Skip to content
Snippets Groups Projects
Internal.hs 25.2 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
-- |
-- Language.Haskell.TH.Lib.Internal exposes some additional functionality that
-- is used internally in GHC's integration with Template Haskell. This is not a
-- part of the public API, and as such, there are no API guarantees for this
-- module from version to version.

-- Why do we have both Language.Haskell.TH.Lib.Internal and
-- Language.Haskell.TH.Lib? Ultimately, it's because the functions in the
-- former (which are tailored for GHC's use) need different type signatures
-- than the ones in the latter. Syncing up the Internal type signatures would
-- involve a massive amount of breaking changes, so for the time being, we
-- relegate as many changes as we can to just the Internal module, where it
-- is safe to break things.

module Language.Haskell.TH.Lib.Internal where

import Language.Haskell.TH.Syntax hiding (Role, InjectivityAnn)
import qualified Language.Haskell.TH.Syntax as TH
import Control.Monad( liftM, liftM2 )
import Data.Word( Word8 )

----------------------------------------------------------
-- * Type synonyms
----------------------------------------------------------

type InfoQ               = Q Info
type PatQ                = Q Pat
type FieldPatQ           = Q FieldPat
type ExpQ                = Q Exp
type TExpQ a             = Q (TExp a)
type DecQ                = Q Dec
type DecsQ               = Q [Dec]
type ConQ                = Q Con
type TypeQ               = Q Type
type KindQ               = Q Kind
type TyVarBndrQ          = Q TyVarBndr
type TyLitQ              = Q TyLit
type CxtQ                = Q Cxt
type PredQ               = Q Pred
type DerivClauseQ        = Q DerivClause
type MatchQ              = Q Match
type ClauseQ             = Q Clause
type BodyQ               = Q Body
type GuardQ              = Q Guard
type StmtQ               = Q Stmt
type RangeQ              = Q Range
type SourceStrictnessQ   = Q SourceStrictness
type SourceUnpackednessQ = Q SourceUnpackedness
type BangQ               = Q Bang
type BangTypeQ           = Q BangType
type VarBangTypeQ        = Q VarBangType
type StrictTypeQ         = Q StrictType
type VarStrictTypeQ      = Q VarStrictType
type FieldExpQ           = Q FieldExp
type RuleBndrQ           = Q RuleBndr
type TySynEqnQ           = Q TySynEqn
type PatSynDirQ          = Q PatSynDir
type PatSynArgsQ         = Q PatSynArgs
type FamilyResultSigQ    = Q FamilyResultSig

-- must be defined here for DsMeta to find it
type Role                = TH.Role
type InjectivityAnn      = TH.InjectivityAnn

----------------------------------------------------------
-- * Lowercase pattern syntax functions
----------------------------------------------------------

intPrimL    :: Integer -> Lit
intPrimL    = IntPrimL
wordPrimL    :: Integer -> Lit
wordPrimL    = WordPrimL
floatPrimL  :: Rational -> Lit
floatPrimL  = FloatPrimL
doublePrimL :: Rational -> Lit
doublePrimL = DoublePrimL
integerL    :: Integer -> Lit
integerL    = IntegerL
charL       :: Char -> Lit
charL       = CharL
charPrimL   :: Char -> Lit
charPrimL   = CharPrimL
stringL     :: String -> Lit
stringL     = StringL
stringPrimL :: [Word8] -> Lit
stringPrimL = StringPrimL
rationalL   :: Rational -> Lit
rationalL   = RationalL

litP :: Lit -> PatQ
litP l = return (LitP l)

varP :: Name -> PatQ
varP v = return (VarP v)

tupP :: [PatQ] -> PatQ
tupP ps = do { ps1 <- sequence ps; return (TupP ps1)}

unboxedTupP :: [PatQ] -> PatQ
unboxedTupP ps = do { ps1 <- sequence ps; return (UnboxedTupP ps1)}

unboxedSumP :: PatQ -> SumAlt -> SumArity -> PatQ
unboxedSumP p alt arity = do { p1 <- p; return (UnboxedSumP p1 alt arity) }

conP :: Name -> [PatQ] -> PatQ
conP n ps = do ps' <- sequence ps
               return (ConP n ps')
infixP :: PatQ -> Name -> PatQ -> PatQ
infixP p1 n p2 = do p1' <- p1
                    p2' <- p2
                    return (InfixP p1' n p2')
uInfixP :: PatQ -> Name -> PatQ -> PatQ
uInfixP p1 n p2 = do p1' <- p1
                     p2' <- p2
                     return (UInfixP p1' n p2')
parensP :: PatQ -> PatQ
parensP p = do p' <- p
               return (ParensP p')

tildeP :: PatQ -> PatQ
tildeP p = do p' <- p
              return (TildeP p')
bangP :: PatQ -> PatQ
bangP p = do p' <- p
             return (BangP p')
asP :: Name -> PatQ -> PatQ
asP n p = do p' <- p
             return (AsP n p')
wildP :: PatQ
wildP = return WildP
recP :: Name -> [FieldPatQ] -> PatQ
recP n fps = do fps' <- sequence fps
                return (RecP n fps')
listP :: [PatQ] -> PatQ
listP ps = do ps' <- sequence ps
              return (ListP ps')
sigP :: PatQ -> TypeQ -> PatQ
sigP p t = do p' <- p
              t' <- t
              return (SigP p' t')
viewP :: ExpQ -> PatQ -> PatQ
viewP e p = do e' <- e
               p' <- p
               return (ViewP e' p')

fieldPat :: Name -> PatQ -> FieldPatQ
fieldPat n p = do p' <- p
                  return (n, p')


-------------------------------------------------------------------------------
-- *   Stmt

bindS :: PatQ -> ExpQ -> StmtQ
bindS p e = liftM2 BindS p e

letS :: [DecQ] -> StmtQ
letS ds = do { ds1 <- sequence ds; return (LetS ds1) }

noBindS :: ExpQ -> StmtQ
noBindS e = do { e1 <- e; return (NoBindS e1) }

parS :: [[StmtQ]] -> StmtQ
parS sss = do { sss1 <- mapM sequence sss; return (ParS sss1) }

-------------------------------------------------------------------------------
-- *   Range

fromR :: ExpQ -> RangeQ
fromR x = do { a <- x; return (FromR a) }

fromThenR :: ExpQ -> ExpQ -> RangeQ
fromThenR x y = do { a <- x; b <- y; return (FromThenR a b) }

fromToR :: ExpQ -> ExpQ -> RangeQ
fromToR x y = do { a <- x; b <- y; return (FromToR a b) }

fromThenToR :: ExpQ -> ExpQ -> ExpQ -> RangeQ
fromThenToR x y z = do { a <- x; b <- y; c <- z;
                         return (FromThenToR a b c) }
-------------------------------------------------------------------------------
-- *   Body

normalB :: ExpQ -> BodyQ
normalB e = do { e1 <- e; return (NormalB e1) }

guardedB :: [Q (Guard,Exp)] -> BodyQ
guardedB ges = do { ges' <- sequence ges; return (GuardedB ges') }

-------------------------------------------------------------------------------
-- *   Guard

normalG :: ExpQ -> GuardQ
normalG e = do { e1 <- e; return (NormalG e1) }

normalGE :: ExpQ -> ExpQ -> Q (Guard, Exp)
normalGE g e = do { g1 <- g; e1 <- e; return (NormalG g1, e1) }

patG :: [StmtQ] -> GuardQ
patG ss = do { ss' <- sequence ss; return (PatG ss') }

patGE :: [StmtQ] -> ExpQ -> Q (Guard, Exp)
patGE ss e = do { ss' <- sequence ss;
                  e'  <- e;
                  return (PatG ss', e') }

-------------------------------------------------------------------------------
-- *   Match and Clause

-- | Use with 'caseE'
match :: PatQ -> BodyQ -> [DecQ] -> MatchQ
match p rhs ds = do { p' <- p;
                      r' <- rhs;
                      ds' <- sequence ds;
                      return (Match p' r' ds') }

-- | Use with 'funD'
clause :: [PatQ] -> BodyQ -> [DecQ] -> ClauseQ
clause ps r ds = do { ps' <- sequence ps;
                      r' <- r;
                      ds' <- sequence ds;
                      return (Clause ps' r' ds') }


