSubtractors
(
!
n
)
=
if
n
==#
0
#
then
Cons
ys
Nil
else
Cons
(
ys
`
shiftLPositive
`
n
)
(
mkSubtractors
(
n
-#
1
#
))
-- The main function. Go the the end of xs, then walk
-- back trying to divide the number we accumulate by ys.
...
...
@@ -639,8 +639,8 @@ xs `quotRemPositive` ys
(
#
some
d
ds
,
m''
#
)
g
::
Digit
->
Positives
->
Digits
->
(
#
Digit
,
Digits
#
)
g
d
Nil
m
=
(
#
d
,
m
#
)
g
d
(
Cons
sub
subs
)
m
g
(
!
d
)
Nil
(
!
m
)
=
(
#
d
,
m
#
)
g
(
!
d
)
(
Cons
sub
subs
)
(
!
m
)
=
case
d
`
uncheckedShiftL
#
`
1
#
of
d'
->
case
m
`
comparePositive
`
sub
of
...
...
@@ -650,12 +650,12 @@ xs `quotRemPositive` ys
(
m
`
minusPositive
`
sub
)
some
::
Digit
->
Digits
->
Digits
some
w
None
=
if
w
`
eqWord
#
`
0
##
then
None
else
Some
w
None
some
w
ws
=
Some
w
ws
some
(
!
w
)
None
=
if
w
`
eqWord
#
`
0
##
then
None
else
Some
w
None
some
(
!
w
)
(
!
ws
)
=
Some
w
ws
andDigits
::
Digits
->
Digits
->
Digits
andDigits
_
None
=
None
andDigits
None
_
=
None
andDigits
(
!
_
)
None
=
None
andDigits
None
(
!
_
)
=
None
andDigits
(
Some
w1
ws1
)
(
Some
w2
ws2
)
=
Some
(
w1
`
and
#
`
w2
)
(
andDigits
ws1
ws2
)
-- DigitsOnes is just like Digits, only None is really 0xFFFFFFF...,
...
...
@@ -665,19 +665,19 @@ andDigits (Some w1 ws1) (Some w2 ws2) = Some (w1 `and#` w2) (andDigits ws1 ws2)
newtype
DigitsOnes
=
DigitsOnes
Digits
andDigitsOnes
::
DigitsOnes
->
Digits
->
Digits
andDigitsOnes
_
None
=
None
andDigitsOnes
(
DigitsOnes
None
)
ws2
=
ws2
andDigitsOnes
(
!
_
)
None
=
None
andDigitsOnes
(
DigitsOnes
None
)
(
!
ws2
)
=
ws2
andDigitsOnes
(
DigitsOnes
(
Some
w1
ws1
))
(
Some
w2
ws2
)
=
Some
(
w1
`
and
#
`
w2
)
(
andDigitsOnes
(
DigitsOnes
ws1
)
ws2
)
orDigits
::
Digits
->
Digits
->
Digits
orDigits
None
ds
=
ds
orDigits
ds
None
=
ds
orDigits
None
(
!
ds
)
=
ds
orDigits
(
!
ds
)
None
=
ds
orDigits
(
Some
w1
ds1
)
(
Some
w2
ds2
)
=
Some
(
w1
`
or
#
`
w2
)
(
orDigits
ds1
ds2
)
xorDigits
::
Digits
->
Digits
->
Digits
xorDigits
None
ds
=
ds
xorDigits
ds
None
=
ds
xorDigits
None
(
!
ds
)
=
ds
xorDigits
(
!
ds
)
None
=
ds
xorDigits
(
Some
w1
ds1
)
(
Some
w2
ds2
)
=
Some
(
w1
`
xor
#
`
w2
)
(
xorDigits
ds1
ds2
)
-- XXX We'd really like word2Double# for this
...
...
This diff is collapsed.
Click to expand it.
integer.cabal
+
1
−
1
View file @
107afb1b
...
...
@@ -12,7 +12,7 @@ build-type: Simple
Library {
build-depends: ghc-prim
exposed-modules: GHC.Integer
extensions: CPP, MagicHash, UnboxedTuples,
extensions: CPP, MagicHash,
BangPatterns,
UnboxedTuples,
ForeignFunctionInterface, UnliftedFFITypes
-- We need to set the package name to integer (without a version number)
-- as it's magic.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment