- Feb 08, 2024
-
-
Here we move a good deal of the implementation of `base` into a new package, `ghc-internal` such that it can be evolved independently from the user-visible interfaces of `base`. While we want to isolate implementation from interfaces, naturally, we would like to avoid turning `base` into a mere set of module re-exports. However, this is a non-trivial undertaking for a variety of reasons: * `base` contains numerous known-key and wired-in things, requiring corresponding changes in the compiler * `base` contains a significant amount of C code and corresponding autoconf logic, which is very fragile and difficult to break apart * `base` has numerous import cycles, which are currently dealt with via carefully balanced `hs-boot` files * We must not break existing users To accomplish this migration, I tried the following approaches: * [Split-GHC.Base]: Break apart the GHC.Base knot to allow incremental migration of modules into ghc-internal: this knot is simply too intertwined to be easily pulled apart, especially given the rather tricky import cycles that it contains) * [Move-Core]: Moving the "core" connected component of base (roughly 150 modules) into ghc-internal. While the Haskell side of this seems tractable, the C dependencies are very subtle to break apart. * [Move-Incrementally]: 1. Move all of base into ghc-internal 2. Examine the module structure and begin moving obvious modules (e.g. leaves of the import graph) back into base 3. Examine the modules remaining in ghc-internal, refactor as necessary to facilitate further moves 4. Go to (2) iterate until the cost/benefit of further moves is insufficient to justify continuing 5. Rename the modules moved into ghc-internal to ensure that they don't overlap with those in base 6. For each module moved into ghc-internal, add a shim module to base with the declarations which should be exposed and any requisite Haddocks (thus guaranteeing that base will be insulated from changes in the export lists of modules in ghc-internal Here I am using the [Move-Incrementally] approach, which is empirically the least painful of the unpleasant options above Bumps haddock submodule. Metric Decrease: haddock.Cabal haddock.base Metric Increase: MultiComponentModulesRecomp T16875 size_hello_artifact
-
- Aug 28, 2023
-
-
sheaf authored
This commit accepts testsuite changes for the changes in the previous commit, which mean that TypeAbstractions is no longer implied by ScopedTypeVariables.
-
- Jun 27, 2023
-
-
Arity inference in type declarations was introduced as a workaround for the lack of @k-binders. They were added in 4aea0a72, so I simplified all of this by simply removing arity inference altogether. This is part of GHC Proposal #425 "Invisible binders in type declarations".
-
- Jun 15, 2023
-
-
Andrei Borzenkov authored
This patch modifies the renamer to respect ScopedTypeVariables in kind signatures. This means that kind variables bound by the outermost `forall` now scope over the type: type F = '[Right @a @() () :: forall a. Either a ()] -- ^^^^^^^^^^^^^^^ ^^^ -- in scope here bound here However, any use of such variables is a type error, because we don't have type-level lambdas to bind them in Core. This is described in the new Note [Type variable scoping errors during type check] in GHC.Tc.Types.
-
Prior to this change, `can_eq_nc` checked the visibility of the outermost layer of foralls: forall a. forall b. forall c. phi1 forall x. forall y. forall z. phi2 ^^ up to here Then it delegated the rest of the work to `can_eq_nc_forall`, which split off all foralls: forall a. forall b. forall c. phi1 forall x. forall y. forall z. phi2 ^^ up to here This meant that some visibility flags were completely ignored. We fix this oversight by moving the check to `can_eq_nc_forall`.
-
- Apr 03, 2023
-
-
I've turned all occurrences of TcRnUnknownMessage in GHC.Rename.HsType module into a proper TcRnMessage. Instead, these TcRnMessage messages were introduced: TcRnDataKindsError TcRnUnusedQuantifiedTypeVar TcRnIllegalKindSignature TcRnUnexpectedPatSigType TcRnSectionPrecedenceError TcRnPrecedenceParsingError TcRnIllegalKind TcRnNegativeNumTypeLiteral TcRnUnexpectedKindVar TcRnBindMultipleVariables TcRnBindVarAlreadyInScope
-
- Mar 06, 2023
-
-
I've turned almost all occurrences of TcRnUnknownMessage in GHC.Rename.Module module into a proper TcRnMessage. Instead, these TcRnMessage messages were introduced: TcRnIllegalInstanceHeadDecl TcRnUnexpectedStandaloneDerivingDecl TcRnUnusedVariableInRuleDecl TcRnUnexpectedStandaloneKindSig TcRnIllegalRuleLhs TcRnBadAssocRhs TcRnDuplicateRoleAnnot TcRnDuplicateKindSig TcRnIllegalDerivStrategy TcRnIllegalMultipleDerivClauses TcRnNoDerivStratSpecified TcRnStupidThetaInGadt TcRnBadImplicitSplice TcRnShadowedTyVarNameInFamResult TcRnIncorrectTyVarOnLhsOfInjCond TcRnUnknownTyVarsOnRhsOfInjCond Was introduced one helper type: RuleLhsErrReason
-
- Dec 24, 2022
-
-
This implements proposal 547 and closes ticket #22298. See the proposal and ticket for motivation. Compiler perf improves a bit Metrics: compile_time/bytes allocated ------------------------------------- CoOpt_Singletons(normal) -2.4% GOOD T12545(normal) +1.0% T13035(normal) -13.5% GOOD T18478(normal) +0.9% T9872d(normal) -2.2% GOOD geo. mean -0.2% minimum -13.5% maximum +1.0% Metric Decrease: CoOpt_Singletons T13035 T9872d
-
- Nov 25, 2022
-
-
Before this patch, GHC unconditionally printed ticks before promoted data constructors: ghci> type T = True -- unticked (user-written) ghci> :kind! T T :: Bool = 'True -- ticked (compiler output) After this patch, GHC prints ticks only when necessary: ghci> type F = False -- unticked (user-written) ghci> :kind! F F :: Bool = False -- unticked (compiler output) ghci> data False -- introduce ambiguity ghci> :kind! F F :: Bool = 'False -- ticked by necessity (compiler output) The old behavior can be enabled by -fprint-redundant-promotion-ticks. Summary of changes: * Rename PrintUnqualified to NamePprCtx * Add QueryPromotionTick to it * Consult the GlobalRdrEnv to decide whether to print a tick (see mkPromTick) * Introduce -fprint-redundant-promotion-ticks Co-authored-by:
Artyom Kuznetsov <hi@wzrd.ht>
-
- Nov 11, 2022
-
-
This big patch addresses the rats-nest of issues that have plagued us for years, about the relationship between Type and Constraint. See #11715/#21623. The main payload of the patch is: * To introduce CONSTRAINT :: RuntimeRep -> Type * To make TYPE and CONSTRAINT distinct throughout the compiler Two overview Notes in GHC.Builtin.Types.Prim * Note [TYPE and CONSTRAINT] * Note [Type and Constraint are not apart] This is the main complication. The specifics * New primitive types (GHC.Builtin.Types.Prim) - CONSTRAINT - ctArrowTyCon (=>) - tcArrowTyCon (-=>) - ccArrowTyCon (==>) - funTyCon FUN -- Not new See Note [Function type constructors and FunTy] and Note [TYPE and CONSTRAINT] * GHC.Builtin.Types: - New type Constraint = CONSTRAINT LiftedRep - I also stopped nonEmptyTyCon being built-in; it only needs to be wired-in * Exploit the fact that Type and Constraint are distinct throughout GHC - Get rid of tcView in favour of coreView. - Many tcXX functions become XX functions. e.g. tcGetCastedTyVar --> getCastedTyVar * Kill off Note [ForAllTy and typechecker equality], in (old) GHC.Tc.Solver.Canonical. It said that typechecker-equality should ignore the specified/inferred distinction when comparein two ForAllTys. But that wsa only weakly supported and (worse) implies that we need a separate typechecker equality, different from core equality. No no no. * GHC.Core.TyCon: kill off FunTyCon in data TyCon. There was no need for it, and anyway now we have four of them! * GHC.Core.TyCo.Rep: add two FunTyFlags to FunCo See Note [FunCo] in that module. * GHC.Core.Type. Lots and lots of changes driven by adding CONSTRAINT. The key new function is sORTKind_maybe; most other changes are built on top of that. See also `funTyConAppTy_maybe` and `tyConAppFun_maybe`. * Fix a longstanding bug in GHC.Core.Type.typeKind, and Core Lint, in kinding ForAllTys. See new tules (FORALL1) and (FORALL2) in GHC.Core.Type. (The bug was that before (forall (cv::t1 ~# t2). blah), where blah::TYPE IntRep, would get kind (TYPE IntRep), but it should be (TYPE LiftedRep). See Note [Kinding rules for types] in GHC.Core.Type. * GHC.Core.TyCo.Compare is a new module in which we do eqType and cmpType. Of course, no tcEqType any more. * GHC.Core.TyCo.FVs. I moved some free-var-like function into this module: tyConsOfType, visVarsOfType, and occCheckExpand. Refactoring only. * GHC.Builtin.Types. Compiletely re-engineer boxingDataCon_maybe to have one for each /RuntimeRep/, rather than one for each /Type/. This dramatically widens the range of types we can auto-box. See Note [Boxing constructors] in GHC.Builtin.Types The boxing types themselves are declared in library ghc-prim:GHC.Types. GHC.Core.Make. Re-engineer the treatment of "big" tuples (mkBigCoreVarTup etc) GHC.Core.Make, so that it auto-boxes unboxed values and (crucially) types of kind Constraint. That allows the desugaring for arrows to work; it gathers up free variables (including dictionaries) into tuples. See Note [Big tuples] in GHC.Core.Make. There is still work to do here: #22336. But things are better than before. * GHC.Core.Make. We need two absent-error Ids, aBSENT_ERROR_ID for types of kind Type, and aBSENT_CONSTRAINT_ERROR_ID for vaues of kind Constraint. Ditto noInlineId vs noInlieConstraintId in GHC.Types.Id.Make; see Note [inlineId magic]. * GHC.Core.TyCo.Rep. Completely refactor the NthCo coercion. It is now called SelCo, and its fields are much more descriptive than the single Int we used to have. A great improvement. See Note [SelCo] in GHC.Core.TyCo.Rep. * GHC.Core.RoughMap.roughMatchTyConName. Collapse TYPE and CONSTRAINT to a single TyCon, so that the rough-map does not distinguish them. * GHC.Core.DataCon - Mainly just improve documentation * Some significant renamings: GHC.Core.Multiplicity: Many --> ManyTy (easier to grep for) One --> OneTy GHC.Core.TyCo.Rep TyCoBinder --> GHC.Core.Var.PiTyBinder GHC.Core.Var TyCoVarBinder --> ForAllTyBinder AnonArgFlag --> FunTyFlag ArgFlag --> ForAllTyFlag GHC.Core.TyCon TyConTyCoBinder --> TyConPiTyBinder Many functions are renamed in consequence e.g. isinvisibleArgFlag becomes isInvisibleForAllTyFlag, etc * I refactored FunTyFlag (was AnonArgFlag) into a simple, flat data type data FunTyFlag = FTF_T_T -- (->) Type -> Type | FTF_T_C -- (-=>) Type -> Constraint | FTF_C_T -- (=>) Constraint -> Type | FTF_C_C -- (==>) Constraint -> Constraint * GHC.Tc.Errors.Ppr. Some significant refactoring in the TypeEqMisMatch case of pprMismatchMsg. * I made the tyConUnique field of TyCon strict, because I saw code with lots of silly eval's. That revealed that GHC.Settings.Constants.mAX_SUM_SIZE can only be 63, because we pack the sum tag into a 6-bit field. (Lurking bug squashed.) Fixes * #21530 Updates haddock submodule slightly. Performance changes ~~~~~~~~~~~~~~~~~~~ I was worried that compile times would get worse, but after some careful profiling we are down to a geometric mean 0.1% increase in allocation (in perf/compiler). That seems fine. There is a big runtime improvement in T10359 Metric Decrease: LargeRecord MultiLayerModulesTH_OneShot T13386 T13719 Metric Increase: T8095
-
- Oct 26, 2022
-
-
Sylvain Henry authored
Necessary for newer cross-compiling backends (JS, Wasm) that don't support TH yet.
-
Before this patch, GHC used withHsDocContext to attach an HsDocContext to an error message: addErr $ mkTcRnUnknownMessage $ mkPlainError noHints (withHsDocContext ctxt msg) The problem with this approach is that it only works with TcRnUnknownMessage. But could we attach an HsDocContext to a structured error message in a generic way? This patch solves the problem by introducing a new constructor to TcRnMessage: data TcRnMessage where ... TcRnWithHsDocContext :: !HsDocContext -> !TcRnMessage -> TcRnMessage ...
-
- Sep 13, 2022
-
- Jan 29, 2022
-
-
The main purpose of this patch is to attach a SkolemInfo directly to each SkolemTv. This fixes the large number of bugs which have accumulated over the years where we failed to report errors due to having "no skolem info" for particular type variables. Now the origin of each type varible is stored on the type variable we can always report accurately where it cames from. Fixes #20969 #20732 #20680 #19482 #20232 #19752 #10946 #19760 #20063 #13499 #14040 The main changes of this patch are: * SkolemTv now contains a SkolemInfo field which tells us how the SkolemTv was created. Used when reporting errors. * Enforce invariants relating the SkolemInfoAnon and level of an implication (ic_info, ic_tclvl) to the SkolemInfo and level of the type variables in ic_skols. * All ic_skols are TcTyVars -- Check is currently disabled * All ic_skols are SkolemTv * The tv_lvl of the ic_skols agrees with the ic_tclvl * The ic_info agrees with the SkolInfo of the implication. These invariants are checked by a debug compiler by checkImplicationInvariants. * Completely refactor kcCheckDeclHeader_sig which kept doing my head in. Plus, it wasn't right because it wasn't skolemising the binders as it decomposed the kind signature. The new story is described in Note [kcCheckDeclHeader_sig]. The code is considerably shorter than before (roughly 240 lines turns into 150 lines). It still has the same awkward complexity around computing arity as before, but that is a language design issue. See Note [Arity inference in kcCheckDeclHeader_sig] * I added new type synonyms MonoTcTyCon and PolyTcTyCon, and used them to be clear which TcTyCons have "finished" kinds etc, and which are monomorphic. See Note [TcTyCon, MonoTcTyCon, and PolyTcTyCon] * I renamed etaExpandAlgTyCon to splitTyConKind, becuase that's a better name, and it is very useful in kcCheckDeclHeader_sig, where eta-expansion isn't an issue. * Kill off the nasty `ClassScopedTvEnv` entirely. Co-authored-by:
Simon Peyton Jones <simon.peytonjones@gmail.com>
-
- Mar 10, 2021
-
-
- Nov 06, 2020
-
-
This refactors the GHC AST to remove `HsImplicitBndrs` and replace it with `HsOuterTyVarBndrs`, a type which records whether the outermost quantification in a type is explicit (i.e., with an outermost, invisible `forall`) or implicit. As a result of this refactoring, it is now evident in the AST where the `forall`-or-nothing rule applies: it's all the places that use `HsOuterTyVarBndrs`. See the revamped `Note [forall-or-nothing rule]` in `GHC.Hs.Type` (previously in `GHC.Rename.HsType`). Moreover, the places where `ScopedTypeVariables` brings lexically scoped type variables into scope are a subset of the places that adhere to the `forall`-or-nothing rule, so this also makes places that interact with `ScopedTypeVariables` easier to find. See the revamped `Note [Lexically scoped type variables]` in `GHC.Hs.Type` (previously in `GHC.Tc.Gen.Sig`). `HsOuterTyVarBndrs` are used in type signatures (see `HsOuterSigTyVarBndrs`) and type family equations (see `HsOuterFamEqnTyVarBndrs`). The main difference between the former and the latter is that the former cares about specificity but the latter does not. There are a number of knock-on consequences: * There is now a dedicated `HsSigType` type, which is the combination of `HsOuterSigTyVarBndrs` and `HsType`. `LHsSigType` is now an alias for an `XRec` of `HsSigType`. * Working out the details led us to a substantial refactoring of the handling of explicit (user-written) and implicit type-variable bindings in `GHC.Tc.Gen.HsType`. Instead of a confusing family of higher order functions, we now have a local data type, `SkolemInfo`, that controls how these binders are kind-checked. It remains very fiddly, not fully satisfying. But it's better than it was. Fixes #16762. Bumps the Haddock submodule. Co-authored-by:
Simon Peyton Jones <simonpj@microsoft.com> Co-authored-by:
Richard Eisenberg <rae@richarde.dev> Co-authored-by:
Zubin Duggal <zubin@cmi.ac.in>
-
- Oct 31, 2020
-
-
Previously, `can_eq_nc'` would equate `ForAllTy`s regardless of their `ArgFlag`, including `forall i -> i -> Type` and `forall i. i -> Type`! To fix this, `can_eq_nc'` now uses the `sameVis` function to first check if the `ArgFlag`s are equal modulo specificity. I have also updated `tcEqType`'s implementation to match this behavior. For more explanation on the "modulo specificity" part, see the new `Note [ForAllTy and typechecker equality]` in `GHC.Tc.Solver.Canonical`. While I was in town, I fixed some related documentation issues: * I added `Note [Typechecker equality]` to `GHC.Tc.Utils.TcType` to describe what exactly distinguishes `can_eq_nc'` and `tcEqType` (which implement typechecker equality) from `eqType` (which implements definitional equality, which does not care about the `ArgFlags` of `ForAllTy`s at all). * The User's Guide had some outdated prose on the specified/inferred distinction being different for types and kinds, a holdover from #15079. This is no longer the case on today's GHC, so I removed this prose, added some new prose to take its place, and added a regression test for the programs in #15079. * The User's Guide had some _more_ outdated prose on inferred type variables not being allowed in `default` type signatures for class methods, which is no longer true as of the resolution of #18432. * The related `Note [Deferred Unification]` was being referenced as `Note [Deferred unification]` elsewhere, which made it harder to `grep` for. I decided to change the name of the Note to `Deferred unification` for consistency with the capitalization style used for most other Notes. Fixes #18863.
-
- Sep 24, 2020
-
-
This patch does two things: * It refactors GHC.Tc.Errors a bit. In debugging Quick Look I was forced to look in detail at error messages, and ended up doing a bit of refactoring, esp in mkTyVarEqErr'. It's still quite a mess, but a bit better, I think. * It makes a significant improvement to the kind checking of type and class declarations. Specifically, we now ensure that if kind checking fails with an unsolved constraint, all the skolems are in scope. That wasn't the case before, which led to some obscure error messages; and occasional failures with "no skolem info" (eg #16245). Both of these, and the main Quick Look patch itself, affect a /lot/ of error messages, as you can see from the number of files changed. I've checked them all; I think they are as good or better than before. Smaller things * I documented the various instances of VarBndr better. See Note [The VarBndr tyep and its uses] in GHC.Types.Var * Renamed GHC.Tc.Solver.simpl_top to simplifyTopWanteds * A bit of refactoring in bindExplicitTKTele, to avoid the footwork with Either. Simpler now. * Move promoteTyVar from GHC.Tc.Solver to GHC.Tc.Utils.TcMType Fixes #16245 (comment 211369), memorialised as typecheck/polykinds/T16245a Also fixes the three bugs in #18640
-
- Jun 05, 2020
-
-
Simon Peyton Jones authored
This patch simplifies GHC to use simple subsumption. Ticket #17775 Implements GHC proposal #287 https://github.com/ghc-proposals/ghc-proposals/blob/master/ proposals/0287-simplify-subsumption.rst All the motivation is described there; I will not repeat it here. The implementation payload: * tcSubType and friends become noticably simpler, because it no longer uses eta-expansion when checking subsumption. * No deeplyInstantiate or deeplySkolemise That in turn means that some tests fail, by design; they can all be fixed by eta expansion. There is a list of such changes below. Implementing the patch led me into a variety of sticky corners, so the patch includes several othe changes, some quite significant: * I made String wired-in, so that "foo" :: String rather than "foo" :: [Char] This improves error messages, and fixes #15679 * The pattern match checker relies on knowing about in-scope equality constraints, andd adds them to the desugarer's environment using addTyCsDs. But the co_fn in a FunBind was missed, and for some reason simple-subsumption ends up with dictionaries there. So I added a call to addTyCsDs. This is really part of #18049. * I moved the ic_telescope field out of Implication and into ForAllSkol instead. This is a nice win; just expresses the code much better. * There was a bug in GHC.Tc.TyCl.Instance.tcDataFamInstHeader. We called checkDataKindSig inside tc_kind_sig, /before/ solveEqualities and zonking. Obviously wrong, easily fixed. * solveLocalEqualitiesX: there was a whole mess in here, around failing fast enough. I discovered a bad latent bug where we could successfully kind-check a type signature, and use it, but have unsolved constraints that could fill in coercion holes in that signature -- aargh. It's all explained in Note [Failure in local type signatures] in GHC.Tc.Solver. Much better now. * I fixed a serious bug in anonymous type holes. IN f :: Int -> (forall a. a -> _) -> Int that "_" should be a unification variable at the /outer/ level; it cannot be instantiated to 'a'. This was plain wrong. New fields mode_lvl and mode_holes in TcTyMode, and auxiliary data type GHC.Tc.Gen.HsType.HoleMode. This fixes #16292, but makes no progress towards the more ambitious #16082 * I got sucked into an enormous refactoring of the reporting of equality errors in GHC.Tc.Errors, especially in mkEqErr1 mkTyVarEqErr misMatchMsg misMatchMsgOrCND In particular, the very tricky mkExpectedActualMsg function is gone. It took me a full day. But the result is far easier to understand. (Still not easy!) This led to various minor improvements in error output, and an enormous number of test-case error wibbles. One particular point: for occurs-check errors I now just say Can't match 'a' against '[a]' rather than using the intimidating language of "occurs check". * Pretty-printing AbsBinds Tests review * Eta expansions T11305: one eta expansion T12082: one eta expansion (undefined) T13585a: one eta expansion T3102: one eta expansion T3692: two eta expansions (tricky) T2239: two eta expansions T16473: one eta determ004: two eta expansions (undefined) annfail06: two eta (undefined) T17923: four eta expansions (a strange program indeed!) tcrun035: one eta expansion * Ambiguity check at higher rank. Now that we have simple subsumption, a type like f :: (forall a. Eq a => Int) -> Int is no longer ambiguous, because we could write g :: (forall a. Eq a => Int) -> Int g = f and it'd typecheck just fine. But f's type is a bit suspicious, and we might want to consider making the ambiguity check do a check on each sub-term. Meanwhile, these tests are accepted, whereas they were previously rejected as ambiguous: T7220a T15438 T10503 T9222 * Some more interesting error message wibbles T13381: Fine: one error (Int ~ Exp Int) rather than two (Int ~ Exp Int, Exp Int ~ Int) T9834: Small change in error (improvement) T10619: Improved T2414: Small change, due to order of unification, fine T2534: A very simple case in which a change of unification order means we get tow unsolved constraints instead of one tc211: bizarre impredicative tests; just accept this for now Updates Cabal and haddock submodules. Metric Increase: T12150 T12234 T5837 haddock.base Metric Decrease: haddock.compiler haddock.Cabal haddock.base Merge note: This appears to break the `UnliftedNewtypesDifficultUnification` test. It has been marked as broken in the interest of merging. (cherry picked from commit 66b7b195)
-
- May 05, 2020
-
-
Commit e3c374cc ended up fixing quite a few bugs: * This commit fixes #16244 completely. A regression test has been added. * This commit fixes one program from #16245. (The program in ghc/ghc#16245 (comment 211369) still panics, and the program in ghc/ghc#16245 (comment 211400) still loops infinitely.) A regression test has been added for this program. * This commit fixes #16758. Accordingly, this patch removes the `expect_broken` label from the `T16758` test case, moves it from `should_compile` to `should_fail` (as it should produce an error message), and checks in the expected stderr.
-
- Feb 12, 2020
-
-
Krzysztof Gogolewski authored
We now always show "forall {a}. T" for inferred variables, previously this was controlled by -fprint-explicit-foralls. This implements part 1 of https://github.com/ghc-proposals/ghc-proposals/pull/179. Part of GHC ticket #16320. Furthermore, when printing a levity restriction error, we now display the HsWrap of the expression. This lets users see the full elaboration with -fprint-typechecker-elaboration (see also #17670)
-
- Dec 11, 2019
- Dec 05, 2019
-
-
Before this patch, GHC always printed the * kind unparenthesized. This led to two issues: 1. Sometimes GHC printed invalid or incorrect code. For example, GHC would print: type F @* x = x when it meant to print: type F @(*) x = x In the former case, instead of a kind application we were getting a type operator (@*). 2. Sometimes GHC printed kinds that were correct but hard to read. Should Either * Int be read as Either (*) Int or as (*) Either Int ? This depends on whether -XStarIsType is enabled, but it would be easier if we didn't have to check for the flag when reading the code. We can solve both problems by assigning (*) a different precedence. Note that Haskell98 kinds are not affected: ((* -> *) -> *) -> * does NOT become (((*) -> (*)) -> (*)) -> (*) The parentheses are added when (*) is used in a function argument position: F * * * becomes F (*) (*) (*) F A * B becomes F A (*) B Proxy * becomes Proxy (*) a * -> * becomes a (*) -> *
-
- Nov 27, 2019
-
-
Vladislav Zavialov authored
This patch implements a part of GHC Proposal #229 that covers five operators: * the bang operator (!) * the tilde operator (~) * the at operator (@) * the dollar operator ($) * the double dollar operator ($$) Based on surrounding whitespace, these operators are disambiguated into bang patterns, lazy patterns, strictness annotations, type applications, splices, and typed splices. This patch doesn't cover the (-) operator or the -Woperator-whitespace warning, which are left as future work.
-
- Nov 09, 2019
-
-
Bizarrely, `saks028` previously failed reliably, but only on Windows (#17450). The test would exit with a zero exit code but simply didn't emit the expected text to stderr. I believe this was due to the fact that the test used `putStrLn`, resulting in the output ending up on stdout. This worked on other platforms since (apparently) we redirect stdout to stderr when evaluating splices. However, on Windows it seems that the redirected output wasn't flushed as it was on other platforms. Anyways, it seems like the right thing to do here is to be explicit about our desire for the output to end up on stderr. Closes #17450.
-
- Sep 25, 2019
-
-
Vladislav Zavialov authored
Implements GHC Proposal #54: .../ghc-proposals/blob/master/proposals/0054-kind-signatures.rst With this patch, a type constructor can now be given an explicit standalone kind signature: {-# LANGUAGE StandaloneKindSignatures #-} type Functor :: (Type -> Type) -> Constraint class Functor f where fmap :: (a -> b) -> f a -> f b This is a replacement for CUSKs (complete user-specified kind signatures), which are now scheduled for deprecation. User-facing changes ------------------- * A new extension flag has been added, -XStandaloneKindSignatures, which implies -XNoCUSKs. * There is a new syntactic construct, a standalone kind signature: type <name> :: <kind> Declarations of data types, classes, data families, type families, and type synonyms may be accompanied by a standalone kind signature. * A standalone kind signature enables polymorphic recursion in types, just like a function type signature enables polymorphic recursion in terms. This obviates the need for CUSKs. * TemplateHaskell AST has been extended with 'KiSigD' to represent standalone kind signatures. * GHCi :info command now prints the kind signature of type constructors: ghci> :info Functor type Functor :: (Type -> Type) -> Constraint ... Limitations ----------- * 'forall'-bound type variables of a standalone kind signature do not scope over the declaration body, even if the -XScopedTypeVariables is enabled. See #16635 and #16734. * Wildcards are not allowed in standalone kind signatures, as partial signatures do not allow for polymorphic recursion. * Associated types may not be given an explicit standalone kind signature. Instead, they are assumed to have a CUSK if the parent class has a standalone kind signature and regardless of the -XCUSKs flag. * Standalone kind signatures do not support multiple names at the moment: type T1, T2 :: Type -> Type -- rejected type T1 = Maybe type T2 = Either String See #16754. * Creative use of equality constraints in standalone kind signatures may lead to GHC panics: type C :: forall (a :: Type) -> a ~ Int => Constraint class C a where f :: C a => a -> Int See #16758. Implementation notes -------------------- * The heart of this patch is the 'kcDeclHeader' function, which is used to kind-check a declaration header against its standalone kind signature. It does so in two rounds: 1. check user-written binders 2. instantiate invisible binders a la 'checkExpectedKind' * 'kcTyClGroup' now partitions declarations into declarations with a standalone kind signature or a CUSK (kinded_decls) and declarations without either (kindless_decls): * 'kinded_decls' are kind-checked with 'checkInitialKinds' * 'kindless_decls' are kind-checked with 'getInitialKinds' * DerivInfo has been extended with a new field: di_scoped_tvs :: ![(Name,TyVar)] These variables must be added to the context in case the deriving clause references tcTyConScopedTyVars. See #16731.
-