- Jul 07, 2023
-
-
There was an oversight in the driver which assumed that you would always produce a `.o` file when compiling a .cmm file. Fixes #23610
-
- Jun 13, 2023
-
-
Tracking ticket: #23059 This runs compile_and_run tests with optimised code with bytecode interpreter Changed submodules: hpc, process Co-authored-by:
Torsten Schmits <git@tryp.io>
-
- Apr 24, 2023
-
-
This patch does a few things: - Always build 64-bit atomic ops in rts/ghc-prim, even on 32-bit platforms - Remove legacy "64bit" cabal flag of rts package - Fix hs_xchg64 function prototype for 32-bit platforms - Fix AtomicFetch test for wasm32
-
- Apr 02, 2023
-
- Feb 28, 2023
-
-
req_cmm is more informative than js_skip
-
- Feb 01, 2023
-
-
Currently, the wasm NCG has an implicit assumption: all CmmSwitch scrutinees are 32-bit integers. This is not always true; #22864 is one counter-example with a 64-bit scrutinee. This patch fixes the logic by explicitly converting the scrutinee to a word that can be used as a br_table operand. Fixes #22871. Also includes a regression test.
-
- Jan 11, 2023
-
-
- Remove unused mkWildEvBinder - Use typeTypeOrConstraint - more symmetric and asserts that that the type is Type or Constraint - Fix escape sequences in Python; they raise a deprecation warning with -Wdefault
-
- Nov 29, 2022
-
-
Sylvain Henry authored
Add JS backend adapted from the GHCJS project by Luite Stegeman. Some features haven't been ported or implemented yet. Tests for these features have been disabled with an associated gitlab ticket. Bump array submodule Work funded by IOG. Co-authored-by:
Jeffrey Young <jeffrey.young@iohk.io> Co-authored-by:
Luite Stegeman <stegeman@gmail.com> Co-authored-by:
Josh Meredith <joshmeredith2008@gmail.com>
-
- Apr 27, 2022
-
-
This fixes the initialisation functions when using -prof or -finfo-table-map. Fixes #21370
-
- Apr 01, 2022
-
-
- Remove unused functions exprToCoercion_maybe, applyTypeToArg, typeMonoPrimRep_maybe, runtimeRepMonoPrimRep_maybe. - Replace orValid with a simpler check - Use splitAtList in applyTysX - Remove calls to extra_clean in the testsuite; it does not do anything. Metric Decrease: T18223
-
- Jan 19, 2022
-
-
The test reads a 16 bit value from an array of 8 bit values. Naturally, that leads to different values read on big-endian architectures than on little-endian. In this case the value read is 0x8081 on big-endian and 0x8180 on little endian. This patch changes the argument of the `and` machop to mask bit 7 which is the only bit different. The test still checks that bit 15 is zero, which was the original issue in #20638. Fixes #20906.
-
- Dec 28, 2021
-
-
Matthew Pickering authored
Multiple home units allows you to load different packages which may depend on each other into one GHC session. This will allow both GHCi and HLS to support multi component projects more naturally. Public Interface ~~~~~~~~~~~~~~~~ In order to specify multiple units, the -unit @⟨filename⟩ flag is given multiple times with a response file containing the arguments for each unit. The response file contains a newline separated list of arguments. ``` ghc -unit @unitLibCore -unit @unitLib ``` where the `unitLibCore` response file contains the normal arguments that cabal would pass to `--make` mode. ``` -this-unit-id lib-core-0.1.0.0 -i -isrc LibCore.Utils LibCore.Types ``` The response file for lib, can specify a dependency on lib-core, so then modules in lib can use modules from lib-core. ``` -this-unit-id lib-0.1.0.0 -package-id lib-core-0.1.0.0 -i -isrc Lib.Parse Lib.Render ``` Then when the compiler starts in --make mode it will compile both units lib and lib-core. There is also very basic support for multiple home units in GHCi, at the moment you can start a GHCi session with multiple units but only the :reload is supported. Most commands in GHCi assume a single home unit, and so it is additional work to work out how to modify the interface to support multiple loaded home units. Options used when working with Multiple Home Units There are a few extra flags which have been introduced specifically for working with multiple home units. The flags allow a home unit to pretend it’s more like an installed package, for example, specifying the package name, module visibility and reexported modules. -working-dir ⟨dir⟩ It is common to assume that a package is compiled in the directory where its cabal file resides. Thus, all paths used in the compiler are assumed to be relative to this directory. When there are multiple home units the compiler is often not operating in the standard directory and instead where the cabal.project file is located. In this case the -working-dir option can be passed which specifies the path from the current directory to the directory the unit assumes to be it’s root, normally the directory which contains the cabal file. When the flag is passed, any relative paths used by the compiler are offset by the working directory. Notably this includes -i and -I⟨dir⟩ flags. -this-package-name ⟨name⟩ This flag papers over the awkward interaction of the PackageImports and multiple home units. When using PackageImports you can specify the name of the package in an import to disambiguate between modules which appear in multiple packages with the same name. This flag allows a home unit to be given a package name so that you can also disambiguate between multiple home units which provide modules with the same name. -hidden-module ⟨module name⟩ This flag can be supplied multiple times in order to specify which modules in a home unit should not be visible outside of the unit it belongs to. The main use of this flag is to be able to recreate the difference between an exposed and hidden module for installed packages. -reexported-module ⟨module name⟩ This flag can be supplied multiple times in order to specify which modules are not defined in a unit but should be reexported. The effect is that other units will see this module as if it was defined in this unit. The use of this flag is to be able to replicate the reexported modules feature of packages with multiple home units. Offsetting Paths in Template Haskell splices ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ When using Template Haskell to embed files into your program, traditionally the paths have been interpreted relative to the directory where the .cabal file resides. This causes problems for multiple home units as we are compiling many different libraries at once which have .cabal files in different directories. For this purpose we have introduced a way to query the value of the -working-dir flag to the Template Haskell API. By using this function we can implement a makeRelativeToProject function which offsets a path which is relative to the original project root by the value of -working-dir. ``` import Language.Haskell.TH.Syntax ( makeRelativeToProject ) foo = $(makeRelativeToProject "./relative/path" >>= embedFile) ``` > If you write a relative path in a Template Haskell splice you should use the makeRelativeToProject function so that your library works correctly with multiple home units. A similar function already exists in the file-embed library. The function in template-haskell implements this function in a more robust manner by honouring the -working-dir flag rather than searching the file system. Closure Property for Home Units ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ For tools or libraries using the API there is one very important closure property which must be adhered to: > Any dependency which is not a home unit must not (transitively) depend on a home unit. For example, if you have three packages p, q and r, then if p depends on q which depends on r then it is illegal to load both p and r as home units but not q, because q is a dependency of the home unit p which depends on another home unit r. If you are using GHC by the command line then this property is checked, but if you are using the API then you need to check this property yourself. If you get it wrong you will probably get some very confusing errors about overlapping instances. Limitations of Multiple Home Units ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ There are a few limitations of the initial implementation which will be smoothed out on user demand. * Package thinning/renaming syntax is not supported * More complicated reexports/renaming are not yet supported. * It’s more common to run into existing linker bugs when loading a large number of packages in a session (for example #20674, #20689) * Backpack is not yet supported when using multiple home units. * Dependency chasing can be quite slow with a large number of modules and packages. * Loading wired-in packages as home units is currently not supported (this only really affects GHC developers attempting to load template-haskell). * Barely any normal GHCi features are supported, it would be good to support enough for ghcid to work correctly. Despite these limitations, the implementation works already for nearly all packages. It has been testing on large dependency closures, including the whole of head.hackage which is a total of 4784 modules from 452 packages. Internal Changes ~~~~~~~~~~~~~~~~ * The biggest change is that the HomePackageTable is replaced with the HomeUnitGraph. The HomeUnitGraph is a map from UnitId to HomeUnitEnv, which contains information specific to each home unit. * The HomeUnitEnv contains: - A unit state, each home unit can have different package db flags - A set of dynflags, each home unit can have different flags - A HomePackageTable * LinkNode: A new node type is added to the ModuleGraph, this is used to place the linking step into the build plan so linking can proceed in parralel with other packages being built. * New invariant: Dependencies of a ModuleGraphNode can be completely determined by looking at the value of the node. In order to achieve this, downsweep now performs a more complete job of downsweeping and then the dependenices are recorded forever in the node rather than being computed again from the ModSummary. * Some transitive module calculations are rewritten to use the ModuleGraph which is more efficient. * There is always an active home unit, which simplifies modifying a lot of the existing API code which is unit agnostic (for example, in the driver). The road may be bumpy for a little while after this change but the basics are well-tested. One small metric increase, which we accept and also submodule update to haddock which removes ExtendedModSummary. Closes #10827 ------------------------- Metric Increase: MultiLayerModules ------------------------- Co-authored-by:
Fendor <power.walross@gmail.com>
-
- Dec 07, 2021
-
-
See #20725. The commit includes source-code changes and a test case.
-
- Dec 02, 2021
-
-
These generally expect a particular word size.
-
As noted in Note [When in doubt, cast arguments as unsigned], we must ensure that arguments have the correct signedness since some operations (e.g. `%`) have different semantics depending upon signedness.
-
There were found by the test-primops testsuite.
-
- Nov 23, 2021
-
-
-
No-op assignments like R1 = R1 are not only wasteful. They can also inhibit other optimizations like inlining assignments that read from R1. We now check for assignments being a no-op before and after we simplify the RHS in Cmm sink which should eliminate most of these no-ops.
-
- Nov 06, 2021
-
-
- Aug 17, 2021
-
-
John Ericson authored
We don't want regressions like e8f7734d to regress. Co-Authored-By:
Sylvain Henry <hsyl20@gmail.com>
-
- Jul 24, 2021
-
-
- Mar 03, 2021
-
-
The first change makes the array ones use the proper fixed-size types, which also means that just like before, they can be used without explicit conversions with the boxed sized types. (Before, it was Int# / Word# on both sides, now it is fixed sized on both sides). For the second change, don't use "extend" or "narrow" in some of the user-facing primops names for conversions. - Names like `narrowInt32#` are misleading when `Int` is 32-bits. - Names like `extendInt64#` are flat-out wrong when `Int is 32-bits. - `narrow{Int,Word}<N>#` however map a type to itself, and so don't suffer from this problem. They are left as-is. These changes are batched together because Alex happend to use the array ops. We can only use released versions of Alex at this time, sadly, and I don't want to have to have a release thatwon't work for the final GHC 9.2. So by combining these we get all the changes for Alex done at once. Bump hackage state in a few places, and also make that workflow slightly easier for the future. Bump minimum Alex version Bump Cabal, array, bytestring, containers, text, and binary submodules
-
- Nov 04, 2020
-
-
We no compare these by doing 64bit subtraction and checking the resulting flags. We used to do this differently but the old approach was broken when the high bits compared equal and the comparison was one of >= or <=. The new approach should be both correct and faster.
-
- Jun 24, 2020
-
-
Metric Decrease: T12150 T12234
-
- May 15, 2020
-
-
This MachOp was introduced by 2c959a18 but a wildcard match in cmmMachOpFoldM hid the fact that it wasn't handled. Ideally we would eliminate the match but this appears to be a larger task. Fixes #18141.
-
- Feb 14, 2020
-
-
Ben Gamari authored
In BSD grep this flag only affects directory recursion.
-
- Jan 25, 2020
-
-
- Jan 16, 2020
-
-
Before, it was a panic because it was handled above. But there must have been an error in my reasoning (another caller?) because #17442 reported the panic was hit. But, rather than figuring out what happened, I can just make it impossible by construction. By adding just a bit more bureaucracy in the return types, I can handle TagToEnum in the same case as all the others, so the big case is is now total, and the panic is removed. Fixes #17442
-
- Sep 05, 2019
-
-
The tightens up the kinds a bit. I use type synnonyms to avoid adding promotion ticks everywhere.
-
- Jul 26, 2019
-
- Jan 30, 2019
-
-
Ben Gamari authored
This eliminates most uses of run_command in the testsuite in favor of the more structured makefile_test.
-
Ben Gamari authored
This reverts commit 76c8fd67.
-
Ben Gamari authored
-
- Nov 17, 2018
-
-
Andreas Klebinger authored
Summary: This patch implements a new code layout algorithm. It has been tested for x86 and is disabled on other platforms. Performance varies slightly be CPU/Machine but in general seems to be better by around 2%. Nofib shows only small differences of about +/- ~0.5% overall depending on flags/machine performance in other benchmarks improved significantly. Other benchmarks includes at least the benchmarks of: aeson, vector, megaparsec, attoparsec, containers, text and xeno. While the magnitude of gains differed three different CPUs where tested with all getting faster although to differing degrees. I tested: Sandy Bridge(Xeon), Haswell, Skylake * Library benchmark results summarized: * containers: ~1.5% faster * aeson: ~2% faster * megaparsec: ~2-5% faster * xml library benchmarks: 0.2%-1.1% faster * vector-benchmarks: 1-4% faster * text: 5.5% faster On average GHC compile times go down, as GHC compiled with the new layout is faster than the overhead introduced by using the new layout algorithm, Things this patch does: * Move code responsilbe for block layout in it's own module. * Move the NcgImpl Class into the NCGMonad module. * Extract a control flow graph from the input cmm. * Update this cfg to keep it in sync with changes during asm codegen. This has been tested on x64 but should work on x86. Other platforms still use the old codelayout. * Assign weights to the edges in the CFG based on type and limited static analysis which are then used for block layout. * Once we have the final code layout eliminate some redundant jumps. In particular turn a sequences of: jne .foo jmp .bar foo: into je bar foo: .. Test Plan: ci Reviewers: bgamari, jmct, jrtc27, simonmar, simonpj, RyanGlScott Reviewed By: RyanGlScott Subscribers: RyanGlScott, trommler, jmct, carter, thomie, rwbarton GHC Trac Issues: #15124 Differential Revision: https://phabricator.haskell.org/D4726
-
- Jun 07, 2018
-
-
Andreas Klebinger authored
This for some reason or the other and makes it into the final binary. I've added the check to ContFlowOpt as that seems like a logical place for this. In a regular nofib run there were 30 occurences of this pattern. Test Plan: ci Reviewers: bgamari, simonmar, dfeuer, jrtc27, tdammers Reviewed By: bgamari, simonmar Subscribers: tdammers, dfeuer, rwbarton, thomie, carter GHC Trac Issues: #15188 Differential Revision: https://phabricator.haskell.org/D4740
-
- Mar 19, 2018
-
-
- Fix the naming and comments to indicate that we are calculating *reverse* postorder (and not the standard postorder). - Rewrite the calculation to avoid CPS code. I found it fairly difficult to understand and the new one seems faster (according to nofib, decreases compiler allocations by 0.2%) - Remove `LabelsPtr`, which seems unnecessary and could be *really* confusing. For instance, previously: `postorder_dfs_from <block with label X>` and `postorder_dfs_from <label X>` would actually mean quite different things (and give different results). - Change the `Dataflow` module to always use entry of the graph for reverse postorder calculation. This should be the only change in behavior of this commit. Previously, if the caller provided initial facts for some of the labels, we would use those labels for our postorder calculation. However, I don't think that's correct in general - if the initial facts did not contain the entry of the graph, we would never analyze the blocks reachable from the entry but unreachable from the labels provided with the initial facts. It seems that the only analysis that used this was proc-point analysis, which I think would always include the entry block (so I don't think there's any bug due to this). Signed-off-by:
Michal Terepeta <michal.terepeta@gmail.com> Test Plan: ./validate Reviewers: bgamari, simonmar Reviewed By: simonmar Subscribers: rwbarton, thomie, carter Differential Revision: https://phabricator.haskell.org/D4464
-