- Jun 27, 2019
-
-
- Jun 26, 2019
-
-
Ben Gamari authored
-
Ben Gamari authored
This allows us to run (but ignore the result of) fragile testcases. Hopefully this should allow us to more easily spot when a fragile test becomes un-fragile.
-
Ben Gamari authored
-
Ben Gamari authored
This is the same as T5611 but with an unsafe call to sleep.
-
Ben Gamari authored
The original issue, #5611, was concerned with safe calls. However, the test inexplicably used an unsafe call. Fix this.
-
Ben Gamari authored
The test seems to have been missing the name of its script and didn't build with HEAD. How it made it through CI is beyond me.
-
This commit partly reverts e69619e9 commit by reintroducing Sf_SafeInferred SafeHaskellMode. We preserve whether module was declared or inferred Safe. When declared-Safe module imports inferred-Safe, we warn. This inferred status is volatile, often enough it's a happy coincidence, something which cannot be relied upon. However, explicitly Safe or Trustworthy packages won't accidentally become Unsafe. Updates haddock submodule.
-
Metric Increase: haddock.Cabal
-
-
Sleep to avoid non-determinism due to Darwin's poor mtime resolution. Fixes #16855.
-
Previously, as described in Note [Primop wrappers], `hasNoBinding` would return False in the case of `PrimOpId`s. This would result in eta expansion of unsaturated primop applications during CorePrep. Not only did this expansion result in unnecessary allocations, but it also meant lead to rather nasty inconsistencies between the CAFfy-ness determinations made by TidyPgm and CorePrep. This fixes #16846.
-
-
- Jun 25, 2019
-
-
Due to #16858.
-
-
Originally I was thinking of just skipping the test unless compiled_debugged==True. However, the test will likely be useful even without -DS, so let's run it either way.
-
* Make it pass mypy * Fix a typo in test name field * Report more stderr output * Report stdout output
-
This tries to put the testsuite driver into a slightly more maintainable condition: * Add type annotations where easily done * Use pathlib.Path instead of str paths * Make it pass the mypy typechecker
-
- Jun 23, 2019
-
-
This fixes three infelicities related to the programs that are (and aren't) accepted with `UnliftedNewtypes`: * Enabling `UnliftedNewtypes` would permit newtypes to have return kind `Id Type`, which had disastrous results (i.e., GHC panics). * Data family declarations ending in kind `TYPE r` (for some `r`) weren't being accepted if `UnliftedNewtypes` wasn't enabled, despite the GHC proposal specifying otherwise. * GHC wasn't warning about programs that _would_ typecheck if `UnliftedNewtypes` were enabled in certain common cases. As part of fixing these issues, I factored out the logic for checking all of the various properties about data type/data family return kinds into a single `checkDataKindSig` function. I also cleaned up some of the formatting in the existing error message that gets thrown. Fixes #16821, fixes #16827, and fixes #16829.
-
-
- Jun 22, 2019
-
-
-
As described in #16845.
-
-
Previously we would hackily evaluate a textual code snippet to compute actions to disable I/O buffering and flush the stdout/stderr handles. This broke in a number of ways (#15336, #16563). Instead we now ship a module (`GHC.GHCi.Helpers`) with `base` containing the needed actions. We can then easily refer to these via `Orig` names.
-
Ben Gamari authored
As noted in #16855.
-
- Jun 21, 2019
-
-
As noted in #16813, these tests seem to be fragile on Windows.
-
Due to #16799.
-
Due to #16801.
-
Strangely the path it emits contains duplicate path delimiters (#16772), ```patch --- ghc-api/downsweep/OldModLocation.run/OldModLocation.stderr.normalised 2019-06-04 14:40:26.326075000 +0000 +++ ghc-api/downsweep/OldModLocation.run/OldModLocation.run.stderr.normalised 2019-06-04 14:40:26.328029200 +0000 @@ -1 +1 @@ -[Just "A.hs",Just "mydir/B.hs"] +[Just "A.hs",Just "mydir//B.hs"] ```
-
This test uses TemplateHaskell causing GHC to build dynamic objects on platforms where dynamic linking is available. However, Windows doesn't support dynamic linking. Consequently the test would fail on Windows with: ```patch --- safeHaskell/safeInfered/UnsafeInfered02.run/UnsafeInfered02.stderr.normalised 2019-06-04 15:10:10.521594200 +0000 +++ safeHaskell/safeInfered/UnsafeInfered02.run/UnsafeInfered02.comp.stderr.normalised 2019-06-04 15:10:10.523546200 +0000 @@ -1,5 +1,5 @@ -[1 of 2] Compiling UnsafeInfered02_A ( UnsafeInfered02_A.hs, UnsafeInfered02_A.o, UnsafeInfered02_A.dyn_o ) -[2 of 2] Compiling UnsafeInfered02 ( UnsafeInfered02.hs, UnsafeInfered02.o, UnsafeInfered02.dyn_o ) +[1 of 2] Compiling UnsafeInfered02_A ( UnsafeInfered02_A.hs, UnsafeInfered02_A.o ) +[2 of 2] Compiling UnsafeInfered02 ( UnsafeInfered02.hs, UnsafeInfered02.o ) UnsafeInfered02.hs:4:1: UnsafeInfered02_A: Can't be safely imported! ``` The other approach I considered for this issue is to pass `-v0` to GHC. However, I felt we should probably do this consistently for all of the tests in this directory and this would take more time than I currently have.
-
On Windows we must lock package databases even when opening for read-only access. This means that concurrent GHC sessions are very likely to fail with file lock contention. See #16773.
-
This was previously failling on Windows.
-
Matthías Páll Gissurarson authored
This patch adds a new kind of plugin, Hole fit plugins. These plugins can change what candidates are considered when looking for valid hole fits, and add hole fits of their own. The type of a plugin is relatively simple, ``` type FitPlugin = TypedHole -> [HoleFit] -> TcM [HoleFit] type CandPlugin = TypedHole -> [HoleFitCandidate] -> TcM [HoleFitCandidate] data HoleFitPlugin = HoleFitPlugin { candPlugin :: CandPlugin , fitPlugin :: FitPlugin } data TypedHole = TyH { tyHRelevantCts :: Cts -- ^ Any relevant Cts to the hole , tyHImplics :: [Implication] -- ^ The nested implications of the hole with the -- innermost implication first. , tyHCt :: Maybe Ct -- ^ The hole constraint itself, if available. } This allows users and plugin writers to interact with the candidates and fits as they wish, even going as far as to allow them to reimplement the current functionality (since `TypedHole` contains all the relevant information). As an example, consider the following plugin: ``` module HolePlugin where import GhcPlugins import TcHoleErrors import Data.List (intersect, stripPrefix) import RdrName (importSpecModule) import TcRnTypes import System.Process plugin :: Plugin plugin = defaultPlugin { holeFitPlugin = hfp, pluginRecompile = purePlugin } hfp :: [CommandLineOption] -> Maybe HoleFitPluginR hfp opts = Just (fromPureHFPlugin $ HoleFitPlugin (candP opts) (fp opts)) toFilter :: Maybe String -> Maybe String toFilter = flip (>>=) (stripPrefix "_module_") replace :: Eq a => a -> a -> [a] -> [a] replace match repl str = replace' [] str where replace' sofar (x:xs) | x == match = replace' (repl:sofar) xs replace' sofar (x:xs) = replace' (x:sofar) xs replace' sofar [] = reverse sofar -- | This candidate plugin filters the candidates by module, -- using the name of the hole as module to search in candP :: [CommandLineOption] -> CandPlugin candP _ hole cands = do let he = case tyHCt hole of Just (CHoleCan _ h) -> Just (occNameString $ holeOcc h) _ -> Nothing case toFilter he of Just undscModName -> do let replaced = replace '_' '.' undscModName let res = filter (greNotInOpts [replaced]) cands return $ res _ -> return cands where greNotInOpts opts (GreHFCand gre) = not $ null $ intersect (inScopeVia gre) opts greNotInOpts _ _ = True inScopeVia = map (moduleNameString . importSpecModule) . gre_imp -- Yes, it's pretty hacky, but it is just an example :) searchHoogle :: String -> IO [String] searchHoogle ty = lines <$> (readProcess "hoogle" [(show ty)] []) fp :: [CommandLineOption] -> FitPlugin fp ("hoogle":[]) hole hfs = do dflags <- getDynFlags let tyString = showSDoc dflags . ppr . ctPred <$> tyHCt hole res <- case tyString of Just ty -> liftIO $ searchHoogle ty _ -> return [] return $ (take 2 $ map (RawHoleFit . text . ("Hoogle says: " ++)) res) ++ hfs fp _ _ hfs = return hfs ``` with this plugin available, you can compile the following file ``` {-# OPTIONS -fplugin=HolePlugin -fplugin-opt=HolePlugin:hoogle #-} module Main where import Prelude hiding (head, last) import Data.List (head, last) t :: [Int] -> Int t = _module_Prelude g :: [Int] -> Int g = _module_Data_List main :: IO () main = print $ t [1,2,3] ``` and get the following output: ``` Main.hs:14:5: error: • Found hole: _module_Prelude :: [Int] -> Int Or perhaps ‘_module_Prelude’ is mis-spelled, or not in scope • In the expression: _module_Prelude In an equation for ‘t’: t = _module_Prelude • Relevant bindings include t :: [Int] -> Int (bound at Main.hs:14:1) Valid hole fits include Hoogle says: GHC.List length :: [a] -> Int Hoogle says: GHC.OldList length :: [a] -> Int t :: [Int] -> Int (bound at Main.hs:14:1) g :: [Int] -> Int (bound at Main.hs:17:1) length :: forall (t :: * -> *) a. Foldable t => t a -> Int with length @[] @Int (imported from ‘Prelude’ at Main.hs:5:1-34 (and originally defined in ‘Data.Foldable’)) maximum :: forall (t :: * -> *) a. (Foldable t, Ord a) => t a -> a with maximum @[] @Int (imported from ‘Prelude’ at Main.hs:5:1-34 (and originally defined in ‘Data.Foldable’)) (Some hole fits suppressed; use -fmax-valid-hole-fits=N or -fno-max-valid-hole-fits) | 14 | t = _module_Prelude | ^^^^^^^^^^^^^^^ Main.hs:17:5: error: • Found hole: _module_Data_List :: [Int] -> Int Or perhaps ‘_module_Data_List’ is mis-spelled, or not in scope • In the expression: _module_Data_List In an equation for ‘g’: g = _module_Data_List • Relevant bindings include g :: [Int] -> Int (bound at Main.hs:17:1) Valid hole fits include Hoogle says: GHC.List length :: [a] -> Int Hoogle says: GHC.OldList length :: [a] -> Int g :: [Int] -> Int (bound at Main.hs:17:1) head :: forall a. [a] -> a with head @Int (imported from ‘Data.List’ at Main.hs:7:19-22 (and originally defined in ‘GHC.List’)) last :: forall a. [a] -> a with last @Int (imported from ‘Data.List’ at Main.hs:7:25-28 (and originally defined in ‘GHC.List’)) | 17 | g = _module_Data_List ``` This relatively simple plugin has two functions, as an example of what is possible to do with hole fit plugins. The candidate plugin starts by filtering the candidates considered by module, indicated by the name of the hole (`_module_Data_List`). The second function is in the fit plugin, where the plugin invokes a local hoogle instance to search by the type of the hole. By adding the `RawHoleFit` type, we can also allow these completely free suggestions, used in the plugin above to display fits found by Hoogle. Additionally, the `HoleFitPluginR` wrapper can be used for plugins to maintain state between invocations, which can be used to speed up invocation of plugins that have expensive initialization. ``` -- | HoleFitPluginR adds a TcRef to hole fit plugins so that plugins can -- track internal state. Note the existential quantification, ensuring that -- the state cannot be modified from outside the plugin. data HoleFitPluginR = forall s. HoleFitPluginR { hfPluginInit :: TcM (TcRef s) -- ^ Initializes the TcRef to be passed to the plugin , hfPluginRun :: TcRef s -> HoleFitPlugin -- ^ The function defining the plugin itself , hfPluginStop :: TcRef s -> TcM () -- ^ Cleanup of state, guaranteed to be called even on error } ``` Of course, the syntax here is up for debate, but hole fit plugins allow us to experiment relatively easily with ways to interact with typed-holes without having to dig deep into GHC. Reviewers: bgamari Subscribers: rwbarton, carter Differential Revision: https://phabricator.haskell.org/D5373
-
- Jun 20, 2019
-
-
This matches GHC itself getting the target platform from there.
-
ghc-pkg needs to be aware of platforms so it can figure out which subdire within the user package db to use. This is admittedly roundabout, but maybe Cabal could use the same notion of a platform as GHC to good affect too.
-
Partial type sigs had grown hair. tcHsParialSigType was doing lots of unnecessary work, and tcInstSig was cloning it unnecessarily -- and the result didn't even work: #16728. This patch cleans it all up, described by TcHsType Note [Checking parital type signatures] I basically just deleted code... but very carefully! Some refactoring along the way * Distinguish more explicintly between "anonymous" wildcards "_" and "named" wildcards "_a". I changed the names of a number of functions to make this distinction much more apparent. The patch also revealed that the code in `TcExpr` that implements the special typing rule for `($)` was wrong. It called `getRuntimeRep` in a situation where where was no particular reason to suppose that the thing had kind `TYPE r`. This caused a crash in typecheck/should_run/T10846. The fix was easy, and actually simplifies the code in `TcExpr` quite a bit. Hooray.
-
After a :cd command and after setting some package flags, GHCi unloads all loaded modules by resetting the list of targets. This patch deletes eventually defined debugger breakpoints, before GHCi resets the target list. The common code is factored out into the new function clearAllTargets.
-
- Jun 18, 2019
-
-
mkSplitUniqSupply was lazy on the boxed char. This caused a bunch of issues: * The closure captured the boxed Char * The mask was recomputed on every split of the supply. * It also caused the allocation of MkSplitSupply to happen in it's own (allocated) closure. The reason of which I did not further investigate. We know force the computation of the mask inside mkSplitUniqSupply. * This way the mask is computed at most once per UniqSupply creation. * It allows ww to kick in, causing the closure to retain the unboxed value. Requesting Uniques in a loop is now faster by about 20%. I did not check the impact on the overall compiler, but I added a test to avoid regressions.
-