Skip to content
Snippets Groups Projects
Commit 86d41b13 authored by Ian Lynagh's avatar Ian Lynagh
Browse files

Merge branch 'master' of darcs.haskell.org:/srv/darcs//ghc

parents 2b85372c 2bd278d3
No related merge requests found
......@@ -639,8 +639,9 @@ flattenTyVar loc f ctxt tv
tv_eq_subst subst tv
| Just ct <- lookupVarEnv subst tv
, let ctev = cc_ev ct
rhs = cc_rhs ct
, ctEvFlavour ctev `canRewrite` ctxt
= Just (evTermCoercion (ctEvTerm ctev), cc_rhs ct)
= Just (evTermCoercion (ctEvTerm ctev), rhs)
-- NB: even if ct is Derived we are not going to
-- touch the actual coercion so we are fine.
| otherwise = Nothing
......@@ -705,13 +706,9 @@ emitWorkNC loc evs
mk_nc ev = CNonCanonical { cc_ev = ev, cc_loc = loc }
-------------------------
canEqNC, canEq :: CtLoc -> CtEvidence -> Type -> Type -> TcS StopOrContinue
canEqNC :: CtLoc -> CtEvidence -> Type -> Type -> TcS StopOrContinue
canEqNC loc ev ty1 ty2
= canEq loc ev ty1 ty2
`andWhenContinue` emitKindConstraint
canEq _loc ev ty1 ty2
canEqNC _loc ev ty1 ty2
| eqType ty1 ty2 -- Dealing with equality here avoids
-- later spurious occurs checks for a~a
= if isWanted ev then
......@@ -722,30 +719,30 @@ canEq _loc ev ty1 ty2
-- If one side is a variable, orient and flatten,
-- WITHOUT expanding type synonyms, so that we tend to
-- substitute a ~ Age rather than a ~ Int when @type Age = Int@
canEq loc ev ty1@(TyVarTy {}) ty2
canEqNC loc ev ty1@(TyVarTy {}) ty2
= canEqLeaf loc ev ty1 ty2
canEq loc ev ty1 ty2@(TyVarTy {})
canEqNC loc ev ty1 ty2@(TyVarTy {})
= canEqLeaf loc ev ty1 ty2
-- See Note [Naked given applications]
canEq loc ev ty1 ty2
| Just ty1' <- tcView ty1 = canEq loc ev ty1' ty2
| Just ty2' <- tcView ty2 = canEq loc ev ty1 ty2'
canEqNC loc ev ty1 ty2
| Just ty1' <- tcView ty1 = canEqNC loc ev ty1' ty2
| Just ty2' <- tcView ty2 = canEqNC loc ev ty1 ty2'
canEq loc ev ty1@(TyConApp fn tys) ty2
canEqNC loc ev ty1@(TyConApp fn tys) ty2
| isSynFamilyTyCon fn, length tys == tyConArity fn
= canEqLeaf loc ev ty1 ty2
canEq loc ev ty1 ty2@(TyConApp fn tys)
canEqNC loc ev ty1 ty2@(TyConApp fn tys)
| isSynFamilyTyCon fn, length tys == tyConArity fn
= canEqLeaf loc ev ty1 ty2
canEq loc ev ty1 ty2
canEqNC loc ev ty1 ty2
| Just (tc1,tys1) <- tcSplitTyConApp_maybe ty1
, Just (tc2,tys2) <- tcSplitTyConApp_maybe ty2
, isDecomposableTyCon tc1 && isDecomposableTyCon tc2
= canDecomposableTyConApp loc ev tc1 tys1 tc2 tys2
canEq loc ev s1@(ForAllTy {}) s2@(ForAllTy {})
canEqNC loc ev s1@(ForAllTy {}) s2@(ForAllTy {})
| tcIsForAllTy s1, tcIsForAllTy s2
, CtWanted { ctev_evar = orig_ev } <- ev
= do { let (tvs1,body1) = tcSplitForAllTys s1
......@@ -765,7 +762,7 @@ canEq loc ev s1@(ForAllTy {}) s2@(ForAllTy {})
-- e.g. F a b ~ Maybe c where F has arity 1
-- See Note [Equality between type applications]
-- Note [Care with type applications] in TcUnify
canEq loc ev ty1 ty2
canEqNC loc ev ty1 ty2
= do { let flav = ctEvFlavour ev
; (s1, co1) <- flatten loc FMSubstOnly flav ty1
; (s2, co2) <- flatten loc FMSubstOnly flav ty2
......@@ -821,43 +818,6 @@ canEqFailure loc ev ty1 ty2
Just new_ev -> emitInsoluble (CNonCanonical { cc_ev = new_ev, cc_loc = loc })
Nothing -> pprPanic "canEqFailure" (ppr ev $$ ppr ty1 $$ ppr ty2)
; return Stop }
------------------------
emitKindConstraint :: Ct -> TcS StopOrContinue
emitKindConstraint ct -- By now ct is canonical
= case ct of
CTyEqCan { cc_loc = loc
, cc_ev = ev, cc_tyvar = tv
, cc_rhs = ty }
-> emit_kind_constraint loc ev (mkTyVarTy tv) ty
CFunEqCan { cc_loc = loc
, cc_ev = ev
, cc_fun = fn, cc_tyargs = xis1
, cc_rhs = xi2 }
-> emit_kind_constraint loc ev (mkTyConApp fn xis1) xi2
_ -> continueWith ct
where
emit_kind_constraint loc _ev ty1 ty2
| compatKind k1 k2 -- True when ty1,ty2 are themselves kinds,
= continueWith ct -- because then k1, k2 are BOX
| otherwise
= ASSERT( isKind k1 && isKind k2 )
do { mw <- newDerived (mkEqPred k1 k2)
; case mw of
Nothing -> return ()
Just kev -> emitWorkNC kind_co_loc [kev]
; continueWith ct }
where
k1 = typeKind ty1
k2 = typeKind ty2
-- Always create a Wanted kind equality even if
-- you are decomposing a given constraint.
-- NB: DV finds this reasonable for now. Maybe we have to revisit.
kind_co_loc = setCtLocOrigin loc (KindEqOrigin ty1 ty2 (ctLocOrigin loc))
\end{code}
Note [Make sure that insolubles are fully rewritten]
......@@ -900,14 +860,14 @@ Consider:
type T a = A a
and the given equality:
[G] A a ~ T Int
We will reach the case canEq where we do a tcSplitAppTy_maybe, but if
We will reach the case canEqNC where we do a tcSplitAppTy_maybe, but if
we dont have the guards (Nothing <- tcView ty1) (Nothing <- tcView
ty2) then the given equation is going to fall through and get
completely forgotten!
What we want instead is this clause to apply only when there is no
immediate top-level synonym; if there is one it will be later on
unfolded by the later stages of canEq.
unfolded by the later stages of canEqNC.
Test-case is in typecheck/should_compile/GivenTypeSynonym.hs
......@@ -1039,22 +999,22 @@ classify ty | Just ty' <- tcView ty
= OtherCls ty
-- See note [Canonical ordering for equality constraints].
reOrient :: CtEvidence -> TypeClassifier -> TypeClassifier -> Bool
reOrient :: TypeClassifier -> TypeClassifier -> Bool
-- (t1 `reOrient` t2) responds True
-- iff we should flip to (t2~t1)
-- We try to say False if possible, to minimise evidence generation
--
-- Postcondition: After re-orienting, first arg is not OTherCls
reOrient _ev (OtherCls {}) cls2 = ASSERT( case cls2 of { OtherCls {} -> False; _ -> True } )
True -- One must be Var/Fun
reOrient (OtherCls {}) cls2 = ASSERT( case cls2 of { OtherCls {} -> False; _ -> True } )
True -- One must be Var/Fun
reOrient _ev (FunCls {}) _ = False -- Fun/Other on rhs
reOrient (FunCls {}) _ = False -- Fun/Other on rhs
-- But consider the following variation: isGiven ev && isMetaTyVar tv
-- See Note [No touchables as FunEq RHS] in TcSMonad
reOrient _ev (VarCls {}) (FunCls {}) = True
reOrient _ev (VarCls {}) (OtherCls {}) = False
reOrient _ev (VarCls tv1) (VarCls tv2)
reOrient (VarCls {}) (FunCls {}) = True
reOrient (VarCls {}) (OtherCls {}) = False
reOrient (VarCls tv1) (VarCls tv2)
| isMetaTyVar tv2 && not (isMetaTyVar tv1) = True
| otherwise = False
-- Just for efficiency, see CTyEqCan invariants
......@@ -1072,8 +1032,35 @@ canEqLeaf :: CtLoc -> CtEvidence
-- * one of the two arguments is variable
-- or an exactly-saturated family application
-- * the two types are not equal (looking through synonyms)
-- NB: at this point we do NOT know that the kinds of s1 and s2 are
-- compatible. See Note [Equalities with incompatible kinds]
-- Test for incompatible kinds
-- If so, emit an "irreducible" constraint CIrredEvCan (NOT CTyEqCan or CFunEqCan)
-- for the type equality; and continue with the kind equality constraint.
