-
Don't instantiate type variables for :type in `GHC.Tc.Gen.App.tcInstFun`, to avoid inconsistently instantianting `r1` but not `r2` in the type forall {r1} (a :: TYPE r1) {r2} (b :: TYPE r2). ... This fixes #21088. This patch also changes the primop pretty-printer to ensure that we put all the inferred type variables first. For example, the type of reallyUnsafePtrEquality# is now forall {l :: Levity} {k :: Levity} (a :: TYPE (BoxedRep l)) (b :: TYPE (BoxedRep k)). a -> b -> Int# This means we avoid running into issue #21088 entirely with the types of primops. Users can still write a type signature where the inferred type variables don't come first, however. This change to primops had a knock-on consequence, revealing that we were sometimes performing eta reduction on keepAlive#. This patch updates tryEtaReduce to avoid eta reducing functions with no binding, bringing it in line with tryEtaReducePrep, and thus fixing #21090.Don't instantiate type variables for :type in `GHC.Tc.Gen.App.tcInstFun`, to avoid inconsistently instantianting `r1` but not `r2` in the type forall {r1} (a :: TYPE r1) {r2} (b :: TYPE r2). ... This fixes #21088. This patch also changes the primop pretty-printer to ensure that we put all the inferred type variables first. For example, the type of reallyUnsafePtrEquality# is now forall {l :: Levity} {k :: Levity} (a :: TYPE (BoxedRep l)) (b :: TYPE (BoxedRep k)). a -> b -> Int# This means we avoid running into issue #21088 entirely with the types of primops. Users can still write a type signature where the inferred type variables don't come first, however. This change to primops had a knock-on consequence, revealing that we were sometimes performing eta reduction on keepAlive#. This patch updates tryEtaReduce to avoid eta reducing functions with no binding, bringing it in line with tryEtaReducePrep, and thus fixing #21090.
Loading