---------------------------------------------------------------------------
-- *   Exp

-- | Dynamically binding a variable (unhygenic)
dyn :: String -> ExpQ
dyn s = return (VarE (mkName s))

varE :: Name -> ExpQ
varE s = return (VarE s)

conE :: Name -> ExpQ
conE s =  return (ConE s)

litE :: Lit -> ExpQ
litE c = return (LitE c)

appE :: ExpQ -> ExpQ -> ExpQ
appE x y = do { a <- x; b <- y; return (AppE a b)}

appTypeE :: ExpQ -> TypeQ -> ExpQ
appTypeE x t = do { a <- x; s <- t; return (AppTypeE a s) }

parensE :: ExpQ -> ExpQ
parensE x = do { x' <- x; return (ParensE x') }

uInfixE :: ExpQ -> ExpQ -> ExpQ -> ExpQ
uInfixE x s y = do { x' <- x; s' <- s; y' <- y;
                     return (UInfixE x' s' y') }

infixE :: Maybe ExpQ -> ExpQ -> Maybe ExpQ -> ExpQ
infixE (Just x) s (Just y) = do { a <- x; s' <- s; b <- y;
                                  return (InfixE (Just a) s' (Just b))}
infixE Nothing  s (Just y) = do { s' <- s; b <- y;
                                  return (InfixE Nothing s' (Just b))}
infixE (Just x) s Nothing  = do { a <- x; s' <- s;
                                  return (InfixE (Just a) s' Nothing)}
infixE Nothing  s Nothing  = do { s' <- s; return (InfixE Nothing s' Nothing) }

infixApp :: ExpQ -> ExpQ -> ExpQ -> ExpQ
infixApp x y z = infixE (Just x) y (Just z)
sectionL :: ExpQ -> ExpQ -> ExpQ
sectionL x y = infixE (Just x) y Nothing
sectionR :: ExpQ -> ExpQ -> ExpQ
sectionR x y = infixE Nothing x (Just y)

lamE :: [PatQ] -> ExpQ -> ExpQ
lamE ps e = do ps' <- sequence ps
               e' <- e
               return (LamE ps' e')

-- | Single-arg lambda
lam1E :: PatQ -> ExpQ -> ExpQ
lam1E p e = lamE [p] e

lamCaseE :: [MatchQ] -> ExpQ
lamCaseE ms = sequence ms >>= return . LamCaseE

tupE :: [ExpQ] -> ExpQ
tupE es = do { es1 <- sequence es; return (TupE es1)}

unboxedTupE :: [ExpQ] -> ExpQ
unboxedTupE es = do { es1 <- sequence es; return (UnboxedTupE es1)}

unboxedSumE :: ExpQ -> SumAlt -> SumArity -> ExpQ
unboxedSumE e alt arity = do { e1 <- e; return (UnboxedSumE e1 alt arity) }

condE :: ExpQ -> ExpQ -> ExpQ -> ExpQ
condE x y z =  do { a <- x; b <- y; c <- z; return (CondE a b c)}

multiIfE :: [Q (Guard, Exp)] -> ExpQ
multiIfE alts = sequence alts >>= return . MultiIfE

letE :: [DecQ] -> ExpQ -> ExpQ
letE ds e = do { ds2 <- sequence ds; e2 <- e; return (LetE ds2 e2) }

caseE :: ExpQ -> [MatchQ] -> ExpQ
caseE e ms = do { e1 <- e; ms1 <- sequence ms; return (CaseE e1 ms1) }

doE :: [StmtQ] -> ExpQ
doE ss = do { ss1 <- sequence ss; return (DoE ss1) }

compE :: [StmtQ] -> ExpQ
compE ss = do { ss1 <- sequence ss; return (CompE ss1) }

arithSeqE :: RangeQ -> ExpQ
arithSeqE r = do { r' <- r; return (ArithSeqE r') }

listE :: [ExpQ] -> ExpQ
listE es = do { es1 <- sequence es; return (ListE es1) }

sigE :: ExpQ -> TypeQ -> ExpQ
sigE e t = do { e1 <- e; t1 <- t; return (SigE e1 t1) }

recConE :: Name -> [Q (Name,Exp)] -> ExpQ
recConE c fs = do { flds <- sequence fs; return (RecConE c flds) }

recUpdE :: ExpQ -> [Q (Name,Exp)] -> ExpQ
recUpdE e fs = do { e1 <- e; flds <- sequence fs; return (RecUpdE e1 flds) }

stringE :: String -> ExpQ
stringE = litE . stringL

fieldExp :: Name -> ExpQ -> Q (Name, Exp)
fieldExp s e = do { e' <- e; return (s,e') }

-- | @staticE x = [| static x |]@
staticE :: ExpQ -> ExpQ
staticE = fmap StaticE

unboundVarE :: Name -> ExpQ
unboundVarE s = return (UnboundVarE s)

labelE :: String -> ExpQ
labelE s = return (LabelE s)

-- ** 'arithSeqE' Shortcuts
fromE :: ExpQ -> ExpQ
fromE x = do { a <- x; return (ArithSeqE (FromR a)) }

fromThenE :: ExpQ -> ExpQ -> ExpQ
fromThenE x y = do { a <- x; b <- y; return (ArithSeqE (FromThenR a b)) }

fromToE :: ExpQ -> ExpQ -> ExpQ
fromToE x y = do { a <- x; b <- y; return (ArithSeqE (FromToR a b)) }

fromThenToE :: ExpQ -> ExpQ -> ExpQ -> ExpQ
fromThenToE x y z = do { a <- x; b <- y; c <- z;
                         return (ArithSeqE (FromThenToR a b c)) }


-------------------------------------------------------------------------------
-- *   Dec

valD :: PatQ -> BodyQ -> [DecQ] -> DecQ
valD p b ds =
  do { p' <- p
     ; ds' <- sequence ds
     ; b' <- b
     ; return (ValD p' b' ds')
     }

funD :: Name -> [ClauseQ] -> DecQ
funD nm cs =
 do { cs1 <- sequence cs
    ; return (FunD nm cs1)
    }

tySynD :: Name -> [TyVarBndrQ] -> TypeQ -> DecQ
tySynD tc tvs rhs =
  do { tvs1 <- sequenceA tvs
     ; rhs1 <- rhs
     ; return (TySynD tc tvs1 rhs1)
     }

dataD :: CxtQ -> Name -> [TyVarBndrQ] -> Maybe KindQ -> [ConQ]
      -> [DerivClauseQ] -> DecQ
dataD ctxt tc tvs ksig cons derivs =
  do
    ctxt1   <- ctxt
    tvs1    <- sequenceA tvs
    ksig1   <- sequenceA ksig
    cons1   <- sequence cons
    derivs1 <- sequence derivs
    return (DataD ctxt1 tc tvs1 ksig1 cons1 derivs1)

newtypeD :: CxtQ -> Name -> [TyVarBndrQ] -> Maybe KindQ -> ConQ
         -> [DerivClauseQ] -> DecQ
newtypeD ctxt tc tvs ksig con derivs =
  do
    ctxt1   <- ctxt
    tvs1    <- sequenceA tvs
    ksig1   <- sequenceA ksig
    con1    <- con
    derivs1 <- sequence derivs
    return (NewtypeD ctxt1 tc tvs1 ksig1 con1 derivs1)

classD :: CxtQ -> Name -> [TyVarBndrQ] -> [FunDep] -> [DecQ] -> DecQ
classD ctxt cls tvs fds decs =
  do
    tvs1  <- sequenceA tvs
    decs1 <- sequenceA decs
    ctxt1 <- ctxt
    return $ ClassD ctxt1 cls tvs1 fds decs1

instanceD :: CxtQ -> TypeQ -> [DecQ] -> DecQ
instanceD = instanceWithOverlapD Nothing

instanceWithOverlapD :: Maybe Overlap -> CxtQ -> TypeQ -> [DecQ] -> DecQ
instanceWithOverlapD o ctxt ty decs =
  do
    ctxt1 <- ctxt
    decs1 <- sequence decs
    ty1   <- ty
    return $ InstanceD o ctxt1 ty1 decs1



sigD :: Name -> TypeQ -> DecQ
sigD fun ty = liftM (SigD fun) $ ty

forImpD :: Callconv -> Safety -> String -> Name -> TypeQ -> DecQ
forImpD cc s str n ty
 = do ty' <- ty
      return $ ForeignD (ImportF cc s str n ty')

infixLD :: Int -> Name -> DecQ
infixLD prec nm = return (InfixD (Fixity prec InfixL) nm)

infixRD :: Int -> Name -> DecQ
infixRD prec nm = return (InfixD (Fixity prec InfixR) nm)

infixND :: Int -> Name -> DecQ
infixND prec nm = return (InfixD (Fixity prec InfixN) nm)

pragInlD :: Name -> Inline -> RuleMatch -> Phases -> DecQ
pragInlD name inline rm phases
  = return $ PragmaD $ InlineP name inline rm phases

pragSpecD :: Name -> TypeQ -> Phases -> DecQ
pragSpecD n ty phases
  = do
      ty1    <- ty
      return $ PragmaD $ SpecialiseP n ty1 Nothing phases

pragSpecInlD :: Name -> TypeQ -> Inline -> Phases -> DecQ
pragSpecInlD n ty inline phases
  = do
      ty1    <- ty
      return $ PragmaD $ SpecialiseP n ty1 (Just inline) phases

pragSpecInstD :: TypeQ -> DecQ
pragSpecInstD ty
  = do
      ty1    <- ty
      return $ PragmaD $ SpecialiseInstP ty1

pragRuleD :: String -> [RuleBndrQ] -> ExpQ -> ExpQ -> Phases -> DecQ
pragRuleD n bndrs lhs rhs phases
  = do
      bndrs1 <- sequence bndrs
      lhs1   <- lhs
      rhs1   <- rhs
      return $ PragmaD $ RuleP n bndrs1 lhs1 rhs1 phases

pragAnnD :: AnnTarget -> ExpQ -> DecQ
pragAnnD target expr
  = do
      exp1 <- expr
      return $ PragmaD $ AnnP target exp1

pragLineD :: Int -> String -> DecQ
pragLineD line file = return $ PragmaD $ LineP line file

pragCompleteD :: [Name] -> Maybe Name -> DecQ
pragCompleteD cls mty = return $ PragmaD $ CompleteP cls mty

dataInstD :: CxtQ -> Name -> [TypeQ] -> Maybe KindQ -> [ConQ]
          -> [DerivClauseQ] -> DecQ
dataInstD ctxt tc tys ksig cons derivs =
  do
    ctxt1   <- ctxt
    tys1    <- sequenceA tys
    ksig1   <- sequenceA ksig
    cons1   <- sequenceA cons
    derivs1 <- sequenceA derivs
    return (DataInstD ctxt1 tc tys1 ksig1 cons1 derivs1)

newtypeInstD :: CxtQ -> Name -> [TypeQ] -> Maybe KindQ -> ConQ
             -> [DerivClauseQ] -> DecQ
newtypeInstD ctxt tc tys ksig con derivs =
  do
    ctxt1   <- ctxt
    tys1    <- sequenceA tys
    ksig1   <- sequenceA ksig
    con1    <- con
    derivs1 <- sequence derivs
    return (NewtypeInstD ctxt1 tc tys1 ksig1 con1 derivs1)

tySynInstD :: Name -> TySynEqnQ -> DecQ
tySynInstD tc eqn =
  do
    eqn1 <- eqn
    return (TySynInstD tc eqn1)

dataFamilyD :: Name -> [TyVarBndrQ] -> Maybe KindQ -> DecQ
dataFamilyD tc tvs kind =
  do tvs'  <- sequenceA tvs
     kind' <- sequenceA kind
     return $ DataFamilyD tc tvs' kind'

openTypeFamilyD :: Name -> [TyVarBndrQ] -> FamilyResultSigQ
                -> Maybe InjectivityAnn -> DecQ
openTypeFamilyD tc tvs res inj =
  do tvs' <- sequenceA tvs
     res' <- res
     return $ OpenTypeFamilyD (TypeFamilyHead tc tvs' res' inj)

closedTypeFamilyD :: Name -> [TyVarBndrQ] -> FamilyResultSigQ
                  -> Maybe InjectivityAnn -> [TySynEqnQ] -> DecQ
closedTypeFamilyD tc tvs result injectivity eqns =
  do tvs1    <- sequenceA tvs
     result1 <- result
     eqns1   <- sequenceA eqns
     return (ClosedTypeFamilyD (TypeFamilyHead tc tvs1 result1 injectivity) eqns1)

roleAnnotD :: Name -> [Role] -> DecQ
roleAnnotD name roles = return $ RoleAnnotD name roles

standaloneDerivD :: CxtQ -> TypeQ -> DecQ
standaloneDerivD = standaloneDerivWithStrategyD Nothing

standaloneDerivWithStrategyD :: Maybe DerivStrategy -> CxtQ -> TypeQ -> DecQ
standaloneDerivWithStrategyD ds ctxtq tyq =
  do
    ctxt <- ctxtq
    ty   <- tyq
    return $ StandaloneDerivD ds ctxt ty

defaultSigD :: Name -> TypeQ -> DecQ
defaultSigD n tyq =
  do
    ty <- tyq
    return $ DefaultSigD n ty

-- | Pattern synonym declaration
patSynD :: Name -> PatSynArgsQ -> PatSynDirQ -> PatQ -> DecQ
patSynD name args dir pat = do
  args'    <- args
  dir'     <- dir
  pat'     <- pat
  return (PatSynD name args' dir' pat')

-- | Pattern synonym type signature
patSynSigD :: Name -> TypeQ -> DecQ
patSynSigD nm ty =
  do ty' <- ty
     return $ PatSynSigD nm ty'

tySynEqn :: [TypeQ] -> TypeQ -> TySynEqnQ
tySynEqn lhs rhs =
  do
    lhs1 <- sequence lhs
    rhs1 <- rhs
    return (TySynEqn lhs1 rhs1)

cxt :: [PredQ] -> CxtQ
cxt = sequence

derivClause :: Maybe DerivStrategy -> [PredQ] -> DerivClauseQ
derivClause ds p = do p' <- cxt p
                      return $ DerivClause ds p'

normalC :: Name -> [BangTypeQ] -> ConQ
normalC con strtys = liftM (NormalC con) $ sequence strtys

recC :: Name -> [VarBangTypeQ] -> ConQ
recC con varstrtys = liftM (RecC con) $ sequence varstrtys

infixC :: Q (Bang, Type) -> Name -> Q (Bang, Type) -> ConQ
infixC st1 con st2 = do st1' <- st1
                        st2' <- st2
                        return $ InfixC st1' con st2'

forallC :: [TyVarBndrQ] -> CxtQ -> ConQ -> ConQ
forallC ns ctxt con = do
  ns'   <- sequenceA ns
  ctxt' <- ctxt
  con'  <- con
  pure $ ForallC ns' ctxt' con'

gadtC :: [Name] -> [StrictTypeQ] -> TypeQ -> ConQ
gadtC cons strtys ty = liftM2 (GadtC cons) (sequence strtys) ty

recGadtC :: [Name] -> [VarStrictTypeQ] -> TypeQ -> ConQ
recGadtC cons varstrtys ty = liftM2 (RecGadtC cons) (sequence varstrtys) ty

-------------------------------------------------------------------------------
-- *   Type

forallT :: [TyVarBndrQ] -> CxtQ -> TypeQ -> TypeQ
forallT tvars ctxt ty = do
    tvars1 <- sequenceA tvars
    ctxt1  <- ctxt
    ty1    <- ty
    return $ ForallT tvars1 ctxt1 ty1

varT :: Name -> TypeQ
varT = return . VarT

conT :: Name -> TypeQ
conT = return . ConT

infixT :: TypeQ -> Name -> TypeQ -> TypeQ
infixT t1 n t2 = do t1' <- t1
                    t2' <- t2
                    return (InfixT t1' n t2')

uInfixT :: TypeQ -> Name -> TypeQ -> TypeQ
uInfixT t1 n t2 = do t1' <- t1
                     t2' <- t2
                     return (UInfixT t1' n t2')

parensT :: TypeQ -> TypeQ
parensT t = do t' <- t
               return (ParensT t')

appT :: TypeQ -> TypeQ -> TypeQ
appT t1 t2 = do
           t1' <- t1
           t2' <- t2
           return $ AppT t1' t2'

arrowT :: TypeQ
arrowT = return ArrowT

listT :: TypeQ
listT = return ListT

litT :: TyLitQ -> TypeQ
litT l = fmap LitT l

tupleT :: Int -> TypeQ
tupleT i = return (TupleT i)

unboxedTupleT :: Int -> TypeQ
unboxedTupleT i = return (UnboxedTupleT i)

unboxedSumT :: SumArity -> TypeQ
unboxedSumT arity = return (UnboxedSumT arity)

sigT :: TypeQ -> KindQ -> TypeQ
sigT t k
  = do
      t' <- t
      k' <- k
      return $ SigT t' k'

equalityT :: TypeQ
equalityT = return EqualityT

wildCardT :: TypeQ
wildCardT = return WildCardT

{-# DEPRECATED classP "As of template-haskell-2.10, constraint predicates (Pred) are just types (Type), in keeping with ConstraintKinds. Please use 'conT' and 'appT'." #-}
classP :: Name -> [Q Type] -> Q Pred
classP cla tys
  = do
      tysl <- sequence tys
      return (foldl AppT (ConT cla) tysl)

{-# DEPRECATED equalP "As of template-haskell-2.10, constraint predicates (Pred) are just types (Type), in keeping with ConstraintKinds. Please see 'equalityT'." #-}
equalP :: TypeQ -> TypeQ -> PredQ
equalP tleft tright
  = do
      tleft1  <- tleft
      tright1 <- tright
      eqT <- equalityT
      return (foldl AppT eqT [tleft1, tright1])

promotedT :: Name -> TypeQ
promotedT = return . PromotedT

promotedTupleT :: Int -> TypeQ
promotedTupleT i = return (PromotedTupleT i)

promotedNilT :: TypeQ
promotedNilT = return PromotedNilT

promotedConsT :: TypeQ
promotedConsT = return PromotedConsT

noSourceUnpackedness, sourceNoUnpack, sourceUnpack :: SourceUnpackednessQ
noSourceUnpackedness = return NoSourceUnpackedness
sourceNoUnpack       = return SourceNoUnpack
sourceUnpack         = return SourceUnpack

noSourceStrictness, sourceLazy, sourceStrict :: SourceStrictnessQ
noSourceStrictness = return NoSourceStrictness
sourceLazy         = return SourceLazy
sourceStrict       = return SourceStrict

{-# DEPRECATED isStrict
    ["Use 'bang'. See https://ghc.haskell.org/trac/ghc/wiki/Migration/8.0. ",
     "Example usage: 'bang noSourceUnpackedness sourceStrict'"] #-}
{-# DEPRECATED notStrict
    ["Use 'bang'. See https://ghc.haskell.org/trac/ghc/wiki/Migration/8.0. ",
     "Example usage: 'bang noSourceUnpackedness noSourceStrictness'"] #-}
{-# DEPRECATED unpacked
    ["Use 'bang'. See https://ghc.haskell.org/trac/ghc/wiki/Migration/8.0. ",
     "Example usage: 'bang sourceUnpack sourceStrict'"] #-}
isStrict, notStrict, unpacked :: Q Strict
isStrict = bang noSourceUnpackedness sourceStrict
notStrict = bang noSourceUnpackedness noSourceStrictness
unpacked = bang sourceUnpack sourceStrict

bang :: SourceUnpackednessQ -> SourceStrictnessQ -> BangQ
bang u s = do u' <- u
              s' <- s
              return (Bang u' s')

bangType :: BangQ -> TypeQ -> BangTypeQ
bangType = liftM2 (,)

varBangType :: Name -> BangTypeQ -> VarBangTypeQ
varBangType v bt = do (b, t) <- bt
                      return (v, b, t)

{-# DEPRECATED strictType
               "As of @template-haskell-2.11.0.0@, 'StrictType' has been replaced by 'BangType'. Please use 'bangType' instead." #-}
strictType :: Q Strict -> TypeQ -> StrictTypeQ
strictType = bangType

{-# DEPRECATED varStrictType
               "As of @template-haskell-2.11.0.0@, 'VarStrictType' has been replaced by 'VarBangType'. Please use 'varBangType' instead." #-}
varStrictType :: Name -> StrictTypeQ -> VarStrictTypeQ
varStrictType = varBangType

-- * Type Literals

numTyLit :: Integer -> TyLitQ
numTyLit n = if n >= 0 then return (NumTyLit n)
                       else fail ("Negative type-level number: " ++ show n)

strTyLit :: String -> TyLitQ
strTyLit s = return (StrTyLit s)

-------------------------------------------------------------------------------
-- *   Kind

plainTV :: Name -> TyVarBndrQ
plainTV = pure . PlainTV

kindedTV :: Name -> KindQ -> TyVarBndrQ
kindedTV n = fmap (KindedTV n)

varK :: Name -> Kind
varK = VarT

conK :: Name -> Kind
conK = ConT

tupleK :: Int -> Kind
tupleK = TupleT

arrowK :: Kind
arrowK = ArrowT

listK :: Kind
listK = ListT

appK :: Kind -> Kind -> Kind
appK = AppT

starK :: KindQ
starK = pure StarT

constraintK :: KindQ
constraintK = pure ConstraintT

-------------------------------------------------------------------------------
-- *   Type family result

noSig :: FamilyResultSigQ
noSig = pure NoSig

kindSig :: KindQ -> FamilyResultSigQ
kindSig = fmap KindSig

tyVarSig :: TyVarBndrQ -> FamilyResultSigQ
tyVarSig = fmap TyVarSig

-------------------------------------------------------------------------------
-- *   Injectivity annotation

injectivityAnn :: Name -> [Name] -> InjectivityAnn
injectivityAnn = TH.InjectivityAnn

-------------------------------------------------------------------------------
-- *   Role

nominalR, representationalR, phantomR, inferR :: Role
nominalR          = NominalR
representationalR = RepresentationalR
phantomR          = PhantomR
inferR            = InferR

-------------------------------------------------------------------------------
-- *   Callconv

cCall, stdCall, cApi, prim, javaScript :: Callconv
cCall      = CCall
stdCall    = StdCall
cApi       = CApi
prim       = Prim
javaScript = JavaScript

-------------------------------------------------------------------------------
-- *   Safety

unsafe, safe, interruptible :: Safety
unsafe = Unsafe
safe = Safe
interruptible = Interruptible

-------------------------------------------------------------------------------
-- *   FunDep

funDep :: [Name] -> [Name] -> FunDep
funDep = FunDep

-------------------------------------------------------------------------------
-- *   RuleBndr
ruleVar :: Name -> RuleBndrQ
ruleVar = return . RuleVar

typedRuleVar :: Name -> TypeQ -> RuleBndrQ
typedRuleVar n ty = ty >>= return . TypedRuleVar n

-------------------------------------------------------------------------------
-- *   AnnTarget
valueAnnotation :: Name -> AnnTarget
valueAnnotation = ValueAnnotation

typeAnnotation :: Name -> AnnTarget
typeAnnotation = TypeAnnotation

moduleAnnotation :: AnnTarget
moduleAnnotation = ModuleAnnotation

-------------------------------------------------------------------------------
-- * Pattern Synonyms (sub constructs)

unidir, implBidir :: PatSynDirQ
unidir    = return Unidir
implBidir = return ImplBidir

explBidir :: [ClauseQ] -> PatSynDirQ
explBidir cls = do
  cls' <- sequence cls
  return (ExplBidir cls')

prefixPatSyn :: [Name] -> PatSynArgsQ
prefixPatSyn args = return $ PrefixPatSyn args

recordPatSyn :: [Name] -> PatSynArgsQ
recordPatSyn sels = return $ RecordPatSyn sels

infixPatSyn :: Name -> Name -> PatSynArgsQ
infixPatSyn arg1 arg2 = return $ InfixPatSyn arg1 arg2

--------------------------------------------------------------
-- * Useful helper function

appsE :: [ExpQ] -> ExpQ
appsE [] = error "appsE []"
appsE [x] = x
appsE (x:y:zs) = appsE ( (appE x y) : zs )

-- | Return the Module at the place of splicing.  Can be used as an
-- input for 'reifyModule'.
thisModule :: Q Module
thisModule = do
  loc <- location
  return $ Module (mkPkgName $ loc_package loc) (mkModName $ loc_module loc)