-- When the latter is solved, it'll kick out the irreducible equality for
-- a second attempt at solving
canEqLeaf loc ev s1 s2
| cls1 `re_orient` cls2
| not (k1 `compatKind` k2) -- See Note [Equalities with incompatible kinds]
= ASSERT( isKind k1 && isKind k2 )
do { updWorkListTcS $ extendWorkListNonEq $
CIrredEvCan { cc_ev = ev, cc_loc = loc }
; mw <- newDerived (mkEqPred k1 k2)
; case mw of
Nothing -> return Stop
Just kev -> canEqNC kind_co_loc kev k1 k2 }
where
k1 = typeKind s1
k2 = typeKind s2
-- Always create a Wanted kind equality even if
-- you are decomposing a given constraint.
-- NB: DV finds this reasonable for now. Maybe we have to revisit.
kind_co_loc = setCtLocOrigin loc (KindEqOrigin s1 s2 (ctLocOrigin loc))
canEqLeaf loc ev s1 s2
| cls1 `reOrient` cls2
= do { traceTcS "canEqLeaf (reorienting)" $ ppr ev <+> dcolon <+> pprEq s1 s2
; let xcomp [x] = EvCoercion (mkTcSymCo (evTermCoercion x))
xcomp _ = panic "canEqLeaf: can't happen"
......@@ -1089,19 +1076,22 @@ canEqLeaf loc ev s1 s2
= do { traceTcS "canEqLeaf" $ ppr (mkTcEqPred s1 s2)
; canEqLeafOriented loc ev cls1 s2 }
where
re_orient = reOrient ev
cls1 = classify s1
cls2 = classify s2
canEqLeafOriented :: CtLoc -> CtEvidence
-> TypeClassifier -> TcType -> TcS StopOrContinue
-- By now s1 will either be a variable or a type family application
-- Precondition: the LHS and RHS have `compatKind` kinds
-- so we can safely generate a CTyEqCan or CFunEqCan
canEqLeafOriented loc ev (FunCls fn tys1) s2 = canEqLeafFunEq loc ev fn tys1 s2
canEqLeafOriented loc ev (VarCls tv) s2 = canEqLeafTyVarEq loc ev tv s2
canEqLeafOriented _ ev (OtherCls {}) _ = pprPanic "canEqLeafOriented" (ppr (ctEvPred ev))
canEqLeafFunEq :: CtLoc -> CtEvidence
-> TyCon -> [TcType] -> TcType -> TcS StopOrContinue
-- Precondition: LHS and RHS have compatible kinds
-- (guaranteed by canEqLeaf0
canEqLeafFunEq loc ev fn tys1 ty2 -- ev :: F tys1 ~ ty2
= do { traceTcS "canEqLeafFunEq" $ pprEq (mkTyConApp fn tys1) ty2
; let flav = ctEvFlavour ev
......@@ -1121,16 +1111,14 @@ canEqLeafFunEq loc ev fn tys1 ty2 -- ev :: F tys1 ~ ty2
; mb <- rewriteCtFlavor ev (mkTcEqPred fam_head xi2) xco
; case mb of {
Nothing -> return Stop ;
Just new_ev -> continueWith new_ct
-- | isTcReflCo xco -> continueWith new_ct
-- | otherwise -> do { updWorkListTcS (extendWorkListFunEq new_ct); return Stop }
where
new_ct = CFunEqCan { cc_ev = new_ev, cc_loc = loc
, cc_fun = fn, cc_tyargs = xis1, cc_rhs = xi2 } } }
Just new_ev -> continueWith (CFunEqCan { cc_ev = new_ev, cc_loc = loc
, cc_fun = fn, cc_tyargs = xis1, cc_rhs = xi2 }) } }
canEqLeafTyVarEq :: CtLoc -> CtEvidence
-> TcTyVar -> TcType -> TcS StopOrContinue
-- Precondition: LHS and RHS have compatible kinds
-- (guaranteed by canEqLeaf0
canEqLeafTyVarEq loc ev tv s2 -- ev :: tv ~ s2
= do { traceTcS "canEqLeafTyVarEq" $ pprEq (mkTyVarTy tv) s2
; let flav = ctEvFlavour ev
......@@ -1146,7 +1134,7 @@ canEqLeafTyVarEq loc ev tv s2 -- ev :: tv ~ s2
do { mb <- rewriteCtFlavor ev (mkTcEqPred xi1 xi2) co
; case mb of
Nothing -> return Stop
Just new_ev -> canEq loc new_ev xi1 xi2 } ;
Just new_ev -> canEqNC loc new_ev xi1 xi2 } ;
(Just tv1', Just tv2') | tv1' == tv2'
-> do { when (isWanted ev) $
......@@ -1183,6 +1171,24 @@ mkHdEqPred t2 co1 co2 = mkTcTyConAppCo eqTyCon [mkTcReflCo (defaultKind (typeKin
-- Why defaultKind? Same reason as the comment on TcType/mkTcEqPred. I truly hate this (DV)
\end{code}
Note [Equalities with incompatible kinds]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
canEqLeaf is about to make a CTyEqCan or CFunEqCan; but both have the
invariant that LHS and RHS have `compatKind` kinds. What if we try
to unify two things with incompatible kinds?
eg a ~ b where a::*, b::*->*
or a ~ b where a::*, b::k, k is a kind variable
The CTyEqCan compatKind invariant is important. If we make a CTyEqCan
for a~b, then we might well *substitute* 'b' for 'a', and that might make
a well-kinded type ill-kinded; and that is bad (eg typeKind can crash, see
Trac #7696).
So instead for these ill-kinded equalities we generate a CIrredCan,
which keeps it out of the way until a subsequent substitution (on kind
variables, say) re-activates it.
Note [Type synonyms and canonicalization]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We treat type synonym applications as xi types, that is, they do not
......
......@@ -238,6 +238,7 @@ thePipeline = [ ("canonicalization", TcCanonical.canonicalize)
\begin{code}
spontaneousSolveStage :: SimplifierStage
-- CTyEqCans are always consumed, returning Stop
spontaneousSolveStage workItem
= do { mb_solved <- trySpontaneousSolve workItem
; case mb_solved of
......
......@@ -881,13 +881,12 @@ data Ct
cc_loc :: CtLoc
}
| CIrredEvCan { -- These stand for yet-unknown predicates
| CIrredEvCan { -- These stand for yet-unusable predicates
cc_ev :: CtEvidence, -- See Note [Ct/evidence invariant]
-- In CIrredEvCan, the ctev_pred of the evidence is flat
-- and hence it may only be of the form (tv xi1 xi2 ... xin)
-- Since, if it were a type constructor application, that'd make the
-- whole constraint a CDictCan, or CTyEqCan. And it can't be
-- a type family application either because it's a Xi type.
-- The ctev_pred of the evidence is
-- of form (tv xi1 xi2 ... xin)
-- or (t1 ~ t2) where not (kind(t1) `compatKind` kind(t2)
-- See Note [CIrredEvCan constraints]
cc_loc :: CtLoc
}
......@@ -904,8 +903,8 @@ data Ct
}
| CFunEqCan { -- F xis ~ xi
-- Invariant: * isSynFamilyTyCon cc_fun
-- * typeKind (F xis) `compatKind` typeKind xi
-- Invariant: * isSynFamilyTyCon cc_fun
-- * typeKind (F xis) `compatKind` typeKind xi
cc_ev :: CtEvidence, -- See Note [Ct/evidence invariant]
cc_fun :: TyCon, -- A type function
cc_tyargs :: [Xi], -- Either under-saturated or exactly saturated
......@@ -913,7 +912,6 @@ data Ct
-- we should have decomposed)
cc_loc :: CtLoc
}
| CNonCanonical { -- See Note [NonCanonical Semantics]
......@@ -928,6 +926,23 @@ data Ct
}
\end{code}
Note [CIrredEvCan constraints]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
CIrredEvCan constraints are used for constraints that are "stuck"
- we can't solve them (yet)
- we can't use them to solve other constraints
- but they may become soluble if we substitute for some
of the type variables in the constraint
Example 1: (c Int), where c :: * -> Constraint. We can't do anything
with this yet, but if later c := Num, *then* we can solve it
Example 2: a ~ b, where a :: *, b :: k, where k is a kind variable
We don't want to use this to substitute 'b' for 'a', in case
'k' is subequently unifed with (say) *->*, because then
we'd have ill-kinded types floating about. Rather we want
to defer using the equality altogether until 'k' get resolved.
Note [Ct/evidence invariant]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If ct :: Ct, then extra fields of 'ct' cache precisely the ctev_pred field
......
......@@ -849,10 +849,13 @@ extractRelevantInerts :: Ct -> TcS Cts
-- NB: This function contains logic specific to the constraint solver, maybe move there?
extractRelevantInerts wi
= modifyInertTcS (extract_relevants wi)
where extract_relevants wi is
where
extract_relevants :: Ct -> InertSet -> (Cts,InertSet)
extract_relevants wi is
= let (cts,ics') = extract_ics_relevants wi (inert_cans is)
in (cts, is { inert_cans = ics' })
extract_ics_relevants :: Ct -> InertCans -> (Cts, InertCans)
extract_ics_relevants (CDictCan {cc_class = cl}) ics =
let (cts,dict_map) = getRelevantCts cl (inert_dicts ics)
in (cts, ics { inert_dicts = dict_map })
......
......@@ -239,30 +239,35 @@ isSubKindCon kc1 kc2
| isOpenTypeKindCon kc2 = isSubOpenTypeKindCon kc1
| isConstraintKindCon kc1 = isLiftedTypeKindCon kc2
| isLiftedTypeKindCon kc1 = isConstraintKindCon kc2
| otherwise = False
-- See Note [Kind Constraint and kind *]
| otherwise = False
-------------------------
-- Hack alert: we need a tiny variant for the typechecker
-- Reason: f :: Int -> (a~b)
-- g :: forall (c::Constraint). Int -> c
-- h :: Int => Int
-- We want to reject these, even though Constraint is
-- a sub-kind of OpenTypeKind. It must be a sub-kind of OpenTypeKind
-- *after* the typechecker
-- a) So that (Ord a -> Eq a) is a legal type
-- b) So that the simplifer can generate (error (Eq a) "urk")
-- Moreover, after the type checker, Constraint and *
-- are identical; see Note [Kind Constraint and kind *]
--
-- Easiest way to reject is simply to make Constraint not
-- Easiest way to reject is simply to make Constraint a compliete
-- below OpenTypeKind when type checking
tcIsSubKind :: Kind -> Kind -> Bool
tcIsSubKind k1 k2
| isConstraintKind k1 = isConstraintKind k2
| isConstraintKind k2 = isConstraintKind k1
| otherwise = isSubKind k1 k2
tcIsSubKindCon :: TyCon -> TyCon -> Bool
tcIsSubKindCon kc1 kc2
| isConstraintKindCon kc1 = isConstraintKindCon kc2
| isConstraintKindCon kc2 = isConstraintKindCon kc1
| otherwise = isSubKindCon kc1 kc2
-------------------------
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment