Commit 45e90651 by Simon Marlow

### clarify shortcutting behaviour of all/any/elem

 ... ... @@ -292,7 +292,9 @@ or\ ::\ {\char 91}Bool{\char 93}\ ->\ Bool any\ ::\ (a\ ->\ Bool)\ ->\ {\char 91}a{\char 93}\ ->\ Bool \end{tabular}]\haddockbegindoc Applied to a predicate and a list, \haddockid{any} determines if any element of the list satisfies the predicate. of the list satisfies the predicate. For the result to be \haddockid{False}, the list must be finite; \haddockid{True}, however, results from a \haddockid{True} value for the predicate applied to an element at a finite index of a finite or infinite list. \par \end{haddockdesc} ... ... @@ -301,7 +303,9 @@ Applied to a predicate and a list, \haddockid{any} determines if any element all\ ::\ (a\ ->\ Bool)\ ->\ {\char 91}a{\char 93}\ ->\ Bool \end{tabular}]\haddockbegindoc Applied to a predicate and a list, \haddockid{all} determines if all elements of the list satisfy the predicate. of the list satisfy the predicate. For the result to be \haddockid{True}, the list must be finite; \haddockid{False}, however, results from a \haddockid{False} value for the predicate applied to an element at a finite index of a finite or infinite list. \par \end{haddockdesc} ... ... @@ -768,7 +772,8 @@ isInfixOf "Ial" "I really like Haskell." == False elem\ ::\ Eq\ a\ =>\ a\ ->\ {\char 91}a{\char 93}\ ->\ Bool \end{tabular}]\haddockbegindoc \haddockid{elem} is the list membership predicate, usually written in infix form, e.g., \haddocktt{x\ elem\ xs}. e.g., \haddocktt{x\ elem\ xs}. For the result to be \haddockid{False}, the list must be finite; \haddockid{True}, however, results from an element equal to \haddocktt{x} found at a finite index of a finite or infinite list. \par \end{haddockdesc} ... ...